Synopsis
The paper of Mendez (2019) studies efficiency convergence across provinces in Indonesia over the 1990-2010 period. Results from the distributional convergence framework indicate the existence of two separate convergence clusters within the pure technical efficiency distribution. Moreover, since scale efficiency is characterized by only one convergence cluster, the two clusters of pure technical efficiency appear to be driving the overall efficiency dynamics of Indonesia.
Data
dat <- read_csv("FigsTabs/appendixFULL.csv")
# Define function for interactive table
create_dt <- function(x){
DT::datatable(x,
extensions = 'Buttons',
options = list(dom = 'Blfrtip',
buttons = c('copy', 'csv', 'excel', 'pdf', 'print'),
lengthMenu = list(c(10,25,50,-1),
c(10,25,50,"All"))))
}
create_dt(dat)
Source: Efficiency scores are from Kataoka (2018). Efficiency clusters are from Mendez (2019)
Plots: Density based clusters
Pure technical efficiency clusters

Interactive version:
Scale efficiency clusters

Interactive version:
Overall efficiency clusters

Interactive version:
References
Kataoka, M. (2018). Inequality convergence in inefficiency and interprovincial income inequality in Indonesia for 1990–2010. Asia-Pacific Journal of Regional Science, 2(2), 297-313.
Mendez, C. (2019). Regional Efficiency Dispersion, Convergence, and Efficiency Clusters: Evidence from the Provinces of Indonesia 1990-2010. MPRA Working Paper No. 95972, University Library of Munich, Germany.
Mendez, C. (2020). Regional Efficiency Convergence and Efficiency Clusters: Evidence from the provinces of Indonesia 1990–2010. Asia-Pacific Journal of Regional Science. Forthcoming. Available at https://doi.org/10.1007/s41685-020-00144-w
LS0tCnRpdGxlOiAiRXhwbG9yaW5nIFJlZ2lvbmFsIEVmZmljaWVuY3kgRGlzcGVyc2lvbiBhbmQgQ29udmVyZ2VuY2UgQ2x1c3RlcnMgYWNyb3NzIFByb3ZpbmNlcyBpbiBJbmRvbmVzaWEgMTk5MC0yMDEwIgpzdWJ0aXRsZTogIiIKYXV0aG9yOiAiQ2FybG9zIE1lbmRleiIKb3V0cHV0OiAKICBodG1sX25vdGVib29rOgogICAgdG9jOiB0cnVlCiAgICB0b2NfZmxvYXQ6CiAgICAgIGNvbGxhcHNlZDogZmFsc2UKICAgICAgc21vb3RoX3Njcm9sbDogZmFsc2UKICAgIHRvY19kZXB0aDogNAogICAgbnVtYmVyX3NlY3Rpb25zOiB0cnVlCiAgICBjb2RlX2ZvbGRpbmc6ICJoaWRlIgogICAgdGhlbWU6ICJjb3NtbyIKICAgIGhpZ2hsaWdodDogIm1vbm9jaHJvbWUiCiAgICBkZl9wcmludDogImthYmxlIgogIGdpdGh1Yl9kb2N1bWVudDogZGVmYXVsdAotLS0KCjxzdHlsZT4KCmgxLnRpdGxlIHsgCiAgZm9udC1zaXplOiAxOHB0OyAKICBjb2xvcjogRGFya0JsdWU7IAp9IAoKYm9keSwgaDEsIGgyLCBoMywgaDQgewogICAgZm9udC1mYW1pbHk6ICJQYWxhdGlubyIsIHNlcmlmOwp9Cgpib2R5IHsKICAgIGZvbnQtc2l6ZTogMTJwdDsKfQoKLyogSGVhZGVycyAqLwpoMSxoMixoMyxoNCxoNSxoNnsKICBmb250LXNpemU6IDE0cHQ7CiAgY29sb3I6ICMwMDAwOEI7Cn0KCmJvZHkgewogICAgY29sb3I6ICMzMzMzMzM7Cn0KYSwgYTpob3ZlciB7CiAgICBjb2xvcjogIzhCM0E2MjsKfQpwcmUgewogICAgZm9udC1zaXplOiAxMnB4Owp9Cjwvc3R5bGU+CgoKYGBge3Igc2V0dXAsIGluY2x1ZGU9VFJVRX0Ka25pdHI6Om9wdHNfY2h1bmskc2V0KAogIGVjaG8gPSBUUlVFLAogIG1lc3NhZ2UgPSBGQUxTRSwKICB3YXJuaW5nID0gRkFMU0UKKQpsaWJyYXJ5KHRpZHl2ZXJzZSkKbGlicmFyeShwbG90bHkpICAgICAgICAjIGludGVyYWN0aXZlIGZpZ3VyZXMKbGlicmFyeShrYWJsZUV4dHJhKSAgICAjIGh0bWwgdGFibGVzIApsaWJyYXJ5KGdncmVwZWwpCmxpYnJhcnkoRFQpICAKCiMgQ2hhbmdlIHRoZSBwcmVzZW50YXRpb24gb2YgZGVjaW1hbCBudW1iZXJzIHRvIDQgYW5kIGF2b2lkIHNjaWVudGlmaWMgbm90YXRpb24Kb3B0aW9ucyhwcm9tcHQ9IlI+ICIsIGRpZ2l0cz0yLCBzY2lwZW49OTk5KQpgYGAKCgojIFN5bm9wc2lzIAoKVGhlIHBhcGVyIG9mIFtNZW5kZXogKDIwMTkpXShodHRwczovL21wcmEudWIudW5pLW11ZW5jaGVuLmRlLzk1OTcyLzEvTVBSQV9wYXBlcl85NTk3Mi5wZGYpIHN0dWRpZXMgZWZmaWNpZW5jeSBjb252ZXJnZW5jZSBhY3Jvc3MgcHJvdmluY2VzIGluIEluZG9uZXNpYSBvdmVyIHRoZSAxOTkwLTIwMTAgcGVyaW9kLiAgUmVzdWx0cyBmcm9tIHRoZSBkaXN0cmlidXRpb25hbCBjb252ZXJnZW5jZSBmcmFtZXdvcmsgaW5kaWNhdGUgdGhlIGV4aXN0ZW5jZSBvZiB0d28gc2VwYXJhdGUgY29udmVyZ2VuY2UgY2x1c3RlcnMgd2l0aGluIHRoZSBwdXJlIHRlY2huaWNhbCBlZmZpY2llbmN5IGRpc3RyaWJ1dGlvbi4gTW9yZW92ZXIsIHNpbmNlIHNjYWxlIGVmZmljaWVuY3kgaXMgY2hhcmFjdGVyaXplZCBieSBvbmx5IG9uZSBjb252ZXJnZW5jZSBjbHVzdGVyLCB0aGUgdHdvIGNsdXN0ZXJzIG9mIHB1cmUgdGVjaG5pY2FsIGVmZmljaWVuY3kgYXBwZWFyIHRvIGJlIGRyaXZpbmcgdGhlIG92ZXJhbGwgZWZmaWNpZW5jeSBkeW5hbWljcyBvZiBJbmRvbmVzaWEuCgoKIyBEYXRhCgoKYGBge3J9CmRhdCA8LSByZWFkX2NzdigiRmlnc1RhYnMvYXBwZW5kaXhGVUxMLmNzdiIpCgojIERlZmluZSBmdW5jdGlvbiBmb3IgIGludGVyYWN0aXZlIHRhYmxlCmNyZWF0ZV9kdCA8LSBmdW5jdGlvbih4KXsKICBEVDo6ZGF0YXRhYmxlKHgsCiAgICAgICAgICAgICAgICBleHRlbnNpb25zID0gJ0J1dHRvbnMnLAogICAgICAgICAgICAgICAgb3B0aW9ucyA9IGxpc3QoZG9tID0gJ0JsZnJ0aXAnLAogICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgYnV0dG9ucyA9IGMoJ2NvcHknLCAnY3N2JywgJ2V4Y2VsJywgJ3BkZicsICdwcmludCcpLAogICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgbGVuZ3RoTWVudSA9IGxpc3QoYygxMCwyNSw1MCwtMSksCiAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICBjKDEwLDI1LDUwLCJBbGwiKSkpKQp9CgpjcmVhdGVfZHQoZGF0KQpgYGAKCgoKU291cmNlOiBFZmZpY2llbmN5IHNjb3JlcyBhcmUgZnJvbSBbS2F0YW9rYSAoMjAxOCldKChodHRwczovL2xpbmsuc3ByaW5nZXIuY29tL2FydGljbGUvMTAuMTAwNy9zNDE2ODUtMDE3LTAwNTEtMykpLiBFZmZpY2llbmN5IGNsdXN0ZXJzIGFyZSBmcm9tIFtNZW5kZXogKDIwMTkpXShodHRwczovL21wcmEudWIudW5pLW11ZW5jaGVuLmRlLzk1OTcyLzEvTVBSQV9wYXBlcl85NTk3Mi5wZGYpCgojIFBsb3RzOiBEZW5zaXR5IGJhc2VkIGNsdXN0ZXJzCgojIyBQdXJlIHRlY2huaWNhbCBlZmZpY2llbmN5IGNsdXN0ZXJzCgoKCgpgYGB7cn0KUEUgPC0gZGF0ICU+JSAKICBnZ3Bsb3QoYWVzKHggPSBQRTE5OTAsIAogICAgICAgICAgICAgeSA9IFBFMjAxMCwKICAgICAgICAgICAgIHNoYXBlID0gQ2x1c3RlclBFLAogICAgICAgICAgICAgY29sb3IgPSBDbHVzdGVyUEUsCiAgICAgICAgICAgICBsYWJlbCA9IHJlZ2lvbiwKICAgICAgICAgICAgICkKICAgICAgICAgKSArCiAgZ2VvbV9wb2ludChzaXplPTMpICsKICBnZW9tX3RleHRfcmVwZWwoKQoKUEUKCmBgYAoKCkludGVyYWN0aXZlIHZlcnNpb246IAoKYGBge3J9CmdncGxvdGx5KFBFKQpgYGAKCgojIyBTY2FsZSBlZmZpY2llbmN5IGNsdXN0ZXJzCgoKYGBge3J9ClNFIDwtIGRhdCAlPiUgCiAgZ2dwbG90KGFlcyh4ID0gU0UxOTkwLCAKICAgICAgICAgICAgIHkgPSBTRTIwMTAsCiAgICAgICAgICAgICBzaGFwZSA9IENsdXN0ZXJTRSwKICAgICAgICAgICAgIGNvbG9yID0gQ2x1c3RlclNFLAogICAgICAgICAgICAgbGFiZWwgPSByZWdpb24sCiAgICAgICAgICAgICApCiAgICAgICAgICkgKwogIGdlb21fcG9pbnQoc2l6ZT0zKSArCiAgZ2VvbV90ZXh0X3JlcGVsKCkKClNFCgpgYGAKCkludGVyYWN0aXZlIHZlcnNpb246CgpgYGB7cn0KCmdncGxvdGx5KFNFKQpgYGAKCgojIyBPdmVyYWxsIGVmZmljaWVuY3kgY2x1c3RlcnMKCgoKYGBge3J9Ck9FIDwtIGRhdCAlPiUgCiAgZ2dwbG90KGFlcyh4ID0gT0UxOTkwLCAKICAgICAgICAgICAgIHkgPSBPRTIwMTAsCiAgICAgICAgICAgICBzaGFwZSA9IENsdXN0ZXJPRSwKICAgICAgICAgICAgIGNvbG9yID0gQ2x1c3Rlck9FLAogICAgICAgICAgICAgbGFiZWwgPSByZWdpb24sCiAgICAgICAgICAgICApCiAgICAgICAgICkgKwogIGdlb21fcG9pbnQoc2l6ZT0zKSArCiAgZ2VvbV90ZXh0X3JlcGVsKCkKCk9FCgpgYGAKCgpJbnRlcmFjdGl2ZSB2ZXJzaW9uOgoKYGBge3J9CmdncGxvdGx5KE9FKQpgYGAKCgojIFJlZmVyZW5jZXMKCi0gS2F0YW9rYSwgTS4gKDIwMTgpLiBJbmVxdWFsaXR5IGNvbnZlcmdlbmNlIGluIGluZWZmaWNpZW5jeSBhbmQgaW50ZXJwcm92aW5jaWFsIGluY29tZSBpbmVxdWFsaXR5IGluIEluZG9uZXNpYSBmb3IgMTk5MOKAkzIwMTAuIFtBc2lhLVBhY2lmaWMgSm91cm5hbCBvZiBSZWdpb25hbCBTY2llbmNlLCAyKDIpLCAyOTctMzEzLl0oaHR0cHM6Ly9saW5rLnNwcmluZ2VyLmNvbS9hcnRpY2xlLzEwLjEwMDcvczQxNjg1LTAxNy0wMDUxLTMpCgotIE1lbmRleiwgQy4gKDIwMTkpLiBSZWdpb25hbCBFZmZpY2llbmN5IERpc3BlcnNpb24sIENvbnZlcmdlbmNlLCBhbmQgRWZmaWNpZW5jeSBDbHVzdGVyczogRXZpZGVuY2UgZnJvbSB0aGUgUHJvdmluY2VzIG9mIEluZG9uZXNpYSAxOTkwLTIwMTAuIFtNUFJBIFdvcmtpbmcgUGFwZXIgTm8uIDk1OTcyXShodHRwczovL21wcmEudWIudW5pLW11ZW5jaGVuLmRlLzk1OTcyLzEvTVBSQV9wYXBlcl85NTk3Mi5wZGYpLCBVbml2ZXJzaXR5IExpYnJhcnkgb2YgTXVuaWNoLCBHZXJtYW55LgoKLSBNZW5kZXosIEMuICgyMDIwKS4gUmVnaW9uYWwgRWZmaWNpZW5jeSBDb252ZXJnZW5jZSBhbmQgRWZmaWNpZW5jeSBDbHVzdGVyczogRXZpZGVuY2UgZnJvbSB0aGUgcHJvdmluY2VzIG9mIEluZG9uZXNpYSAxOTkw4oCTMjAxMC4gQXNpYS1QYWNpZmljIEpvdXJuYWwgb2YgUmVnaW9uYWwgU2NpZW5jZS4gRm9ydGhjb21pbmcuIEF2YWlsYWJsZSBhdCA8aHR0cHM6Ly9kb2kub3JnLzEwLjEwMDcvczQxNjg1LTAyMC0wMDE0NC13PgoK