##
## Call:
## lm(formula = speedKMH.x ~ speedKMH.y, data = correlacao)
##
## Residuals:
## Min 1Q Median 3Q Max
## -5.8590 -1.0773 0.4066 1.4495 5.3624
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 9.1921 1.8575 4.949 0.00000446 ***
## speedKMH.y 0.1061 0.1419 0.748 0.457
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 2.448 on 75 degrees of freedom
## Multiple R-squared: 0.007396, Adjusted R-squared: -0.005839
## F-statistic: 0.5588 on 1 and 75 DF, p-value: 0.4571
##
## Call:
## lm(formula = speedKMH.x ~ periodoJunc, data = as)
##
## Residuals:
## Min 1Q Median 3Q Max
## -6.6871 -0.8200 0.1539 0.8366 9.2729
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 13.2399 0.2679 49.412 < 0.0000000000000002 ***
## periodoJuncAv. Goethe Após -0.3635 0.3528 -1.030 0.304
## periodoJuncSistema Antes -2.3361 0.3789 -6.165 0.000000002109 ***
## periodoJuncSistema Após -2.2428 0.3528 -6.356 0.000000000706 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 2.226 on 322 degrees of freedom
## Multiple R-squared: 0.1823, Adjusted R-squared: 0.1747
## F-statistic: 23.93 on 3 and 322 DF, p-value: 0.00000000000005221
## Analysis of Variance Table
##
## Response: speedKMH.x
## Df Sum Sq Mean Sq F value Pr(>F)
## periodoJunc 3 355.72 118.572 23.935 0.00000000000005221 ***
## Residuals 322 1595.16 4.954
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Shapiro-Wilk normality test
##
## data: resid(modelo.anova2)
## W = 0.93128, p-value = 0.00000000004052
## Levene's Test for Homogeneity of Variance (center = median)
## Df F value Pr(>F)
## group 3 23.634 0.00000000000007519 ***
## 322
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## Tukey multiple comparisons of means
## 95% family-wise confidence level
##
## Fit: aov(formula = speedKMH.x ~ periodoJunc, data = as)
##
## $periodoJunc
## diff lwr upr p adj
## Av. Goethe Após-Av. Goethe Antes -0.36351468 -1.2747265 0.5476971 0.7318250
## Sistema Antes-Av. Goethe Antes -2.33609479 -3.3146931 -1.3574965 0.0000000
## Sistema Após-Av. Goethe Antes -2.24276872 -3.1539805 -1.3315569 0.0000000
## Sistema Antes-Av. Goethe Após -1.97258012 -2.8837919 -1.0613683 0.0000003
## Sistema Após-Av. Goethe Após -1.87925404 -2.7176807 -1.0408274 0.0000001
## Sistema Após-Sistema Antes 0.09332608 -0.8178857 1.0045379 0.9935119
##
## Call:
## lm(formula = speedKMH.x ~ speedKMH.y, data = correlacao)
##
## Residuals:
## Min 1Q Median 3Q Max
## -4.5701 -1.2485 -0.3295 1.2017 6.2890
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 8.29660 0.76824 10.800 < 0.0000000000000002 ***
## speedKMH.y 0.25680 0.05901 4.352 0.0000264 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.76 on 135 degrees of freedom
## Multiple R-squared: 0.123, Adjusted R-squared: 0.1165
## F-statistic: 18.94 on 1 and 135 DF, p-value: 0.00002641
##
## Call:
## lm(formula = speedKMH.x ~ periodoJunc, data = bs)
##
## Residuals:
## Min 1Q Median 3Q Max
## -8.1342 -0.9387 -0.3444 1.0887 9.0682
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 12.0431 0.2596 46.393 < 0.0000000000000002 ***
## periodoJuncAv. Goethe Após 1.1288 0.3114 3.625 0.000321 ***
## periodoJuncSistema Antes -1.3646 0.3671 -3.717 0.000226 ***
## periodoJuncSistema Após -0.3388 0.3114 -1.088 0.277110
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 2.203 on 468 degrees of freedom
## Multiple R-squared: 0.1368, Adjusted R-squared: 0.1312
## F-statistic: 24.72 on 3 and 468 DF, p-value: 0.000000000000007322
## Analysis of Variance Table
##
## Response: speedKMH.x
## Df Sum Sq Mean Sq F value Pr(>F)
## periodoJunc 3 359.77 119.924 24.717 0.000000000000007322 ***
## Residuals 468 2270.65 4.852
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Shapiro-Wilk normality test
##
## data: resid(modelo.anova2)
## W = 0.94697, p-value = 0.000000000005843
## Levene's Test for Homogeneity of Variance (center = median)
## Df F value Pr(>F)
## group 3 11.62 0.0000002339 ***
## 468
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## Tukey multiple comparisons of means
## 95% family-wise confidence level
##
## Fit: aov(formula = speedKMH.x ~ periodoJunc, data = bs)
##
## $periodoJunc
## diff lwr upr p adj
## Av. Goethe Após-Av. Goethe Antes 1.1287502 0.3258698 1.9316306 0.0018183
## Sistema Antes-Av. Goethe Antes -1.3645866 -2.3111109 -0.4180623 0.0012886
## Sistema Após-Av. Goethe Antes -0.3388359 -1.1417164 0.4640445 0.6969980
## Sistema Antes-Av. Goethe Após -2.4933368 -3.2962172 -1.6904564 0.0000000
## Sistema Após-Av. Goethe Após -1.4675861 -2.0947429 -0.8404294 0.0000000
## Sistema Após-Sistema Antes 1.0257507 0.2228702 1.8286311 0.0058386
## R version 3.6.2 (2019-12-12)
## Platform: x86_64-w64-mingw32/x64 (64-bit)
## Running under: Windows 10 x64 (build 18363)
##
## Matrix products: default
##
## locale:
## [1] LC_COLLATE=Portuguese_Brazil.1252 LC_CTYPE=Portuguese_Brazil.1252
## [3] LC_MONETARY=Portuguese_Brazil.1252 LC_NUMERIC=C
## [5] LC_TIME=Portuguese_Brazil.1252
##
## attached base packages:
## [1] stats graphics grDevices utils datasets methods base
##
## other attached packages:
## [1] ggpmisc_0.3.3 ggplot2_3.3.0 stringr_1.4.0 chron_2.3-54 mapview_2.7.0
## [6] sp_1.3-2 tidyr_1.0.2 dplyr_0.8.5 jsonlite_1.6.1 car_3.0-7
## [11] carData_3.0-3
##
## loaded via a namespace (and not attached):
## [1] nlme_3.1-142 sf_0.9-3 satellite_1.0.2
## [4] webshot_0.5.2 tools_3.6.2 rgdal_1.4-8
## [7] R6_2.4.1 KernSmooth_2.23-16 DBI_1.1.0
## [10] mgcv_1.8-31 colorspace_1.4-1 raster_3.0-12
## [13] withr_2.1.2 tidyselect_0.2.5 leaflet_2.0.3
## [16] curl_4.3 compiler_3.6.2 leafem_0.0.1
## [19] cli_2.0.1 labeling_0.3 scales_1.1.0
## [22] classInt_0.4-2 systemfonts_0.1.1 digest_0.6.23
## [25] foreign_0.8-72 rmarkdown_2.2.2 svglite_1.2.2
## [28] rio_0.5.16 base64enc_0.1-3 pkgconfig_2.0.3
## [31] htmltools_0.4.0 fastmap_1.0.1 htmlwidgets_1.5.1
## [34] rlang_0.4.5 readxl_1.3.1 shiny_1.4.0.2
## [37] farver_2.0.1 crosstalk_1.0.0 zip_2.0.4
## [40] magrittr_1.5 polynom_1.4-0 Matrix_1.2-18
## [43] Rcpp_1.0.4.6 munsell_0.5.0 fansi_0.4.1
## [46] abind_1.4-5 gdtools_0.2.1 lifecycle_0.2.0
## [49] stringi_1.4.4 yaml_2.2.0 grid_3.6.2
## [52] promises_1.1.0 forcats_0.4.0 crayon_1.3.4
## [55] lattice_0.20-38 haven_2.2.0 splines_3.6.2
## [58] hms_0.5.3 leafpop_0.0.5 knitr_1.26
## [61] pillar_1.4.3 uuid_0.1-2 codetools_0.2-16
## [64] stats4_3.6.2 glue_1.4.0 evaluate_0.14
## [67] leaflet.providers_1.9.0 data.table_1.12.8 png_0.1-7
## [70] vctrs_0.2.4 httpuv_1.5.2 cellranger_1.1.0
## [73] gtable_0.3.0 purrr_0.3.3 assertthat_0.2.1
## [76] xfun_0.11 openxlsx_4.1.4 mime_0.8
## [79] xtable_1.8-4 e1071_1.7-3 later_1.0.0
## [82] class_7.3-15 viridisLite_0.3.0 tibble_3.0.0
## [85] units_0.6-5 ellipsis_0.3.0 brew_1.0-6