sjmisc learning

sjmisc complements dplyr, and helps with data transformation tasks and recoding variables. sjmisc works together seamlessly with dplyr and pipes. All functions are designed to support labelled data.


Design Philosophy

# A tibble: 6 x 26
  c12hour e15relat e16sex e17age e42dep c82cop1 c83cop2 c84cop3 c85cop4 c86cop5
    <dbl>    <dbl>  <dbl>  <dbl>  <dbl>   <dbl>   <dbl>   <dbl>   <dbl>   <dbl>
1      16        2      2     83      3       3       2       2       2       1
2     148        2      2     88      3       3       3       3       3       4
3      70        1      2     82      3       2       2       1       4       1
4     168        1      2     67      4       4       1       3       1       1
5     168        2      2     84      4       3       2       1       2       2
6      16        2      2     85      4       2       2       3       3       3
# ... with 16 more variables: c87cop6 <dbl>, c88cop7 <dbl>, c89cop8 <dbl>,
#   c90cop9 <dbl>, c160age <dbl>, c161sex <dbl>, c172code <dbl>,
#   c175empl <dbl>, barthtot <dbl>, neg_c_7 <dbl>, pos_v_4 <dbl>, quol_5 <dbl>,
#   resttotn <dbl>, tot_sc_e <dbl>, n4pstu <dbl>, nur_pst <dbl>
 [1] 4 4 1 1 2 1 4 2 2 4 4 3 3 3 4 4 4 1 2 1 1 2 2 4 2 1 2 2 4 6 8 2
 [1] 2 2 1 1 1 1 2 1 1 2 2 2 2 2 2 2 2 1 1 1 1 1 1 2 1 1 1 1 2 3 3 1
   mpg cyl disp  hp drat    wt  qsec vs am gear carb carb_r
1 21.0   6  160 110 3.90 2.620 16.46  0  1    4    4      2
2 21.0   6  160 110 3.90 2.875 17.02  0  1    4    4      2
3 22.8   4  108  93 3.85 2.320 18.61  1  1    4    1      1
4 21.4   6  258 110 3.08 3.215 19.44  1  0    3    1      1
5 18.7   8  360 175 3.15 3.440 17.02  0  0    3    2      1
6 18.1   6  225 105 2.76 3.460 20.22  1  0    3    1      1
 [ reached 'max' / getOption("max.print") -- omitted 26 rows ]

The …-ellipses-argument

.
 3  4  5 
15 12  5 
.
 1  2  3  4  6  8 
 7 10  3 10  1  1 
   mpg cyl disp  hp drat    wt  qsec vs am gear carb gear_r carb_r
1 21.0   6  160 110 3.90 2.620 16.46  0  1    4    4      2      2
2 21.0   6  160 110 3.90 2.875 17.02  0  1    4    4      2      2
3 22.8   4  108  93 3.85 2.320 18.61  1  1    4    1      2      1
4 21.4   6  258 110 3.08 3.215 19.44  1  0    3    1      1      1
5 18.7   8  360 175 3.15 3.440 17.02  0  0    3    2      1      1
 [ reached 'max' / getOption("max.print") -- omitted 27 rows ]
   mpg cyl disp  hp drat    wt  qsec vs am gear carb gear_r carb_r
1 21.0   6  160 110 3.90 2.620 16.46  0  1    4    4      2      2
2 21.0   6  160 110 3.90 2.875 17.02  0  1    4    4      2      2
3 22.8   4  108  93 3.85 2.320 18.61  1  1    4    1      2      1
4 21.4   6  258 110 3.08 3.215 19.44  1  0    3    1      1      1
5 18.7   8  360 175 3.15 3.440 17.02  0  0    3    2      1      1
 [ reached 'max' / getOption("max.print") -- omitted 27 rows ]

Descriptives and Summaries


elder's dependency (e42dep) <numeric>
# grouped by: male, low level of education
# total N=80  valid N=80  mean=3.06  sd=0.92

 val                label frq raw.prc valid.prc cum.prc
   1          independent   5    6.25      6.25    6.25
   2   slightly dependent  16   20.00     20.00   26.25
   3 moderately dependent  28   35.00     35.00   61.25
   4   severely dependent  31   38.75     38.75  100.00
  NA                 <NA>   0    0.00        NA      NA


elder's dependency (e42dep) <numeric>
# grouped by: male, intermediate level of education
# total N=156  valid N=156  mean=2.83  sd=0.94

 val                label frq raw.prc valid.prc cum.prc
   1          independent  15    9.62      9.62    9.62
   2   slightly dependent  39   25.00     25.00   34.62
   3 moderately dependent  59   37.82     37.82   72.44
   4   severely dependent  43   27.56     27.56  100.00
  NA                 <NA>   0    0.00        NA      NA


elder's dependency (e42dep) <numeric>
# grouped by: male, high level of education
# total N=43  valid N=43  mean=2.91  sd=0.81

 val                label frq raw.prc valid.prc cum.prc
   1          independent   1    2.33      2.33    2.33
   2   slightly dependent  13   30.23     30.23   32.56
   3 moderately dependent  18   41.86     41.86   74.42
   4   severely dependent  11   25.58     25.58  100.00
  NA                 <NA>   0    0.00        NA      NA


elder's dependency (e42dep) <numeric>
# grouped by: female, low level of education
# total N=99  valid N=99  mean=2.95  sd=0.94

 val                label frq raw.prc valid.prc cum.prc
   1          independent   7    7.07      7.07    7.07
   2   slightly dependent  25   25.25     25.25   32.32
   3 moderately dependent  33   33.33     33.33   65.66
   4   severely dependent  34   34.34     34.34  100.00
  NA                 <NA>   0    0.00        NA      NA


elder's dependency (e42dep) <numeric>
# grouped by: female, intermediate level of education
# total N=350  valid N=350  mean=2.90  sd=0.98

 val                label frq raw.prc valid.prc cum.prc
   1          independent  30    8.57      8.57    8.57
   2   slightly dependent  96   27.43     27.43   36.00
   3 moderately dependent 104   29.71     29.71   65.71
   4   severely dependent 120   34.29     34.29  100.00
  NA                 <NA>   0    0.00        NA      NA


elder's dependency (e42dep) <numeric>
# grouped by: female, high level of education
# total N=113  valid N=113  mean=3.04  sd=0.85

 val                label frq raw.prc valid.prc cum.prc
   1          independent   4    3.54      3.54    3.54
   2   slightly dependent  26   23.01     23.01   26.55
   3 moderately dependent  44   38.94     38.94   65.49
   4   severely dependent  39   34.51     34.51  100.00
  NA                 <NA>   0    0.00        NA      NA

gear <numeric>
# grouped by: 4
# total N=11  valid N=11  mean=4.09  sd=0.54

 val frq raw.prc valid.prc cum.prc
   3   1    9.09      9.09    9.09
   4   8   72.73     72.73   81.82
   5   2   18.18     18.18  100.00
  NA   0    0.00        NA      NA


gear <numeric>
# grouped by: 6
# total N=7  valid N=7  mean=3.86  sd=0.69

 val frq raw.prc valid.prc cum.prc
   3   2   28.57     28.57   28.57
   4   4   57.14     57.14   85.71
   5   1   14.29     14.29  100.00
  NA   0    0.00        NA      NA


gear <numeric>
# grouped by: 8
# total N=14  valid N=14  mean=3.29  sd=0.73

 val frq raw.prc valid.prc cum.prc
   3  12   85.71     85.71   85.71
   5   2   14.29     14.29  100.00
  NA   0    0.00        NA      NA

elder's dependency (e42dep) <numeric>
# total N=908  valid N=901  mean=2.94  sd=0.94

 val                label frq raw.prc valid.prc cum.prc
   1          independent  66    7.27      7.33    7.33
   2   slightly dependent 225   24.78     24.97   32.30
   3 moderately dependent 306   33.70     33.96   66.26
   4   severely dependent 304   33.48     33.74  100.00
  NA                 <NA>   7    0.77        NA      NA


carer's gender (c161sex) <numeric>
# total N=908  valid N=901  mean=1.76  sd=0.43

 val  label frq raw.prc valid.prc cum.prc
   1   Male 215   23.68     23.86   23.86
   2 Female 686   75.55     76.14  100.00
  NA   <NA>   7    0.77        NA      NA

Descriptive Summary


## Basic descriptive statistics

  var    type label  n NA.prc   mean     sd    se     md trimmed
  mpg numeric   mpg 32      0  20.09   6.03  1.07  19.20   19.70
  cyl numeric   cyl 32      0   6.19   1.79  0.32   6.00    6.23
 disp numeric  disp 32      0 230.72 123.94 21.91 196.30  222.52
   hp numeric    hp 32      0 146.69  68.56 12.12 123.00  141.19
 drat numeric  drat 32      0   3.60   0.53  0.09   3.70    3.58
   wt numeric    wt 32      0   3.22   0.98  0.17   3.33    3.15
            range  skew
 23.5 (10.4-33.9)  0.67
          4 (4-8) -0.19
 400.9 (71.1-472)  0.42
     283 (52-335)  0.80
 2.17 (2.76-4.93)  0.29
 3.91 (1.51-5.42)  0.47
 [ reached 'max' / getOption("max.print") -- omitted 5 rows ]

## Basic descriptive statistics

     var    type                   label   n NA.prc mean   sd   se md trimmed
 c82cop1 numeric do you feel you cope... 901   0.77 3.12 0.58 0.02  3    3.15
 c83cop2 numeric          do you find... 902   0.66 2.02 0.72 0.02  2    1.98
 c84cop3 numeric      does caregiving... 902   0.66 1.63 0.87 0.03  1    1.47
 c85cop4 numeric does caregiving have... 898   1.10 1.77 0.87 0.03  2    1.63
 c86cop5 numeric      does caregiving... 902   0.66 1.39 0.67 0.02  1    1.26
 c87cop6 numeric      does caregiving... 900   0.88 1.29 0.64 0.02  1    1.13
   range  skew
 3 (1-4) -0.12
 3 (1-4)  0.65
 3 (1-4)  1.31
 3 (1-4)  1.06
 3 (1-4)  1.77
 3 (1-4)  2.43
 [ reached 'max' / getOption("max.print") -- omitted 3 rows ]

Finding Variables in a Data Frame

  c82cop1 c83cop2 c84cop3 c85cop4 c86cop5 c87cop6 c88cop7 c89cop8 c90cop9
1       3       2       2       2       1       1       2       3       3
2       3       3       3       3       4       1       3       2       2
3       2       2       1       4       1       1       1       4       3
4       4       1       3       1       1       1       1       2       4
5       3       2       1       2       2       2       1       4       4
6       2       2       3       3       3       2       2       1       1
7       4       2       4       1       1       2       4       1       4
8       3       2       2       1       1       1       2       3       3
 [ reached 'max' / getOption("max.print") -- omitted 900 rows ]
  col.nr var.name                  var.label
1     17 c172code carer's level of education

Summarise Variables and Cases

[1] 908  26
   rowsums
1       19
2       24
3       19
4       18
5       21
6       19
7       23
8       18
9       20
10      15
11      29
12      22
13      22
14      25
15      18
16      20
17      20
18      19
19      19
20      22
21      17
22      15
23      15
24      22
25      18
26      26
27      18
28      16
29      19
30      16
31      29
32      16
33      17
34      24
35      18
36      19
37      20
38      18
39      23
40      21
41      23
42      21
43      21
44      20
45      23
46      20
47      21
48      21
49      22
50      21
51      23
52      15
53      16
54      19
55      18
56      19
57      26
58      23
59      21
60      25
61      20
62      23
63      17
64      24
65      15
66      20
67      17
68      19
69      19
70      21
71      18
72      21
73      19
74      20
75      20
 [ reached 'max' / getOption("max.print") -- omitted 833 rows ]
   rowsums
1       19
2       24
3       19
4       18
5       21
6       19
7       23
8       18
9       20
10      15
11      29
12      22
13      22
14      25
15      18
16      20
17      20
18      19
19      19
20      22
21      17
22      15
23      15
24      22
25      18
26      26
27      18
28      16
29      19
30      16
31      29
32      16
33      17
34      24
35      18
36      19
37      20
38      18
39      23
40      21
41      23
42      21
43      21
44      20
45      23
46      20
47      21
48      21
49      22
50      21
51      23
52      15
53      16
54      19
55      18
56      19
57      26
58      23
59      21
60      25
61      20
62      23
63      17
64      24
65      15
66      20
67      17
68      19
69      19
70      21
71      18
72      21
73      19
74      20
75      20
 [ reached 'max' / getOption("max.print") -- omitted 833 rows ]
  c1 c2 c3 c4 c5
1  1 NA NA  2  1
2  2  2  4  3  7
3 NA NA NA  7  5
4  4  5 NA  8  3
  c1 c2 c3 c4 c5 rowmeans
1  1 NA NA  2  1       NA
2  2  2  4  3  7      3.6
3 NA NA NA  7  5       NA
4  4  5 NA  8  3       NA
  c1 c2 c3 c4 c5 rowsums
1  1 NA NA  2  1      NA
2  2  2  4  3  7      18
3 NA NA NA  7  5      NA
4  4  5 NA  8  3      20
  c1 c2 c3 c4 c5 rowmeans
1  1 NA NA  2  1       NA
2  2  2  4  3  7     2.75
3 NA NA NA  7  5       NA
4  4  5 NA  8  3       NA
  c1 c2 c3 c4 c5 rowmeans
1  1 NA NA  2  1 1.500000
2  2  2  4  3  7 2.750000
3 NA NA NA  7  5       NA
4  4  5 NA  8  3 5.666667
  c1 c2 c3 c4 c5 rowsums
1  1 NA NA  2  1       3
2  2  2  4  3  7      11
3 NA NA NA  7  5      NA
4  4  5 NA  8  3      17
[1] 3.857143
  c82cop1 c83cop2 c84cop3 c85cop4 c86cop5 c87cop6 c88cop7 c89cop8 c90cop9
1       3       2       2       2       1       1       2       3       3
2       3       3       3       3       4       1       3       2       2
3       2       2       1       4       1       1       1       4       3
4       4       1       3       1       1       1       1       2       4
5       3       2       1       2       2       2       1       4       4
6       2       2       3       3       3       2       2       1       1
7       4       2       4       1       1       2       4       1       4
  rowsums
1      19
2      24
3      19
4      18
5      21
6      19
7      23
 [ reached 'max' / getOption("max.print") -- omitted 901 rows ]
  rowsums
1       1
2       2
3      NA
4       4

Use with %>% and dplyr

   gear carb gear_r carb_r
1     4    4      2      2
2     4    4      2      2
3     4    1      2      1
4     3    1      1      1
5     3    2      1      1
6     3    1      1      1
7     3    4      1      2
8     4    2      2      1
9     4    2      2      1
10    4    4      2      2
11    4    4      2      2
12    3    3      1      1
13    3    3      1      1
14    3    3      1      1
15    3    4      1      2
16    3    4      1      2
17    3    4      1      2
18    4    1      2      1
 [ reached 'max' / getOption("max.print") -- omitted 14 rows ]
   gear carb carb2 gear2
1     4    4     1     2
2     4    4     1     2
3     4    1     0     2
4     3    1     0     1
5     3    2     0     1
6     3    1     0     1
7     3    4     1     1
8     4    2     0     2
9     4    2     0     2
10    4    4     1     2
11    4    4     1     2
12    3    3     1     1
13    3    3     1     1
14    3    3     1     1
15    3    4     1     1
16    3    4     1     1
17    3    4     1     1
18    4    1     0     2
 [ reached 'max' / getOption("max.print") -- omitted 14 rows ]

LJJ

2020-01-29