Last Ran: January 29, 2020
Subjects removed from database:
#######################
#Scan frequency by site for each month
ScannerXmonth<- as.data.frame(table(Month=Database$Month_YR, by=Database$Scanner))
names(ScannerXmonth)[names(ScannerXmonth) == "by"] <- "Scanner"
ScannerXmonth$Month<-factor(ScannerXmonth$Month, levels= c("Oct/17", "Nov/17", "Dec/17",
"Jan/18","Feb/18", "Mar/18", "Apr/18","May/18", "Jun/18","Jul/18","Aug/18","Sep/18","Oct/18", "Nov/18", "Dec/18", "Jan/19","Feb/19", "Mar/19", "Apr/19","May/19", "Jun/19","Jul/19","Aug/19","Sep/19","Oct/19", "Nov/19", "Dec/19", "Jan/20"))
Counts_by_Month<-ggplot(data=ScannerXmonth,
aes(x =Month, y=Freq, fill=Scanner))+
geom_bar(stat = "identity")+
ggtitle(label = "Scan Frequency by Month")+
theme_minimal()+
theme(plot.title = element_text(hjust = 0.5,
lineheight = 0.8, face = "bold"))+
xlab("Month")+
ylab("ScanFreq")+
theme(axis.text.x = element_text(angle = 90))
ggplotly(Counts_by_Month)
*Hover over bars for counts
## .y. group1 group2 p p.adj p.format p.signif
## 1 MPRAGE_cnr NEU Prisma KU Skyra 1.190553e-10 7.1e-10 1.2e-10 ****
## 2 MPRAGE_cnr NEU Prisma PITT Prisma 1 1.060058e-04 5.3e-04 0.00011 ***
## 3 MPRAGE_cnr NEU Prisma PITT Prisma 2 3.290925e-02 9.9e-02 0.03291 *
## 4 MPRAGE_cnr KU Skyra PITT Prisma 1 4.913435e-04 2.0e-03 0.00049 ***
## 5 MPRAGE_cnr KU Skyra PITT Prisma 2 5.530364e-01 1.0e+00 0.55304 ns
## 6 MPRAGE_cnr PITT Prisma 1 PITT Prisma 2 5.492695e-01 1.0e+00 0.54927 ns
## method
## 1 Wilcoxon
## 2 Wilcoxon
## 3 Wilcoxon
## 4 Wilcoxon
## 5 Wilcoxon
## 6 Wilcoxon