Principles of Data Visualization and Introduction to ggplot2

I have provided you with data about the 5,000 fastest growing companies in the US, as compiled by Inc. magazine. lets read this in:

inc <- read.csv("https://raw.githubusercontent.com/destination4debabrata/CUNY-Assignments/master/DATA%20608%2001%5B46846%5D/module1/Data/inc5000_data.csv", header= TRUE)

And lets preview this data:

head(inc)
##   Rank                         Name Growth_Rate   Revenue
## 1    1                         Fuhu      421.48 1.179e+08
## 2    2        FederalConference.com      248.31 4.960e+07
## 3    3                The HCI Group      245.45 2.550e+07
## 4    4                      Bridger      233.08 1.900e+09
## 5    5                       DataXu      213.37 8.700e+07
## 6    6 MileStone Community Builders      179.38 4.570e+07
##                       Industry Employees         City State
## 1 Consumer Products & Services       104   El Segundo    CA
## 2          Government Services        51     Dumfries    VA
## 3                       Health       132 Jacksonville    FL
## 4                       Energy        50      Addison    TX
## 5      Advertising & Marketing       220       Boston    MA
## 6                  Real Estate        63       Austin    TX
summary(inc)
##       Rank                          Name       Growth_Rate     
##  Min.   :   1   (Add)ventures         :   1   Min.   :  0.340  
##  1st Qu.:1252   @Properties           :   1   1st Qu.:  0.770  
##  Median :2502   1-Stop Translation USA:   1   Median :  1.420  
##  Mean   :2502   110 Consulting        :   1   Mean   :  4.612  
##  3rd Qu.:3751   11thStreetCoffee.com  :   1   3rd Qu.:  3.290  
##  Max.   :5000   123 Exteriors         :   1   Max.   :421.480  
##                 (Other)               :4995                    
##     Revenue                                  Industry      Employees      
##  Min.   :2.000e+06   IT Services                 : 733   Min.   :    1.0  
##  1st Qu.:5.100e+06   Business Products & Services: 482   1st Qu.:   25.0  
##  Median :1.090e+07   Advertising & Marketing     : 471   Median :   53.0  
##  Mean   :4.822e+07   Health                      : 355   Mean   :  232.7  
##  3rd Qu.:2.860e+07   Software                    : 342   3rd Qu.:  132.0  
##  Max.   :1.010e+10   Financial Services          : 260   Max.   :66803.0  
##                      (Other)                     :2358   NA's   :12       
##             City          State     
##  New York     : 160   CA     : 701  
##  Chicago      :  90   TX     : 387  
##  Austin       :  88   NY     : 311  
##  Houston      :  76   VA     : 283  
##  San Francisco:  75   FL     : 282  
##  Atlanta      :  74   IL     : 273  
##  (Other)      :4438   (Other):2764

Think a bit on what these summaries mean. Use the space below to add some more relevant non-visual exploratory information you think helps you understand this data:

Structure of data

str(inc)
## 'data.frame':    5001 obs. of  8 variables:
##  $ Rank       : int  1 2 3 4 5 6 7 8 9 10 ...
##  $ Name       : Factor w/ 5001 levels "(Add)ventures",..: 1770 1633 4423 690 1198 2839 4733 1468 1869 4968 ...
##  $ Growth_Rate: num  421 248 245 233 213 ...
##  $ Revenue    : num  1.18e+08 4.96e+07 2.55e+07 1.90e+09 8.70e+07 ...
##  $ Industry   : Factor w/ 25 levels "Advertising & Marketing",..: 5 12 13 7 1 20 10 1 5 21 ...
##  $ Employees  : int  104 51 132 50 220 63 27 75 97 15 ...
##  $ City       : Factor w/ 1519 levels "Acton","Addison",..: 391 365 635 2 139 66 912 1179 131 1418 ...
##  $ State      : Factor w/ 52 levels "AK","AL","AR",..: 5 47 10 45 20 45 44 5 46 41 ...
describe(inc)
##             vars    n        mean           sd    median     trimmed
## Rank           1 5001     2501.64      1443.51 2.502e+03     2501.73
## Name*          2 5001     2501.00      1443.81 2.501e+03     2501.00
## Growth_Rate    3 5001        4.61        14.12 1.420e+00        2.14
## Revenue        4 5001 48222535.49 240542281.14 1.090e+07 17334966.26
## Industry*      5 5001       12.10         7.33 1.300e+01       12.05
## Employees      6 4989      232.72      1353.13 5.300e+01       81.78
## City*          7 5001      732.00       441.12 7.610e+02      731.74
## State*         8 5001       24.80        15.64 2.300e+01       24.44
##                     mad     min        max      range  skew kurtosis         se
## Rank            1853.25 1.0e+00 5.0000e+03 4.9990e+03  0.00    -1.20      20.41
## Name*           1853.25 1.0e+00 5.0010e+03 5.0000e+03  0.00    -1.20      20.42
## Growth_Rate        1.22 3.4e-01 4.2148e+02 4.2114e+02 12.55   242.34       0.20
## Revenue     10674720.00 2.0e+06 1.0100e+10 1.0098e+10 22.17   722.66 3401441.44
## Industry*          8.90 1.0e+00 2.5000e+01 2.4000e+01 -0.10    -1.18       0.10
## Employees         53.37 1.0e+00 6.6803e+04 6.6802e+04 29.81  1268.67      19.16
## City*            604.90 1.0e+00 1.5190e+03 1.5180e+03 -0.04    -1.26       6.24
## State*            19.27 1.0e+00 5.2000e+01 5.1000e+01  0.12    -1.46       0.22

View sample number of rows and columns, variable types

glimpse(inc)
## Observations: 5,001
## Variables: 8
## $ Rank        <int> 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, ...
## $ Name        <fct> Fuhu, FederalConference.com, The HCI Group, Bridger, Da...
## $ Growth_Rate <dbl> 421.48, 248.31, 245.45, 233.08, 213.37, 179.38, 174.04,...
## $ Revenue     <dbl> 1.179e+08, 4.960e+07, 2.550e+07, 1.900e+09, 8.700e+07, ...
## $ Industry    <fct> Consumer Products & Services, Government Services, Heal...
## $ Employees   <int> 104, 51, 132, 50, 220, 63, 27, 75, 97, 15, 149, 165, 25...
## $ City        <fct> El Segundo, Dumfries, Jacksonville, Addison, Boston, Au...
## $ State       <fct> CA, VA, FL, TX, MA, TX, TN, CA, UT, RI, VA, CA, FL, SC,...
DT::datatable(inc, options = list(pagelength=5))

Total Revenue by Industry

# Insert your code here, create more chunks as necessary
inc %>% 
  group_by(Industry) %>%
  summarise(Total_Revenue = sum(Revenue)) %>%
  arrange(desc(Total_Revenue)) %>%
  datatable()

Total Employees by State

inc[is.na(inc)] <- 0

inc %>% 
  group_by(State) %>%
  summarise(Total_Employees = sum(Employees)) %>%
  arrange(State) %>%
  datatable()

Company with Largest Revenue by State

inc %>% 
  group_by(State) %>%
  arrange(desc(Revenue)) %>%
  summarise(Top_Company = first(Name), Company_Revenue = first(Revenue)) %>%
  datatable()

Question 1

Create a graph that shows the distribution of companies in the dataset by State (ie how many are in each state). There are a lot of States, so consider which axis you should use. This visualization is ultimately going to be consumed on a ‘portrait’ oriented screen (ie taller than wide), which should further guide your layout choices.

# Answer Question 1 here
inc %>% 
  group_by(State) %>%
  summarise(No_Companies = n()) %>%
  arrange(desc(No_Companies)) %>%
  ggplot(aes(x = reorder(State, No_Companies), y = No_Companies)) + 
         geom_bar(stat="identity", fill="firebrick2", width=0.5) + 
         coord_flip() + 
         labs(title="Amount of Fastest Growing Companies by State", subtitle="count vs. State", x="State", y="Count") #+ 

  #theme_grey(base_size = 8) +
  #scale_y_continuous(expand=c(0,0))

# Creating the ggplot for top 10 states
top10 <- inc %>% 
          count(State, sort = TRUE) %>% 
          head(10)
top10$State <- factor(top10$State, levels = top10$State[order(top10$n)])
ggplot(top10, aes(State,n)) + 
  geom_bar(stat="identity", fill='steelblue') + 
  coord_flip() + 
  ylab("Count") + 
  theme_minimal() + 
  ggtitle("Number of Fastest Growing Companies Per State - Top 10") + 
  geom_text(aes(label=n), vjust=0.3, hjust=1.6, color="white", size=3.5)

inc1 <- inc
inc1$State <- factor(inc1$State, rev(levels(inc1$State)))
png(filename = "Figure.png", height = 960, width = 480, units="px")
g <- ggplot(data = inc1, aes(x = State)) + 
      geom_bar(fill="steelblue") +
      coord_flip() + 
      #scale_x_discrete(limits = c(0, 30)) + 
      scale_y_continuous(limits = c(0, 800)) + 
      labs(y = "Count") + 
      ggtitle("Inc. Magazine 5,000 Fastest Growing Companies") + 
      theme(panel.background = element_rect(fill = "white"), 
            panel.grid.major.x = element_line(color = "lightgrey"), 
            axis.text = element_text(size=12, color = "grey55"), 
            axis.title = element_text(size=14, color = "grey55"), 
            plot.title = element_text(size=14, color = "grey55", hjust=0.5))
plot(g)
garbage <- dev.off()

Question 2

Lets dig in on the state with the 3rd most companies in the data set. Imagine you work for the state and are interested in how many people are employed by companies in different industries. Create a plot that shows the average and/or median employment by industry for companies in this state (only use cases with full data, use R’s complete.cases() function.) In addition to this, your graph should show how variable the ranges are, and you should deal with outliers.

# Answer Question 2 here
third_state <- inc %>% 
  group_by(State) %>%
  summarise(No_Companies = n()) %>%
  arrange(desc(No_Companies)) %>%
  summarise(value = nth(State, 3))

paste0("3rd Most Employed State:",third_state[[1, 1]])
## [1] "3rd Most Employed State:NY"
inc[complete.cases(inc), ] %>% 
  filter(State == third_state[[1, 1]]) %>%
  group_by(Industry) %>%
  summarise(No_of_Employees = sum(Employees)) %>%
  arrange(desc(No_of_Employees)) %>%
  ggplot(aes(x = reorder(Industry, No_of_Employees), y = No_of_Employees)) + 
    geom_bar(stat="identity") + 
    coord_flip() + 
    labs(title=paste("Most Employed Companies in", third_state[[1, 1]], "by Industry"))

inc[complete.cases(inc), ] %>% 
  filter(State == third_state[[1, 1]]) %>%
  ggplot(aes(Industry, Employees)) + 
    geom_boxplot() + 
    coord_flip() + 
    labs(title ="New York Employment Overview by Industry") +
    geom_boxplot(outlier.shape=NA) +
    scale_y_continuous(limits = quantile(inc[complete.cases(inc), ]$Employees, c(0.01, 0.99)))

inc[complete.cases(inc), ] %>% 
  filter(State == 'NY') %>%
  group_by(Industry) %>%
  summarize(meanEmployment=mean(Employees),medianEmployment=median(Employees)) %>%
  gather('Metric','Value',2:3) %>%
  ggplot(aes(x=Industry,y=Value)) +
         geom_bar(stat='identity',aes(fill=Metric),position='dodge') + 
         coord_flip() + 
         labs(title='Total employed by Industry in NY')+ylab('Employees')

Business Products & Services appears to be an outlier. Upon checking the average difference between industry means, we may be able to regulate the outlier.

third.state.table <- inc[complete.cases(inc), ] %>% 
                      filter(State == 'NY') %>%
                      group_by(Industry) %>%
                      summarize(meanEmployment=mean(Employees), medianEmployment=median(Employees)) 
pivot_third.state.table <- third.state.table %>%
                            gather(property, count, meanEmployment, medianEmployment)
state.outlier <- pivot_third.state.table %>% filter(property == "meanEmployment")
state.outlier <- state.outlier[-c(2),] # drop the outlier
mean(diff(sort(state.outlier$count))) # calculate the average difference 
## [1] 26.49105
max(diff(sort(state.outlier$count)))
## [1] 191.6224

As can be seen from above, the average difference between consecutive leading industries is 26.49105, with a max of 191.6224. With this in mind, we can cap the outlier at ~200 more than the second-highest.

third.state.edited <- pivot_third.state.table
third.state.edited[2,3] <- 815
ggplot(third.state.edited, aes(x=reorder(Industry, count), y=count)) +
  geom_bar(stat="identity", position="dodge", aes(fill=property)) +
  coord_flip() +
  scale_fill_manual(values=c("lightsteelblue4", "lightsteelblue2"), guide=guide_legend(reverse=T)) +
  scale_y_continuous(expand=c(0,0))

par(mfrow=c(1,2))
# Create a plot showing average employment by industry for companies in the state
ggplot(third.state.table %>% mutate(Industry = fct_reorder(Industry, meanEmployment)) , aes(x=Industry,y=meanEmployment, fill=Industry)) + 
  geom_bar(stat="identity") + 
  ylab('Mean Employment by Industry') + 
  #coord_flip() +
  scale_fill_grey(start=0.8, end=0.1) + 
  theme(legend.position='none') +
  theme(axis.text.x=element_text(angle=90,hjust=1,vjust=0.5))

# Create a plot showing median employment by industry for companies in the state
ggplot(third.state.table %>% mutate(Industry = fct_reorder(Industry, medianEmployment)), aes(x=Industry,y=medianEmployment, fill=Industry)) +
  geom_bar(stat="identity") + 
  ylab('Median Employment by Industry') + 
  #coord_flip() + 
  scale_fill_grey(start=0.8, end=0.1) + 
  theme(legend.position='none') +
  theme(axis.text.x=element_text(angle=90,hjust=1,vjust=0.5))

Question 3

Now imagine you work for an investor and want to see which industries generate the most revenue per employee. Create a chart that makes this information clear. Once again, the distribution per industry should be shown.

inc[is.na(inc)] <- 0 
inc %>% 
  group_by(Industry) %>%
  summarise(Employee_Revenue = sum(Revenue)/sum(Employees)) %>%
  arrange(desc(Employee_Revenue)) %>%
  ggplot(aes(x = reorder(Industry, Employee_Revenue), y = Employee_Revenue, fill = Employee_Revenue)) + 
    geom_bar(stat="identity") + 
    coord_flip() + 
    labs(title ="Revenue Per Employee by Industry", ylab="Industry") +
    scale_fill_gradient(low = "black", high = "darkgreen") + 
    theme(legend.position = "none")

inc3 <- inc[complete.cases(inc),] %>%
          group_by(Industry) %>%
          summarize(total_employees=sum(Employees), total_revenue=sum(Revenue), growth_rate=mean(Growth_Rate))
inc3$avgRev = inc3$total_revenue/inc3$total_employees
compDF = inc3[!inc3$Industry=='Computer Hardware' & !inc3$Industry=='Human Resources',]
compDF$scaledAR = scale(compDF$avgRev)
ggplot(compDF,aes(x=reorder(Industry,scaledAR),y=scaledAR,fill=growth_rate)) + 
  geom_bar(stat="identity") + 
  coord_flip()

# Add Revenue-Per-Employee variable
RPE = inc[complete.cases(inc), ] %>% mutate(RevPerEmp = Revenue/Employees)

# Remove extreme outliers
RPEoutliers = RPE$RevPerEmp %in% boxplot.stats(RPE$RevPerEmp, coef = 1.5)$out
RPEoutclean = RPE[!RPEoutliers, ]

# Revenue/Employee vs Industry
ggplot(RPEoutclean, aes(x = reorder(Industry, RevPerEmp, FUN = mean), y = RevPerEmp)) + 
  geom_boxplot(outlier.shape = NA) +
  ylab("Revenue per Employee") + 
  xlab("Industry")+
  coord_flip()+
  stat_summary(fun.y=mean, colour="blue", geom="point", show_guide = FALSE)

inc3 = inc[inc$Employees > 0, ]
inc3$Revperemp <- with(inc3, Revenue/Employees)
dfSubset <- aggregate(inc3$Revperemp, list(Industry = inc3$Industry), mean)
dfSubset$Legend <- paste(dfSubset$Industry, round(dfSubset$x/1000,0), 'K', sep=' ') 
ggplot(dfSubset, aes(area = x, fill = Industry, label = Legend)) +
  geom_treemap(show.legend = FALSE, na.rm = TRUE, stat="identity", layout="squarified") +
  geom_treemap_text(fontface = "italic", colour = "white", place = "centre",
                    grow = TRUE)

In this case, we have an outlier: Computer Hardware. Thus, computer hardware has the potential for the most revenue per employee, but a safer bet would probably be energy, because of its higher growth rate.

inc3 <- inc %>% 
  mutate(Revenue_Per_Employee = Revenue/Employees) %>% 
  group_by(Industry) %>%
  #summarise(Employee_Revenue = sum(Revenue)/sum(Employees)) %>%
  arrange(desc(Revenue_Per_Employee))
ggplot(inc3, aes(x=Industry, y=Revenue_Per_Employee, fill=Industry)) + 
  geom_boxplot() + 
  coord_flip() + 
  theme(legend.position='none') + 
  ylab("Revenue Per Employee")

ggplot(inc3, aes(x=Industry, y=Revenue_Per_Employee, fill=Industry)) + 
  geom_boxplot() + 
  scale_y_continuous(trans='log10') + 
  coord_flip() + 
  theme(legend.position='none') + 
  ylab("Revenue Per Employee - Logarithmic Transformation Base 10")

ggplot(inc3, aes(x=Industry, y=Revenue_Per_Employee, fill=Industry)) + 
  geom_violin() + 
  scale_y_continuous(trans='log10') + 
  coord_flip() + 
  theme(legend.position='none') + 
  ylab("Revenue Per Employee - Logarithmic Transformation Base 10") + 
  ggtitle("Violin Plot of Revenue Per Employee by Industry")