Use the given code below to answer the questions.

## ── Attaching packages ──────────────────────────────────────────────────────────── tidyverse 1.3.0 ──
## ✓ ggplot2 3.2.1     ✓ purrr   0.3.3
## ✓ tibble  2.1.3     ✓ dplyr   0.8.3
## ✓ tidyr   1.0.2     ✓ stringr 1.4.0
## ✓ readr   1.3.1     ✓ forcats 0.4.0
## ── Conflicts ─────────────────────────────────────────────────────────────── tidyverse_conflicts() ──
## x dplyr::filter() masks stats::filter()
## x dplyr::lag()    masks stats::lag()
## Loading required package: lubridate
## 
## Attaching package: 'lubridate'
## The following object is masked from 'package:base':
## 
##     date
## Loading required package: PerformanceAnalytics
## Loading required package: xts
## Loading required package: zoo
## 
## Attaching package: 'zoo'
## The following objects are masked from 'package:base':
## 
##     as.Date, as.Date.numeric
## 
## Attaching package: 'xts'
## The following objects are masked from 'package:dplyr':
## 
##     first, last
## 
## Attaching package: 'PerformanceAnalytics'
## The following object is masked from 'package:graphics':
## 
##     legend
## Loading required package: quantmod
## Loading required package: TTR
## Registered S3 method overwritten by 'quantmod':
##   method            from
##   as.zoo.data.frame zoo
## Version 0.4-0 included new data defaults. See ?getSymbols.
## ══ Need to Learn tidyquant? ═════════════════════════════════════════════════════════════════════════
## Business Science offers a 1-hour course - Learning Lab #9: Performance Analysis & Portfolio Optimization with tidyquant!
## </> Learn more at: https://university.business-science.io/p/learning-labs-pro </>
## # A tibble: 1,025 x 7
##    date        open  high   low close   volume adjusted
##    <date>     <dbl> <dbl> <dbl> <dbl>    <dbl>    <dbl>
##  1 2016-01-04 103.  105.  102   105.  67649400     98.4
##  2 2016-01-05 106.  106.  102.  103.  55791000     96.0
##  3 2016-01-06 101.  102.   99.9 101.  68457400     94.1
##  4 2016-01-07  98.7 100.   96.4  96.4 81094400     90.1
##  5 2016-01-08  98.6  99.1  96.8  97.0 70798000     90.6
##  6 2016-01-11  99.0  99.1  97.3  98.5 49739400     92.1
##  7 2016-01-12 101.  101.   98.8 100.  49154200     93.4
##  8 2016-01-13 100.  101.   97.3  97.4 62439600     91.0
##  9 2016-01-14  98.0 100.   95.7  99.5 63170100     93.0
## 10 2016-01-15  96.2  97.7  95.4  97.1 79833900     90.8
## # … with 1,015 more rows

Q1 Get Walmart stock prices, instead of Apple.

Hint: Insert a new code chunk below and type in the code, using the tq_get() function above. Replace the ticker symbol for Walmart. You may find the ticker symbol for Microsoft from Yahoo Finance.

## # A tibble: 1,025 x 7
##    date        open  high   low close   volume adjusted
##    <date>     <dbl> <dbl> <dbl> <dbl>    <dbl>    <dbl>
##  1 2016-01-04  60.5  61.5  60.4  61.5 11989200     55.7
##  2 2016-01-05  62.0  63.0  61.8  62.9 13326000     57.1
##  3 2016-01-06  62.5  64.0  62.5  63.5 16564600     57.6
##  4 2016-01-07  63.0  65.2  62.9  65.0 26430000     59.0
##  5 2016-01-08  65.1  65.4  63.4  63.5 17767900     57.6
##  6 2016-01-11  63.8  64.5  63.6  64.2 12653800     58.2
##  7 2016-01-12  64.4  64.7  63.4  63.6 12195900     57.7
##  8 2016-01-13  63.7  63.7  61.8  61.9 13725700     56.2
##  9 2016-01-14  62    63.6  61.8  63.1 12934900     57.2
## 10 2016-01-15  61.5  62.5  61.3  61.9 15174400     56.2
## # … with 1,015 more rows

Q2 How many columns (variables) are there?

7, date open high low close volume adjusted

Q3 Interpret the second observation?

Walmart spiked at the begining of 2018 then fell shortyly afterwards

Q4 What type of data are they? What are other basic data types in R?

Hint: Watch the video, “Basic Data Types”, in DataCamp: Introduction to R for Finance: Ch1 The Basics.

Catigorial data

Q5 Plot the adjusted closing price in a line chart.

Hint: Insert a new code chunk below and type in the code, using the ggplot() function above. Revise the code so that it maps adjusted to the y-axis, instead of close.

For more information on the ggplot() function, refer to Ch2 Introduction to ggplot2 in one of our e-textbooks, Data Visualization with R.

## # A tibble: 1,025 x 7
##    date        open  high   low close   volume adjusted
##    <date>     <dbl> <dbl> <dbl> <dbl>    <dbl>    <dbl>
##  1 2016-01-04  60.5  61.5  60.4  61.5 11989200     55.7
##  2 2016-01-05  62.0  63.0  61.8  62.9 13326000     57.1
##  3 2016-01-06  62.5  64.0  62.5  63.5 16564600     57.6
##  4 2016-01-07  63.0  65.2  62.9  65.0 26430000     59.0
##  5 2016-01-08  65.1  65.4  63.4  63.5 17767900     57.6
##  6 2016-01-11  63.8  64.5  63.6  64.2 12653800     58.2
##  7 2016-01-12  64.4  64.7  63.4  63.6 12195900     57.7
##  8 2016-01-13  63.7  63.7  61.8  61.9 13725700     56.2
##  9 2016-01-14  62    63.6  61.8  63.1 12934900     57.2
## 10 2016-01-15  61.5  62.5  61.3  61.9 15174400     56.2
## # … with 1,015 more rows

Q6 From the chart you created in Q5, briefly describe how the Amazon stock has performed since the beginning of 2019.

Since 2019 the walmart stock has consistantly risen

Q7 Hide the messages and the code, but display results of the code from the webpage.

Hint: Use message, echo and results in the chunk options. Refer to the RMarkdown Reference Guide.

Q8 Hide the given code at the top and its results from the webpage.

Hint: Use eval in the chunk option. Refer to the RMarkdown Reference Guide.

Q9 Display the title and your name correctly at the top of the webpage.

Q10 Use the correct slug.