## Getting data from the 2014-2018 5-year ACS
| NAME | estimate |
|---|---|
| Los Angeles | 10098052 |
| San Diego | 3302833 |
| Orange | 3164182 |
| Riverside | 2383286 |
| San Bernardino | 2135413 |
| Santa Clara | 1922200 |
| Alameda | 1643700 |
| Sacramento | 1510023 |
| Contra Costa | 1133247 |
| Fresno | 978130 |
| Kern | 883053 |
| San Francisco | 870044 |
| Ventura | 848112 |
| San Mateo | 765935 |
| San Joaquin | 732212 |
| Stanislaus | 539301 |
| Sonoma | 501317 |
| Tulare | 460477 |
| Santa Barbara | 443738 |
| Solano | 438530 |
| Monterey | 433212 |
| Placer | 380077 |
| San Luis Obispo | 281455 |
| Santa Cruz | 273765 |
| Merced | 269075 |
| Marin | 260295 |
| Butte | 227075 |
| Yolo | 214977 |
| El Dorado | 186661 |
| Imperial | 180216 |
| Shasta | 179085 |
| Madera | 155013 |
| Kings | 150075 |
| Napa | 140530 |
| Humboldt | 135768 |
| Nevada | 99092 |
| Sutter | 95872 |
| Mendocino | 87422 |
| Yuba | 75493 |
| Lake | 64148 |
| Tehama | 63373 |
| San Benito | 59416 |
| Tuolumne | 53932 |
| Calaveras | 45235 |
| Siskiyou | 43540 |
| Amador | 37829 |
| Lassen | 31185 |
| Glenn | 27897 |
| Del Norte | 27424 |
| Colusa | 21464 |
| Plumas | 18699 |
| Inyo | 18085 |
| Mariposa | 17540 |
| Mono | 14174 |
| Trinity | 12862 |
| Modoc | 8938 |
| Sierra | 2930 |
| Alpine | 1146 |
From the 2013-2017 5-year ACS
## Getting data from the 2014-2018 5-year ACS
## Median Income in California From the 2013-2017 5-year ACS
## Warning in (function (endyear, span = 5, dataset = "acs", keyword, table.name, : temporarily downloading and using archived XML variable lookup files;
## since this is *much* slower, recommend running
## acs.tables.install()
## Warning in (function (endyear, span = 5, dataset = "acs", keyword, table.name, : temporarily downloading and using archived XML variable lookup files;
## since this is *much* slower, recommend running
## acs.tables.install()
## Warning in (function (endyear, span = 5, dataset = "acs", keyword, table.name, : temporarily downloading and using archived XML variable lookup files;
## since this is *much* slower, recommend running
## acs.tables.install()
## Warning in (function (endyear, span = 5, dataset = "acs", keyword, table.name, : temporarily downloading and using archived XML variable lookup files;
## since this is *much* slower, recommend running
## acs.tables.install()
## Warning in acs.fetch(endyear = endyear, span = span, geography =
## geography[[1]], : NAs introduced by coercion
## Warning in (function (endyear, span = 5, dataset = "acs", keyword, table.name, : temporarily downloading and using archived XML variable lookup files;
## since this is *much* slower, recommend running
## acs.tables.install()
## Warning in self$bind(): The following regions were missing and are being set to
## NA: 6073009902
ca <- get_acs(geography = "county", variables = "B02001_005", state = '06')
## Getting data from the 2014-2018 5-year ACS
ca %>%
mutate(NAME = gsub(" County, California", "", NAME)) %>%
ggplot(aes(x = estimate, y = reorder(NAME, estimate))) +
geom_point(color = "red", size = 1) +
labs(title = "Asian Population by county in California",
subtitle = "2013-2017 American Community Survey",
y = "",
x = "ACS estimate")
#------------------------------
vars <- load_variables(2017, "acs5", cache = TRUE) %>%
mutate(table_id = str_sub(name, 1, 6))
asian <- vars %>%
filter(table_id == "B02001_005")
sd_asian <- get_acs(geography = "tract", variables = "B02001_005",
state = '06', county = '073', geometry = TRUE)
## Getting data from the 2014-2018 5-year ACS
ggplot(sd_asian, aes(fill = desc(estimate), color = estimate)) +
geom_sf(colour="white") +
coord_sf(crs = 26914) +
labs(title = "Asian Population in San Diego county, by Census tract",
subtitle = "2013-2017 ACS",
y = "",
x = "")
language <- read.csv("E:/Census 2020/SanDiego/Non-English Speakers.csv", stringsAsFactors=T)
viet <- filter(language,Language.Spoken.at.Home=="Vietnamese" )
ggplot(viet, aes(x = Year, y=Languages.Spoken)) +
geom_bar(stat = "identity",fill = "darkblue") +
labs(title = "Vietnamese Language Spoken at Home",
subtitle = "2016-2018 American Community Survey",
y = "",
x = "ACS estimate")
language18 <- filter(language,Year==2018 )
top18 <- top_n(language18,n=10,Languages.Spoken) %>%
arrange(desc(Languages.Spoken))
ggplot(top18, aes(x = reorder(Language.Spoken.at.Home,desc(Languages.Spoken)), y=Languages.Spoken)) +
geom_bar(stat = "identity",fill = "darkblue") +
labs(title = "Language Spoken at Home",
subtitle = "2016-2018 American Community Survey",
y = "",
x = "ACS estimate")+
coord_flip()
From the 2013-2017 5-year ACS
## Getting data from the 2014-2018 5-year ACS
| Census_Tract | Median_Income |
|---|---|
| 215 | 196299 |
| 83.13 | 192083 |
| 83.28 | 187989 |
| 83.11 | 182188 |
| 171.07 | 176635 |
| 170.29 | 172554 |
| 83.24 | 166383 |
| 83.10 | 165395 |
| 171.09 | 164327 |
| 83.66 | 163274 |
| 95.04 | 163000 |
| 173.03 | 162500 |
| 83.33 | 161411 |
| 83.65 | 158750 |
| 83.03 | 158427 |
| 170.45 | 154079 |
| 83.31 | 153690 |
| 113 | 152500 |
| 83.37 | 150806 |
| 83.27 | 150536 |
## Getting data from the 2014-2018 5-year ACS
## California Median Income
## Getting data from the 2014-2018 5-year ACS
#————Income for San Diego
## Getting data from the 2014-2018 5-year ACS
```