## Warning in checkMatrixPackageVersion(): Package version inconsistency detected.
## TMB was built with Matrix version 1.2.17
## Current Matrix version is 1.2.18
## Please re-install 'TMB' from source using install.packages('TMB', type = 'source') or ask CRAN for a binary version of 'TMB' matching CRAN's 'Matrix' package
## [1] " "
## [1] "CHECKING COLINEARITY"
## [1] " "
## [1] " "
## [1] "CHECKING COLINEARITY"
## [1] " "
## Not enough model terms in the conditional part of the model to check for multicollinearity.
## NULL
## [1] " "
## [1] "TESTING FOR OVERDISPERSION - P-VALUES < 0.05 meand overdispersion"
## [1] " "
## [1] " "
##      chisq      ratio        rdf          p 
## 10.1261416  0.5329548 19.0000000  0.9497652 
## [1] " "
## [1] "STANDARD R2"
## [1] " "
## # R2 for Mixed Models
## 
##   Conditional R2: 0.450
##      Marginal R2: 0.000
## [1] " "
## [1] "NAKAGAWA R2"
## [1] " "
## # R2 for Mixed Models
## 
##   Conditional R2: 0.450
##      Marginal R2: 0.000
## [1] " "
## [1] "MODEL SUMMARY"
## [1] " "
##  Family: poisson  ( log )
## Formula:          TAlphaAll ~ (1 | ForestID)
## Data: Results2
## 
##      AIC      BIC   logLik deviance df.resid 
##    113.8    115.9    -54.9    109.8       19 
## 
## Random effects:
## 
## Conditional model:
##  Groups   Name        Variance Std.Dev.
##  ForestID (Intercept) 0.06576  0.2564  
## Number of obs: 21, groups:  ForestID, 5
## 
## Conditional model:
##             Estimate Std. Error z value Pr(>|z|)    
## (Intercept)   2.4814     0.1356   18.29   <2e-16 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## [1] " "
## [1] "CHECKING MODEL GRAPHICALLY"
## [1] " "
## Not enough model terms in the conditional part of the model to check for multicollinearity.
## Warning in simpleLoess(y, x, w, span, degree = degree, parametric =
## parametric, : pseudoinverse used at 9.0067
## Warning in simpleLoess(y, x, w, span, degree = degree, parametric =
## parametric, : neighborhood radius 2.23
## Warning in simpleLoess(y, x, w, span, degree = degree, parametric =
## parametric, : reciprocal condition number 2.3083e-16
## Warning in simpleLoess(y, x, w, span, degree = degree, parametric =
## parametric, : There are other near singularities as well. 2.9516

## [1] " "
## [1] " "
## [1] "CHECKING COLINEARITY"
## [1] " "
## [1] " "
## [1] "CHECKING COLINEARITY"
## [1] " "
## Not enough model terms in the conditional part of the model to check for multicollinearity.
## NULL
## [1] " "
## [1] "TESTING FOR OVERDISPERSION - P-VALUES < 0.05 meand overdispersion"
## [1] " "
## [1] " "
##      chisq      ratio        rdf          p 
##  6.7368420  0.3545706 19.0000000  0.9954900 
## [1] " "
## [1] "STANDARD R2"
## [1] " "
## Warning: Can't compute random effect variances. Some variance components equal zero.
##   Solution: Respecify random structure!
## Random effect variances not available. Returned R2 does not account for random effects.
## # R2 for Mixed Models
## 
##   Conditional R2: NA
##      Marginal R2: 0.000
## [1] " "
## [1] "NAKAGAWA R2"
## [1] " "
## Warning: Can't compute random effect variances. Some variance components equal zero.
##   Solution: Respecify random structure!
## Random effect variances not available. Returned R2 does not account for random effects.
## # R2 for Mixed Models
## 
##   Conditional R2: NA
##      Marginal R2: 0.000
## [1] " "
## [1] "MODEL SUMMARY"
## [1] " "
##  Family: poisson  ( log )
## Formula:          TAlphaNat ~ (1 | ForestID)
## Data: Results2
## 
##      AIC      BIC   logLik deviance df.resid 
##     95.9     98.0    -46.0     91.9       19 
## 
## Random effects:
## 
## Conditional model:
##  Groups   Name        Variance  Std.Dev.
##  ForestID (Intercept) 9.861e-11 9.93e-06
## Number of obs: 21, groups:  ForestID, 5
## 
## Conditional model:
##             Estimate Std. Error z value Pr(>|z|)    
## (Intercept)  2.20250    0.07255   30.36   <2e-16 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## [1] " "
## [1] "CHECKING MODEL GRAPHICALLY"
## [1] " "
## Not enough model terms in the conditional part of the model to check for multicollinearity.
## Warning: Can't compute random effect variances. Some variance components equal zero.
##   Solution: Respecify random structure!
## Warning in predict.lm(model, newdata = data.frame(x = xseq), se.fit = se, :
## prediction from a rank-deficient fit may be misleading
## Warning in simpleLoess(y, x, w, span, degree = degree, parametric =
## parametric, : pseudoinverse used at 9.0476
## Warning in simpleLoess(y, x, w, span, degree = degree, parametric =
## parametric, : neighborhood radius 9.0266e-09
## Warning in simpleLoess(y, x, w, span, degree = degree, parametric =
## parametric, : reciprocal condition number 4.6239e-16
## Warning in simpleLoess(y, x, w, span, degree = degree, parametric =
## parametric, : There are other near singularities as well. 8.0356e-17

## [1] " "
## [1] " "
## [1] "CHECKING COLINEARITY"
## [1] " "
## [1] " "
## [1] "CHECKING COLINEARITY"
## [1] " "
## Not enough model terms in the conditional part of the model to check for multicollinearity.
## NULL
## [1] " "
## [1] "TESTING FOR OVERDISPERSION - P-VALUES < 0.05 meand overdispersion"
## [1] " "
## [1] " "
##      chisq      ratio        rdf          p 
## 18.0549702  0.9502616 19.0000000  0.5187692 
## [1] " "
## [1] "STANDARD R2"
## [1] " "
## Warning: mu of 2.4 is too close to zero, estimate of random effect variances may be unreliable.
## # R2 for Mixed Models
## 
##   Conditional R2: 0.644
##      Marginal R2: 0.000
## [1] " "
## [1] "NAKAGAWA R2"
## [1] " "
## Warning: mu of 2.4 is too close to zero, estimate of random effect variances may be unreliable.
## # R2 for Mixed Models
## 
##   Conditional R2: 0.644
##      Marginal R2: 0.000
## [1] " "
## [1] "MODEL SUMMARY"
## [1] " "
##  Family: poisson  ( log )
## Formula:          TAlphaNInd ~ (1 | ForestID)
## Data: Results2
## 
##      AIC      BIC   logLik deviance df.resid 
##     85.9     88.0    -41.0     81.9       19 
## 
## Random effects:
## 
## Conditional model:
##  Groups   Name        Variance Std.Dev.
##  ForestID (Intercept) 0.6236   0.7897  
## Number of obs: 21, groups:  ForestID, 5
## 
## Conditional model:
##             Estimate Std. Error z value Pr(>|z|)  
## (Intercept)   0.8873     0.3857     2.3   0.0214 *
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## [1] " "
## [1] "CHECKING MODEL GRAPHICALLY"
## [1] " "
## Not enough model terms in the conditional part of the model to check for multicollinearity.
## Warning: mu of 2.4 is too close to zero, estimate of random effect variances may be unreliable.
## Warning in simpleLoess(y, x, w, span, degree = degree, parametric =
## parametric, : pseudoinverse used at 1.1822
## Warning in simpleLoess(y, x, w, span, degree = degree, parametric =
## parametric, : neighborhood radius 0.67531
## Warning in simpleLoess(y, x, w, span, degree = degree, parametric =
## parametric, : reciprocal condition number 1.4876e-16
## Warning in simpleLoess(y, x, w, span, degree = degree, parametric =
## parametric, : There are other near singularities as well. 0.15177

## [1] " "
## [1] " "
## [1] "CHECKING COLINEARITY"
## [1] " "
## [1] " "
## [1] "CHECKING COLINEARITY"
## [1] " "
## Not enough model terms in the conditional part of the model to check for multicollinearity.
## NULL
## [1] " "
## [1] "TESTING FOR OVERDISPERSION - P-VALUES < 0.05 meand overdispersion"
## [1] " "
## [1] " "
##      chisq      ratio        rdf          p 
## 15.8344488  0.8796916 18.0000000  0.6041000 
## [1] " "
## [1] "STANDARD R2"
## [1] " "
## Warning: mu of 2.4 is too close to zero, estimate of random effect variances may be unreliable.
## # R2 for Mixed Models
## 
##   Conditional R2: 0.653
##      Marginal R2: 0.060
## [1] " "
## [1] "NAKAGAWA R2"
## [1] " "
## Warning: mu of 2.4 is too close to zero, estimate of random effect variances may be unreliable.
## # R2 for Mixed Models
## 
##   Conditional R2: 0.653
##      Marginal R2: 0.060
## [1] " "
## [1] "MODEL SUMMARY"
## [1] " "
##  Family: poisson  ( log )
## Formula:          TAlphaNInd ~ Dist_trail_beginning_std + (1 | ForestID)
## Data: Results2
## 
##      AIC      BIC   logLik deviance df.resid 
##     85.6     88.7    -39.8     79.6       18 
## 
## Random effects:
## 
## Conditional model:
##  Groups   Name        Variance Std.Dev.
##  ForestID (Intercept) 0.5899   0.7681  
## Number of obs: 21, groups:  ForestID, 5
## 
## Conditional model:
##                          Estimate Std. Error z value Pr(>|z|)   
## (Intercept)                1.0243     0.3866   2.650  0.00806 **
## Dist_trail_beginning_std  -0.3052     0.2162  -1.412  0.15806   
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## [1] " "
## [1] "CHECKING MODEL GRAPHICALLY"
## [1] " "
## Not enough model terms in the conditional part of the model to check for multicollinearity.
## Warning: mu of 2.4 is too close to zero, estimate of random effect variances may be unreliable.

## [1] " "
## [1] " "
## [1] "CHECKING COLINEARITY"
## [1] " "
## [1] " "
## [1] "CHECKING COLINEARITY"
## [1] " "
## Not enough model terms in the conditional part of the model to check for multicollinearity.
## NULL
## [1] " "
## [1] "TESTING FOR OVERDISPERSION - P-VALUES < 0.05 meand overdispersion"
## [1] " "
## [1] " "
##      chisq      ratio        rdf          p 
## 16.6030729  0.9223929 18.0000000  0.5505350 
## [1] " "
## [1] "STANDARD R2"
## [1] " "
## Warning: mu of 2.4 is too close to zero, estimate of random effect variances may be unreliable.
## # R2 for Mixed Models
## 
##   Conditional R2: 0.649
##      Marginal R2: 0.030
## [1] " "
## [1] "NAKAGAWA R2"
## [1] " "
## Warning: mu of 2.4 is too close to zero, estimate of random effect variances may be unreliable.
## # R2 for Mixed Models
## 
##   Conditional R2: 0.649
##      Marginal R2: 0.030
## [1] " "
## [1] "MODEL SUMMARY"
## [1] " "
##  Family: poisson  ( log )
## Formula:          TAlphaNInd ~ Dist_trail_std + (1 | ForestID)
## Data: Results2
## 
##      AIC      BIC   logLik deviance df.resid 
##     86.7     89.9    -40.4     80.7       18 
## 
## Random effects:
## 
## Conditional model:
##  Groups   Name        Variance Std.Dev.
##  ForestID (Intercept) 0.6079   0.7797  
## Number of obs: 21, groups:  ForestID, 5
## 
## Conditional model:
##                Estimate Std. Error z value Pr(>|z|)  
## (Intercept)      0.9374     0.3839   2.442   0.0146 *
## Dist_trail_std  -0.1872     0.1866  -1.004   0.3156  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## [1] " "
## [1] "CHECKING MODEL GRAPHICALLY"
## [1] " "
## Not enough model terms in the conditional part of the model to check for multicollinearity.
## Warning: mu of 2.4 is too close to zero, estimate of random effect variances may be unreliable.

## [1] " "
## [1] " "
## [1] "CHECKING COLINEARITY"
## [1] " "
## [1] " "
## [1] "CHECKING COLINEARITY"
## [1] " "
## Not enough model terms in the conditional part of the model to check for multicollinearity.
## NULL
## [1] " "
## [1] "TESTING FOR OVERDISPERSION - P-VALUES < 0.05 meand overdispersion"
## [1] " "
## [1] " "
##      chisq      ratio        rdf          p 
## 17.2869103  0.9603839 18.0000000  0.5034692 
## [1] " "
## [1] "STANDARD R2"
## [1] " "
## Warning: mu of 2.4 is too close to zero, estimate of random effect variances may be unreliable.
## # R2 for Mixed Models
## 
##   Conditional R2: 0.625
##      Marginal R2: 0.047
## [1] " "
## [1] "NAKAGAWA R2"
## [1] " "
## Warning: mu of 2.4 is too close to zero, estimate of random effect variances may be unreliable.
## # R2 for Mixed Models
## 
##   Conditional R2: 0.625
##      Marginal R2: 0.047
## [1] " "
## [1] "MODEL SUMMARY"
## [1] " "
##  Family: poisson  ( log )
## Formula:          TAlphaNInd ~ Dist_edge_std + (1 | ForestID)
## Data: Results2
## 
##      AIC      BIC   logLik deviance df.resid 
##     87.1     90.2    -40.5     81.1       18 
## 
## Random effects:
## 
## Conditional model:
##  Groups   Name        Variance Std.Dev.
##  ForestID (Intercept) 0.5302   0.7282  
## Number of obs: 21, groups:  ForestID, 5
## 
## Conditional model:
##               Estimate Std. Error z value Pr(>|z|)   
## (Intercept)     1.0070     0.3835   2.626  0.00863 **
## Dist_edge_std  -0.2665     0.3060  -0.871  0.38375   
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## [1] " "
## [1] "CHECKING MODEL GRAPHICALLY"
## [1] " "
## Not enough model terms in the conditional part of the model to check for multicollinearity.
## Warning: mu of 2.4 is too close to zero, estimate of random effect variances may be unreliable.

## [1] " "
## Warning in nlminb(start = par, objective = fn, gradient = gr, control =
## control$optCtrl): NA/NaN function evaluation
## Warning in nlminb(start = par, objective = fn, gradient = gr, control =
## control$optCtrl): NA/NaN function evaluation

## Warning in nlminb(start = par, objective = fn, gradient = gr, control =
## control$optCtrl): NA/NaN function evaluation

## Warning in nlminb(start = par, objective = fn, gradient = gr, control =
## control$optCtrl): NA/NaN function evaluation

## Warning in nlminb(start = par, objective = fn, gradient = gr, control =
## control$optCtrl): NA/NaN function evaluation

## Warning in nlminb(start = par, objective = fn, gradient = gr, control =
## control$optCtrl): NA/NaN function evaluation

## Warning in nlminb(start = par, objective = fn, gradient = gr, control =
## control$optCtrl): NA/NaN function evaluation

## Warning in nlminb(start = par, objective = fn, gradient = gr, control =
## control$optCtrl): NA/NaN function evaluation

## Warning in nlminb(start = par, objective = fn, gradient = gr, control =
## control$optCtrl): NA/NaN function evaluation

## Warning in nlminb(start = par, objective = fn, gradient = gr, control =
## control$optCtrl): NA/NaN function evaluation

## Warning in nlminb(start = par, objective = fn, gradient = gr, control =
## control$optCtrl): NA/NaN function evaluation

## Warning in nlminb(start = par, objective = fn, gradient = gr, control =
## control$optCtrl): NA/NaN function evaluation

## Warning in nlminb(start = par, objective = fn, gradient = gr, control =
## control$optCtrl): NA/NaN function evaluation

## Warning in nlminb(start = par, objective = fn, gradient = gr, control =
## control$optCtrl): NA/NaN function evaluation
## [1] " "
## [1] "CHECKING COLINEARITY"
## [1] " "
## [1] " "
## [1] "CHECKING COLINEARITY"
## [1] " "
## Not enough model terms in the conditional part of the model to check for multicollinearity.
## NULL
## [1] " "
## [1] "TESTING FOR OVERDISPERSION - P-VALUES < 0.05 meand overdispersion"
## [1] " "
## [1] " "
##       chisq       ratio         rdf           p 
##  0.60177879  0.03343215 18.00000000  1.00000000 
## [1] " "
## [1] "STANDARD R2"
## [1] " "
## # R2 for Mixed Models
## 
##   Conditional R2: 0.048
##      Marginal R2: 0.000
## [1] " "
## [1] "NAKAGAWA R2"
## [1] " "
## # R2 for Mixed Models
## 
##   Conditional R2: 0.048
##      Marginal R2: 0.000
## [1] " "
## [1] "MODEL SUMMARY"
## [1] " "
##  Family: Gamma  ( inverse )
## Formula:          FAlphaAll ~ (1 | ForestID)
## Data: Results2
## 
##      AIC      BIC   logLik deviance df.resid 
##     69.0     72.1    -31.5     63.0       18 
## 
## Random effects:
## 
## Conditional model:
##  Groups   Name        Variance Std.Dev.
##  ForestID (Intercept) 0.00192  0.04381 
## Number of obs: 21, groups:  ForestID, 5
## 
## Dispersion estimate for Gamma family (sigma^2): 0.0377 
## 
## Conditional model:
##             Estimate Std. Error z value Pr(>|z|)    
## (Intercept)  0.20744    0.02177   9.529   <2e-16 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## [1] " "
## [1] "CHECKING MODEL GRAPHICALLY"
## [1] " "
## Not enough model terms in the conditional part of the model to check for multicollinearity.
## Warning in simpleLoess(y, x, w, span, degree = degree, parametric =
## parametric, : pseudoinverse used at 3.9678
## Warning in simpleLoess(y, x, w, span, degree = degree, parametric =
## parametric, : neighborhood radius 0.45131
## Warning in simpleLoess(y, x, w, span, degree = degree, parametric =
## parametric, : reciprocal condition number 0
## Warning in simpleLoess(y, x, w, span, degree = degree, parametric =
## parametric, : There are other near singularities as well. 0.15148

## [1] " "
## Warning in nlminb(start = par, objective = fn, gradient = gr, control =
## control$optCtrl): NA/NaN function evaluation
## Warning in nlminb(start = par, objective = fn, gradient = gr, control =
## control$optCtrl): NA/NaN function evaluation

## Warning in nlminb(start = par, objective = fn, gradient = gr, control =
## control$optCtrl): NA/NaN function evaluation

## Warning in nlminb(start = par, objective = fn, gradient = gr, control =
## control$optCtrl): NA/NaN function evaluation

## Warning in nlminb(start = par, objective = fn, gradient = gr, control =
## control$optCtrl): NA/NaN function evaluation

## Warning in nlminb(start = par, objective = fn, gradient = gr, control =
## control$optCtrl): NA/NaN function evaluation

## Warning in nlminb(start = par, objective = fn, gradient = gr, control =
## control$optCtrl): NA/NaN function evaluation

## Warning in nlminb(start = par, objective = fn, gradient = gr, control =
## control$optCtrl): NA/NaN function evaluation

## Warning in nlminb(start = par, objective = fn, gradient = gr, control =
## control$optCtrl): NA/NaN function evaluation

## Warning in nlminb(start = par, objective = fn, gradient = gr, control =
## control$optCtrl): NA/NaN function evaluation

## Warning in nlminb(start = par, objective = fn, gradient = gr, control =
## control$optCtrl): NA/NaN function evaluation

## Warning in nlminb(start = par, objective = fn, gradient = gr, control =
## control$optCtrl): NA/NaN function evaluation

## Warning in nlminb(start = par, objective = fn, gradient = gr, control =
## control$optCtrl): NA/NaN function evaluation

## Warning in nlminb(start = par, objective = fn, gradient = gr, control =
## control$optCtrl): NA/NaN function evaluation

## Warning in nlminb(start = par, objective = fn, gradient = gr, control =
## control$optCtrl): NA/NaN function evaluation

## Warning in nlminb(start = par, objective = fn, gradient = gr, control =
## control$optCtrl): NA/NaN function evaluation

## Warning in nlminb(start = par, objective = fn, gradient = gr, control =
## control$optCtrl): NA/NaN function evaluation
## [1] " "
## [1] "CHECKING COLINEARITY"
## [1] " "
## [1] " "
## [1] "CHECKING COLINEARITY"
## [1] " "
## Not enough model terms in the conditional part of the model to check for multicollinearity.
## NULL
## [1] " "
## [1] "TESTING FOR OVERDISPERSION - P-VALUES < 0.05 meand overdispersion"
## [1] " "
## [1] " "
##       chisq       ratio         rdf           p 
##  0.52889840  0.03111167 17.00000000  1.00000000 
## [1] " "
## [1] "STANDARD R2"
## [1] " "
## # R2 for Mixed Models
## 
##   Conditional R2: 0.057
##      Marginal R2: 0.004
## [1] " "
## [1] "NAKAGAWA R2"
## [1] " "
## # R2 for Mixed Models
## 
##   Conditional R2: 0.057
##      Marginal R2: 0.004
## [1] " "
## [1] "MODEL SUMMARY"
## [1] " "
##  Family: Gamma  ( inverse )
## Formula:          FAlphaAll ~ Dist_trail_beginning_std + (1 | ForestID)
## Data: Results2
## 
##      AIC      BIC   logLik deviance df.resid 
##     69.4     73.6    -30.7     61.4       17 
## 
## Random effects:
## 
## Conditional model:
##  Groups   Name        Variance Std.Dev.
##  ForestID (Intercept) 0.001946 0.04412 
## Number of obs: 21, groups:  ForestID, 5
## 
## Dispersion estimate for Gamma family (sigma^2): 0.0343 
## 
## Conditional model:
##                          Estimate Std. Error z value Pr(>|z|)    
## (Intercept)               0.20020    0.02233   8.965   <2e-16 ***
## Dist_trail_beginning_std  0.01470    0.01200   1.225    0.221    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## [1] " "
## [1] "CHECKING MODEL GRAPHICALLY"
## [1] " "
## Not enough model terms in the conditional part of the model to check for multicollinearity.

## [1] " "
## Warning in nlminb(start = par, objective = fn, gradient = gr, control =
## control$optCtrl): NA/NaN function evaluation

## Warning in nlminb(start = par, objective = fn, gradient = gr, control =
## control$optCtrl): NA/NaN function evaluation

## Warning in nlminb(start = par, objective = fn, gradient = gr, control =
## control$optCtrl): NA/NaN function evaluation
## [1] " "
## [1] "CHECKING COLINEARITY"
## [1] " "
## [1] " "
## [1] "CHECKING COLINEARITY"
## [1] " "
## Not enough model terms in the conditional part of the model to check for multicollinearity.
## NULL
## [1] " "
## [1] "TESTING FOR OVERDISPERSION - P-VALUES < 0.05 meand overdispersion"
## [1] " "
## [1] " "
##       chisq       ratio         rdf           p 
##  0.18188683  0.01010482 18.00000000  1.00000000 
## [1] " "
## [1] "STANDARD R2"
## [1] " "
## # R2 for Mixed Models
## 
##   Conditional R2: 0.127
##      Marginal R2: 0.000
## [1] " "
## [1] "NAKAGAWA R2"
## [1] " "
## # R2 for Mixed Models
## 
##   Conditional R2: 0.127
##      Marginal R2: 0.000
## [1] " "
## [1] "MODEL SUMMARY"
## [1] " "
##  Family: Gamma  ( inverse )
## Formula:          FAlphaNat ~ (1 | ForestID)
## Data: Results2
## 
##      AIC      BIC   logLik deviance df.resid 
##      7.9     11.0     -0.9      1.9       18 
## 
## Random effects:
## 
## Conditional model:
##  Groups   Name        Variance Std.Dev.
##  ForestID (Intercept) 0.00157  0.03963 
## Number of obs: 21, groups:  ForestID, 5
## 
## Dispersion estimate for Gamma family (sigma^2): 0.0108 
## 
## Conditional model:
##             Estimate Std. Error z value Pr(>|z|)    
## (Intercept)   0.4686     0.0217   21.59   <2e-16 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## [1] " "
## [1] "CHECKING MODEL GRAPHICALLY"
## [1] " "
## Not enough model terms in the conditional part of the model to check for multicollinearity.
## Warning in simpleLoess(y, x, w, span, degree = degree, parametric =
## parametric, : pseudoinverse used at 1.9333
## Warning in simpleLoess(y, x, w, span, degree = degree, parametric =
## parametric, : neighborhood radius 0.18283
## Warning in simpleLoess(y, x, w, span, degree = degree, parametric =
## parametric, : reciprocal condition number 5.1475e-17
## Warning in simpleLoess(y, x, w, span, degree = degree, parametric =
## parametric, : There are other near singularities as well. 0.016626

## [1] " "
## [1] " "
## [1] "CHECKING COLINEARITY"
## [1] " "
## [1] " "
## [1] "CHECKING COLINEARITY"
## [1] " "
## Not enough model terms in the conditional part of the model to check for multicollinearity.
## NULL
## [1] " "
## [1] "TESTING FOR OVERDISPERSION - P-VALUES < 0.05 meand overdispersion"
## [1] " "
## [1] " "
##      chisq      ratio        rdf          p 
##  8.0651806  0.4244832 19.0000000  0.9860029 
## [1] " "
## [1] "STANDARD R2"
## [1] " "
## Warning: Can't compute random effect variances. Some variance components equal zero.
##   Solution: Respecify random structure!
## Warning: mu of 0.8 is too close to zero, estimate of random effect variances may be unreliable.
## Random effect variances not available. Returned R2 does not account for random effects.
## # R2 for Mixed Models
## 
##   Conditional R2: NA
##      Marginal R2: 0.000
## [1] " "
## [1] "NAKAGAWA R2"
## [1] " "
## Warning: Can't compute random effect variances. Some variance components equal zero.
##   Solution: Respecify random structure!

## Warning: mu of 0.8 is too close to zero, estimate of random effect variances may be unreliable.
## Random effect variances not available. Returned R2 does not account for random effects.
## # R2 for Mixed Models
## 
##   Conditional R2: NA
##      Marginal R2: 0.000
## [1] " "
## [1] "MODEL SUMMARY"
## [1] " "
##  Family: poisson  ( log )
## Formula:          FAlphaNInd ~ (1 | ForestID)
## Data: Results2
## 
##      AIC      BIC   logLik deviance df.resid 
##     45.9     48.0    -21.0     41.9       19 
## 
## Random effects:
## 
## Conditional model:
##  Groups   Name        Variance  Std.Dev.
##  ForestID (Intercept) 7.396e-10 2.72e-05
## Number of obs: 21, groups:  ForestID, 5
## 
## Conditional model:
##             Estimate Std. Error z value Pr(>|z|)
## (Intercept)  -0.2706     0.2498  -1.083    0.279
## [1] " "
## [1] "CHECKING MODEL GRAPHICALLY"
## [1] " "
## Not enough model terms in the conditional part of the model to check for multicollinearity.
## Warning: Can't compute random effect variances. Some variance components equal zero.
##   Solution: Respecify random structure!

## Warning: mu of 0.8 is too close to zero, estimate of random effect variances may be unreliable.
## Warning in predict.lm(model, newdata = data.frame(x = xseq), se.fit = se, :
## prediction from a rank-deficient fit may be misleading
## Warning in simpleLoess(y, x, w, span, degree = degree, parametric =
## parametric, : pseudoinverse used at 0.76291
## Warning in simpleLoess(y, x, w, span, degree = degree, parametric =
## parametric, : neighborhood radius 9.0456e-10
## Warning in simpleLoess(y, x, w, span, degree = degree, parametric =
## parametric, : reciprocal condition number 7.9718e-17
## Warning in simpleLoess(y, x, w, span, degree = degree, parametric =
## parametric, : There are other near singularities as well. 3.377e-19

## [1] " "
## [1] " "
## [1] "CHECKING COLINEARITY"
## [1] " "
## [1] " "
## [1] "CHECKING COLINEARITY"
## [1] " "
## # Check for Multicollinearity
## 
## Low Correlation
## 
##                 Parameter  VIF Increased SE
##             Dist_edge_std 1.42         1.19
##  Dist_trail_beginning_std 2.81         1.68
##            Dist_trail_std 3.35         1.83
## [1] " "
## [1] "TESTING FOR OVERDISPERSION - P-VALUES < 0.05 meand overdispersion"
## [1] " "
## [1] " "
##      chisq      ratio        rdf          p 
## 22.1904961  1.4793664 15.0000000  0.1029054 
## [1] " "
## [1] "STANDARD R2"
## [1] " "
## Warning: Can't compute random effect variances. Some variance components equal zero.
##   Solution: Respecify random structure!
## Random effect variances not available. Returned R2 does not account for random effects.
## # R2 for Mixed Models
## 
##   Conditional R2: NA
##      Marginal R2: 0.053
## [1] " "
## [1] "NAKAGAWA R2"
## [1] " "
## Warning: Can't compute random effect variances. Some variance components equal zero.
##   Solution: Respecify random structure!
## Random effect variances not available. Returned R2 does not account for random effects.
## # R2 for Mixed Models
## 
##   Conditional R2: NA
##      Marginal R2: 0.053
## [1] " "
## [1] "MODEL SUMMARY"
## [1] " "
##  Family: nbinom1  ( log )
## Formula:          
## abund.all ~ Dist_edge_std + Dist_trail_beginning_std + Dist_trail_std +  
##     (1 | ForestID)
## Data: Results2
## 
##      AIC      BIC   logLik deviance df.resid 
##    224.0    230.2   -106.0    212.0       15 
## 
## Random effects:
## 
## Conditional model:
##  Groups   Name        Variance  Std.Dev. 
##  ForestID (Intercept) 2.467e-10 1.571e-05
## Number of obs: 21, groups:  ForestID, 5
## 
## Overdispersion parameter for nbinom1 family (): 10.3 
## 
## Conditional model:
##                          Estimate Std. Error z value Pr(>|z|)    
## (Intercept)               4.84284    0.09199   52.64   <2e-16 ***
## Dist_edge_std             0.01824    0.09566    0.19    0.849    
## Dist_trail_beginning_std  0.02599    0.12015    0.22    0.829    
## Dist_trail_std            0.04559    0.11573    0.39    0.694    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## [1] " "
## [1] "CHECKING MODEL GRAPHICALLY"
## [1] " "
## Warning: Can't compute random effect variances. Some variance components equal zero.
##   Solution: Respecify random structure!

## [1] " "
## [1] " "
## [1] "CHECKING COLINEARITY"
## [1] " "
## [1] " "
## [1] "CHECKING COLINEARITY"
## [1] " "
## # Check for Multicollinearity
## 
## Low Correlation
## 
##                 Parameter  VIF Increased SE
##             Dist_edge_std 1.39         1.18
##  Dist_trail_beginning_std 2.91         1.70
##            Dist_trail_std 3.40         1.84
## [1] " "
## [1] "TESTING FOR OVERDISPERSION - P-VALUES < 0.05 meand overdispersion"
## [1] " "
## [1] " "
##      chisq      ratio        rdf          p 
## 20.9146751  1.3943117 15.0000000  0.1395777 
## [1] " "
## [1] "STANDARD R2"
## [1] " "
## Warning: Can't compute random effect variances. Some variance components equal zero.
##   Solution: Respecify random structure!
## Random effect variances not available. Returned R2 does not account for random effects.
## # R2 for Mixed Models
## 
##   Conditional R2: NA
##      Marginal R2: 0.019
## [1] " "
## [1] "NAKAGAWA R2"
## [1] " "
## Warning: Can't compute random effect variances. Some variance components equal zero.
##   Solution: Respecify random structure!
## Random effect variances not available. Returned R2 does not account for random effects.
## # R2 for Mixed Models
## 
##   Conditional R2: NA
##      Marginal R2: 0.019
## [1] " "
## [1] "MODEL SUMMARY"
## [1] " "
##  Family: nbinom1  ( log )
## Formula:          
## abund.nat ~ Dist_edge_std + Dist_trail_beginning_std + Dist_trail_std +  
##     (1 | ForestID)
## Data: Results2
## 
##      AIC      BIC   logLik deviance df.resid 
##    219.5    225.7   -103.7    207.5       15 
## 
## Random effects:
## 
## Conditional model:
##  Groups   Name        Variance  Std.Dev. 
##  ForestID (Intercept) 1.048e-10 1.024e-05
## Number of obs: 21, groups:  ForestID, 5
## 
## Overdispersion parameter for nbinom1 family (): 8.83 
## 
## Conditional model:
##                          Estimate Std. Error z value Pr(>|z|)    
## (Intercept)              4.777317   0.089224   53.54   <2e-16 ***
## Dist_edge_std            0.036709   0.092552    0.40    0.692    
## Dist_trail_beginning_std 0.002779   0.121576    0.02    0.982    
## Dist_trail_std           0.014419   0.116876    0.12    0.902    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## [1] " "
## [1] "CHECKING MODEL GRAPHICALLY"
## [1] " "
## Warning: Can't compute random effect variances. Some variance components equal zero.
##   Solution: Respecify random structure!

## [1] " "
## [1] " "
## [1] "CHECKING COLINEARITY"
## [1] " "
## [1] " "
## [1] "CHECKING COLINEARITY"
## [1] " "
## Not enough model terms in the conditional part of the model to check for multicollinearity.
## NULL
## [1] " "
## [1] "TESTING FOR OVERDISPERSION - P-VALUES < 0.05 meand overdispersion"
## [1] " "
## [1] " "
##      chisq      ratio        rdf          p 
## 11.0181641  0.6481273 17.0000000  0.8556182 
## [1] " "
## [1] "STANDARD R2"
## [1] " "
## # R2 for Mixed Models
## 
##   Conditional R2: 0.402
##      Marginal R2: 0.047
## [1] " "
## [1] "NAKAGAWA R2"
## [1] " "
## # R2 for Mixed Models
## 
##   Conditional R2: 0.402
##      Marginal R2: 0.047
## [1] " "
## [1] "MODEL SUMMARY"
## [1] " "
##  Family: nbinom1  ( log )
## Formula:          abund.nind ~ Dist_edge_std + (1 | ForestID)
## Data: Results2
## 
##      AIC      BIC   logLik deviance df.resid 
##    145.1    149.3    -68.5    137.1       17 
## 
## Random effects:
## 
## Conditional model:
##  Groups   Name        Variance Std.Dev.
##  ForestID (Intercept) 0.4855   0.6968  
## Number of obs: 21, groups:  ForestID, 5
## 
## Overdispersion parameter for nbinom1 family (): 11.3 
## 
## Conditional model:
##               Estimate Std. Error z value Pr(>|z|)    
## (Intercept)     2.0651     0.4908   4.208 2.58e-05 ***
## Dist_edge_std   0.3248     0.3936   0.825    0.409    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## [1] " "
## [1] "CHECKING MODEL GRAPHICALLY"
## [1] " "
## Not enough model terms in the conditional part of the model to check for multicollinearity.

## [1] " "
## [1] " "
## [1] "CHECKING COLINEARITY"
## [1] " "
## [1] " "
## [1] "CHECKING COLINEARITY"
## [1] " "
## Not enough model terms in the conditional part of the model to check for multicollinearity.
## NULL
## [1] " "
## [1] "TESTING FOR OVERDISPERSION - P-VALUES < 0.05 meand overdispersion"
## [1] " "
## [1] " "
##      chisq      ratio        rdf          p 
## 11.1709757  0.6571162 17.0000000  0.8475390 
## [1] " "
## [1] "STANDARD R2"
## [1] " "
## # R2 for Mixed Models
## 
##   Conditional R2: 0.319
##      Marginal R2: 0.014
## [1] " "
## [1] "NAKAGAWA R2"
## [1] " "
## # R2 for Mixed Models
## 
##   Conditional R2: 0.319
##      Marginal R2: 0.014
## [1] " "
## [1] "MODEL SUMMARY"
## [1] " "
##  Family: nbinom1  ( log )
## Formula:          abund.nind ~ Dist_trail_std + (1 | ForestID)
## Data: Results2
## 
##      AIC      BIC   logLik deviance df.resid 
##    145.4    149.6    -68.7    137.4       17 
## 
## Random effects:
## 
## Conditional model:
##  Groups   Name        Variance Std.Dev.
##  ForestID (Intercept) 0.3749   0.6123  
## Number of obs: 21, groups:  ForestID, 5
## 
## Overdispersion parameter for nbinom1 family (): 11.7 
## 
## Conditional model:
##                Estimate Std. Error z value Pr(>|z|)    
## (Intercept)      2.1962     0.4102   5.353 8.63e-08 ***
## Dist_trail_std   0.1418     0.2311   0.614    0.539    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## [1] " "
## [1] "CHECKING MODEL GRAPHICALLY"
## [1] " "
## Not enough model terms in the conditional part of the model to check for multicollinearity.

## [1] " "
## [1] " "
## [1] "CHECKING COLINEARITY"
## [1] " "
## [1] " "
## [1] "CHECKING COLINEARITY"
## [1] " "
## Not enough model terms in the conditional part of the model to check for multicollinearity.
## NULL
## [1] " "
## [1] "TESTING FOR OVERDISPERSION - P-VALUES < 0.05 meand overdispersion"
## [1] " "
## [1] " "
##      chisq      ratio        rdf          p 
##  2.2023134  0.1223507 18.0000000  0.9999976 
## [1] " "
## [1] "STANDARD R2"
## [1] " "
## Warning: mu of 5.5 is too close to zero, estimate of random effect variances may be unreliable.
## # R2 for Mixed Models
## 
##   Conditional R2: 1.367
##      Marginal R2: 0.000
## [1] " "
## [1] "NAKAGAWA R2"
## [1] " "
## Warning: mu of 5.5 is too close to zero, estimate of random effect variances may be unreliable.
## # R2 for Mixed Models
## 
##   Conditional R2: 1.367
##      Marginal R2: 0.000
## [1] " "
## [1] "MODEL SUMMARY"
## [1] " "
##  Family: beta  ( logit )
## Formula:          prop.Talpha ~ (1 | ForestID)
## Data: Results2
## 
##      AIC      BIC   logLik deviance df.resid 
##    -44.5    -41.3     25.2    -50.5       18 
## 
## Random effects:
## 
## Conditional model:
##  Groups   Name        Variance Std.Dev.
##  ForestID (Intercept) 0.5481   0.7403  
## Number of obs: 21, groups:  ForestID, 5
## 
## Overdispersion parameter for beta family (): 4.98 
## 
## Conditional model:
##             Estimate Std. Error z value Pr(>|z|)    
## (Intercept)   1.7080     0.4264   4.006 6.18e-05 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## [1] " "
## [1] "CHECKING MODEL GRAPHICALLY"
## [1] " "
## Not enough model terms in the conditional part of the model to check for multicollinearity.
## Warning: mu of 5.5 is too close to zero, estimate of random effect variances may be unreliable.
## Warning in sqrt(insight::get_variance_residual(model)): NaNs produced
## Warning: Removed 21 rows containing non-finite values (stat_smooth).
## Warning: Removed 21 rows containing missing values (geom_point).

## [1] " "
## [1] " "
## [1] "CHECKING COLINEARITY"
## [1] " "
## [1] " "
## [1] "CHECKING COLINEARITY"
## [1] " "
## Not enough model terms in the conditional part of the model to check for multicollinearity.
## NULL
## [1] " "
## [1] "TESTING FOR OVERDISPERSION - P-VALUES < 0.05 meand overdispersion"
## [1] " "
## [1] " "
##      chisq      ratio        rdf          p 
##  2.3882907  0.1404877 17.0000000  0.9999869 
## [1] " "
## [1] "STANDARD R2"
## [1] " "
## Warning: mu of 5.5 is too close to zero, estimate of random effect variances may be unreliable.
## # R2 for Mixed Models
## 
##   Conditional R2: 1.219
##      Marginal R2: 0.307
## [1] " "
## [1] "NAKAGAWA R2"
## [1] " "
## Warning: mu of 5.5 is too close to zero, estimate of random effect variances may be unreliable.
## # R2 for Mixed Models
## 
##   Conditional R2: 1.219
##      Marginal R2: 0.307
## [1] " "
## [1] "MODEL SUMMARY"
## [1] " "
##  Family: beta  ( logit )
## Formula:          prop.Talpha ~ Dist_trail_std + (1 | ForestID)
## Data: Results2
## 
##      AIC      BIC   logLik deviance df.resid 
##    -45.3    -41.1     26.6    -53.3       17 
## 
## Random effects:
## 
## Conditional model:
##  Groups   Name        Variance Std.Dev.
##  ForestID (Intercept) 0.54     0.7349  
## Number of obs: 21, groups:  ForestID, 5
## 
## Overdispersion parameter for beta family (): 5.74 
## 
## Conditional model:
##                Estimate Std. Error z value Pr(>|z|)    
## (Intercept)      1.5663     0.4205   3.725 0.000196 ***
## Dist_trail_std   0.4633     0.3251   1.425 0.154114    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## [1] " "
## [1] "CHECKING MODEL GRAPHICALLY"
## [1] " "
## Not enough model terms in the conditional part of the model to check for multicollinearity.
## Warning: mu of 5.5 is too close to zero, estimate of random effect variances may be unreliable.
## Warning in sqrt(insight::get_variance_residual(model)): NaNs produced
## Warning: Removed 21 rows containing non-finite values (stat_smooth).
## Warning: Removed 21 rows containing missing values (geom_point).

## [1] " "
## [1] " "
## [1] "CHECKING COLINEARITY"
## [1] " "
## [1] " "
## [1] "CHECKING COLINEARITY"
## [1] " "
## Not enough model terms in the conditional part of the model to check for multicollinearity.
## NULL
## [1] " "
## [1] "TESTING FOR OVERDISPERSION - P-VALUES < 0.05 meand overdispersion"
## [1] " "
## [1] " "
##       chisq       ratio         rdf           p 
##  0.22976531  0.01276474 18.00000000  1.00000000 
## [1] " "
## [1] "STANDARD R2"
## [1] " "
## Warning: mu of 0.8 is too close to zero, estimate of random effect variances may be unreliable.
## # R2 for Mixed Models
## 
##   Conditional R2: 0.897
##      Marginal R2: 0.000
## [1] " "
## [1] "NAKAGAWA R2"
## [1] " "
## Warning: mu of 0.8 is too close to zero, estimate of random effect variances may be unreliable.
## # R2 for Mixed Models
## 
##   Conditional R2: 0.897
##      Marginal R2: 0.000
## [1] " "
## [1] "MODEL SUMMARY"
## [1] " "
##  Family: beta  ( logit )
## Formula:          prop.Falpha ~ (1 | ForestID)
## Data: Results2
## 
##      AIC      BIC   logLik deviance df.resid 
##    -50.5    -47.4     28.3    -56.5       18 
## 
## Random effects:
## 
## Conditional model:
##  Groups   Name        Variance Std.Dev.
##  ForestID (Intercept) 0.02016  0.142   
## Number of obs: 21, groups:  ForestID, 5
## 
## Overdispersion parameter for beta family (): 77.1 
## 
## Conditional model:
##             Estimate Std. Error z value Pr(>|z|)  
## (Intercept) -0.16590    0.09412  -1.762    0.078 .
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## [1] " "
## [1] "CHECKING MODEL GRAPHICALLY"
## [1] " "
## Not enough model terms in the conditional part of the model to check for multicollinearity.
## Warning: mu of 0.8 is too close to zero, estimate of random effect variances may be unreliable.
## Warning in simpleLoess(y, x, w, span, degree = degree, parametric =
## parametric, : pseudoinverse used at 0.48909
## Warning in simpleLoess(y, x, w, span, degree = degree, parametric =
## parametric, : neighborhood radius 0.018228
## Warning in simpleLoess(y, x, w, span, degree = degree, parametric =
## parametric, : reciprocal condition number 1.5375e-16
## Warning in simpleLoess(y, x, w, span, degree = degree, parametric =
## parametric, : There are other near singularities as well. 0.00031945

## [1] " "
## [1] " "
## [1] "CHECKING COLINEARITY"
## [1] " "
## [1] " "
## [1] "CHECKING COLINEARITY"
## [1] " "
## Not enough model terms in the conditional part of the model to check for multicollinearity.
## NULL
## [1] " "
## [1] "TESTING FOR OVERDISPERSION - P-VALUES < 0.05 meand overdispersion"
## [1] " "
## [1] " "
##       chisq       ratio         rdf           p 
##  0.19503099  0.01147241 17.00000000  1.00000000 
## [1] " "
## [1] "STANDARD R2"
## [1] " "
## Warning: mu of 0.8 is too close to zero, estimate of random effect variances may be unreliable.
## # R2 for Mixed Models
## 
##   Conditional R2: 0.945
##      Marginal R2: 0.092
## [1] " "
## [1] "NAKAGAWA R2"
## [1] " "
## Warning: mu of 0.8 is too close to zero, estimate of random effect variances may be unreliable.
## # R2 for Mixed Models
## 
##   Conditional R2: 0.945
##      Marginal R2: 0.092
## [1] " "
## [1] "MODEL SUMMARY"
## [1] " "
##  Family: beta  ( logit )
## Formula:          prop.Falpha ~ Dist_trail_beginning_std + (1 | ForestID)
## Data: Results2
## 
##      AIC      BIC   logLik deviance df.resid 
##    -49.7    -45.5     28.8    -57.7       17 
## 
## Random effects:
## 
## Conditional model:
##  Groups   Name        Variance Std.Dev.
##  ForestID (Intercept) 0.03122  0.1767  
## Number of obs: 21, groups:  ForestID, 5
## 
## Overdispersion parameter for beta family (): 88.7 
## 
## Conditional model:
##                          Estimate Std. Error z value Pr(>|z|)  
## (Intercept)              -0.21851    0.10782  -2.027   0.0427 *
## Dist_trail_beginning_std  0.07238    0.06581   1.100   0.2715  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## [1] " "
## [1] "CHECKING MODEL GRAPHICALLY"
## [1] " "
## Not enough model terms in the conditional part of the model to check for multicollinearity.
## Warning: mu of 0.8 is too close to zero, estimate of random effect variances may be unreliable.

## [1] " "
## [1] " "
## [1] "CHECKING COLINEARITY"
## [1] " "
## [1] " "
## [1] "CHECKING COLINEARITY"
## [1] " "
## Not enough model terms in the conditional part of the model to check for multicollinearity.
## NULL
## [1] " "
## [1] "TESTING FOR OVERDISPERSION - P-VALUES < 0.05 meand overdispersion"
## [1] " "
## [1] " "
##       chisq       ratio         rdf           p 
##  1.01738616  0.05652145 18.00000000  1.00000000 
## [1] " "
## [1] "STANDARD R2"
## [1] " "
## # R2 for Mixed Models
## 
##   Conditional R2: 1.405
##      Marginal R2: 0.000
## [1] " "
## [1] "NAKAGAWA R2"
## [1] " "
## # R2 for Mixed Models
## 
##   Conditional R2: 1.405
##      Marginal R2: 0.000
## [1] " "
## [1] "MODEL SUMMARY"
## [1] " "
##  Family: beta  ( logit )
## Formula:          prop.abund ~ (1 | ForestID)
## Data: Results2
## 
##      AIC      BIC   logLik deviance df.resid 
##    -78.4    -75.3     42.2    -84.4       18 
## 
## Random effects:
## 
## Conditional model:
##  Groups   Name        Variance Std.Dev.
##  ForestID (Intercept) 0.323    0.5683  
## Number of obs: 21, groups:  ForestID, 5
## 
## Overdispersion parameter for beta family (): 9.46 
## 
## Conditional model:
##             Estimate Std. Error z value Pr(>|z|)    
## (Intercept)   2.6587     0.3817   6.966 3.26e-12 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## [1] " "
## [1] "CHECKING MODEL GRAPHICALLY"
## [1] " "
## Not enough model terms in the conditional part of the model to check for multicollinearity.
## Warning in sqrt(insight::get_variance_residual(model)): NaNs produced
## Warning: Removed 21 rows containing non-finite values (stat_smooth).
## Warning: Removed 21 rows containing missing values (geom_point).

## [1] " "
## [1] " "
## [1] "CHECKING COLINEARITY"
## [1] " "
## [1] " "
## [1] "CHECKING COLINEARITY"
## [1] " "
## Not enough model terms in the conditional part of the model to check for multicollinearity.
## NULL
## [1] " "
## [1] "TESTING FOR OVERDISPERSION - P-VALUES < 0.05 meand overdispersion"
## [1] " "
## [1] " "
##      chisq      ratio        rdf          p 
##  2.7779510  0.1634089 17.0000000  0.9999601 
## [1] " "
## [1] "STANDARD R2"
## [1] " "
## Warning: mu of 0.4 is too close to zero, estimate of random effect variances may be unreliable.
## # R2 for Mixed Models
## 
##   Conditional R2: 0.870
##      Marginal R2: 0.528
## [1] " "
## [1] "NAKAGAWA R2"
## [1] " "
## Warning: mu of 0.4 is too close to zero, estimate of random effect variances may be unreliable.
## # R2 for Mixed Models
## 
##   Conditional R2: 0.870
##      Marginal R2: 0.528
## [1] " "
## [1] "MODEL SUMMARY"
## [1] " "
##  Family: beta  ( logit )
## Formula:          all.tax.btotal ~ Dist_trail_std + (1 | ForestID)
## Data: Results2
## 
##      AIC      BIC   logLik deviance df.resid 
##    -33.9    -29.7     20.9    -41.9       17 
## 
## Random effects:
## 
## Conditional model:
##  Groups   Name        Variance Std.Dev.
##  ForestID (Intercept) 0.8608   0.9278  
## Number of obs: 21, groups:  ForestID, 5
## 
## Overdispersion parameter for beta family ():    3 
## 
## Conditional model:
##                Estimate Std. Error z value Pr(>|z|)   
## (Intercept)     -0.8334     0.4983  -1.673  0.09443 . 
## Dist_trail_std  -1.2546     0.4024  -3.118  0.00182 **
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## [1] " "
## [1] "CHECKING MODEL GRAPHICALLY"
## [1] " "
## Not enough model terms in the conditional part of the model to check for multicollinearity.
## Warning: mu of 0.4 is too close to zero, estimate of random effect variances may be unreliable.

## [1] " "
## [1] " "
## [1] "CHECKING COLINEARITY"
## [1] " "
## [1] " "
## [1] "CHECKING COLINEARITY"
## [1] " "
## # Check for Multicollinearity
## 
## Low Correlation
## 
##       Parameter  VIF Increased SE
##   Dist_edge_std 1.77         1.33
##  Dist_trail_std 1.77         1.33
## [1] " "
## [1] "TESTING FOR OVERDISPERSION - P-VALUES < 0.05 meand overdispersion"
## [1] " "
## [1] " "
##      chisq      ratio        rdf          p 
##  2.8891280  0.1805705 16.0000000  0.9998683 
## [1] " "
## [1] "STANDARD R2"
## [1] " "
## Warning: mu of 0.4 is too close to zero, estimate of random effect variances may be unreliable.
## # R2 for Mixed Models
## 
##   Conditional R2: 0.899
##      Marginal R2: 0.619
## [1] " "
## [1] "NAKAGAWA R2"
## [1] " "
## Warning: mu of 0.4 is too close to zero, estimate of random effect variances may be unreliable.
## # R2 for Mixed Models
## 
##   Conditional R2: 0.899
##      Marginal R2: 0.619
## [1] " "
## [1] "MODEL SUMMARY"
## [1] " "
##  Family: beta  ( logit )
## Formula:          
## all.tax.btotal ~ Dist_edge_std + Dist_trail_std + (1 | ForestID)
## Data: Results2
## 
##      AIC      BIC   logLik deviance df.resid 
##    -35.2    -29.9     22.6    -45.2       16 
## 
## Random effects:
## 
## Conditional model:
##  Groups   Name        Variance Std.Dev.
##  ForestID (Intercept) 0.8354   0.914   
## Number of obs: 21, groups:  ForestID, 5
## 
## Overdispersion parameter for beta family (): 3.46 
## 
## Conditional model:
##                Estimate Std. Error z value Pr(>|z|)    
## (Intercept)     -1.2502     0.5557  -2.250 0.024453 *  
## Dist_edge_std    1.1322     0.6595   1.717 0.086022 .  
## Dist_trail_std  -1.7044     0.4517  -3.773 0.000161 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## [1] " "
## [1] "CHECKING MODEL GRAPHICALLY"
## [1] " "
## Warning: mu of 0.4 is too close to zero, estimate of random effect variances may be unreliable.

## [1] " "
## [1] " "
## [1] "CHECKING COLINEARITY"
## [1] " "
## [1] " "
## [1] "CHECKING COLINEARITY"
## [1] " "
## Not enough model terms in the conditional part of the model to check for multicollinearity.
## NULL
## [1] " "
## [1] "TESTING FOR OVERDISPERSION - P-VALUES < 0.05 meand overdispersion"
## [1] " "
## [1] " "
##       chisq       ratio         rdf           p 
##  0.69342191  0.04078952 17.00000000  1.00000000 
## [1] " "
## [1] "STANDARD R2"
## [1] " "
## Warning: mu of 0.1 is too close to zero, estimate of random effect variances may be unreliable.
## # R2 for Mixed Models
## 
##   Conditional R2: 0.901
##      Marginal R2: 0.477
## [1] " "
## [1] "NAKAGAWA R2"
## [1] " "
## Warning: mu of 0.1 is too close to zero, estimate of random effect variances may be unreliable.
## # R2 for Mixed Models
## 
##   Conditional R2: 0.901
##      Marginal R2: 0.477
## [1] " "
## [1] "MODEL SUMMARY"
## [1] " "
##  Family: beta  ( logit )
## Formula:          all.tax.brich ~ Dist_trail_std + (1 | ForestID)
## Data: Results2
## 
##      AIC      BIC   logLik deviance df.resid 
##    -79.2    -75.0     43.6    -87.2       17 
## 
## Random effects:
## 
## Conditional model:
##  Groups   Name        Variance Std.Dev.
##  ForestID (Intercept) 1.581    1.258   
## Number of obs: 21, groups:  ForestID, 5
## 
## Overdispersion parameter for beta family ():   15 
## 
## Conditional model:
##                Estimate Std. Error z value Pr(>|z|)    
## (Intercept)     -2.4243     0.6253  -3.877 0.000106 ***
## Dist_trail_std  -1.4497     0.3959  -3.662 0.000250 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## [1] " "
## [1] "CHECKING MODEL GRAPHICALLY"
## [1] " "
## Not enough model terms in the conditional part of the model to check for multicollinearity.
## Warning: mu of 0.1 is too close to zero, estimate of random effect variances may be unreliable.

## [1] " "
## [1] " "
## [1] "CHECKING COLINEARITY"
## [1] " "
## [1] " "
## [1] "CHECKING COLINEARITY"
## [1] " "
## # Check for Multicollinearity
## 
## Low Correlation
## 
##       Parameter  VIF Increased SE
##   Dist_edge_std 1.12         1.06
##  Dist_trail_std 1.12         1.06
## [1] " "
## [1] "TESTING FOR OVERDISPERSION - P-VALUES < 0.05 meand overdispersion"
## [1] " "
## [1] " "
##       chisq       ratio         rdf           p 
##  0.81349415  0.05084338 16.00000000  0.99999999 
## [1] " "
## [1] "STANDARD R2"
## [1] " "
## Warning: mu of 0.1 is too close to zero, estimate of random effect variances may be unreliable.
## # R2 for Mixed Models
## 
##   Conditional R2: 0.884
##      Marginal R2: 0.527
## [1] " "
## [1] "NAKAGAWA R2"
## [1] " "
## Warning: mu of 0.1 is too close to zero, estimate of random effect variances may be unreliable.
## # R2 for Mixed Models
## 
##   Conditional R2: 0.884
##      Marginal R2: 0.527
## [1] " "
## [1] "MODEL SUMMARY"
## [1] " "
##  Family: beta  ( logit )
## Formula:          
## all.tax.brich ~ Dist_edge_std + Dist_trail_std + (1 | ForestID)
## Data: Results2
## 
##      AIC      BIC   logLik deviance df.resid 
##    -79.8    -74.6     44.9    -89.8       16 
## 
## Random effects:
## 
## Conditional model:
##  Groups   Name        Variance Std.Dev.
##  ForestID (Intercept) 1.16     1.077   
## Number of obs: 21, groups:  ForestID, 5
## 
## Overdispersion parameter for beta family (): 14.7 
## 
## Conditional model:
##                Estimate Std. Error z value Pr(>|z|)    
## (Intercept)     -2.7132     0.5796  -4.681 2.86e-06 ***
## Dist_edge_std    0.8819     0.5185   1.701    0.089 .  
## Dist_trail_std  -1.6443     0.3823  -4.301 1.70e-05 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## [1] " "
## [1] "CHECKING MODEL GRAPHICALLY"
## [1] " "
## Warning: mu of 0.1 is too close to zero, estimate of random effect variances may be unreliable.

## [1] " "
## [1] " "
## [1] "CHECKING COLINEARITY"
## [1] " "
## [1] " "
## [1] "CHECKING COLINEARITY"
## [1] " "
## Not enough model terms in the conditional part of the model to check for multicollinearity.
## NULL
## [1] " "
## [1] "TESTING FOR OVERDISPERSION - P-VALUES < 0.05 meand overdispersion"
## [1] " "
## [1] " "
##      chisq      ratio        rdf          p 
##  3.0185237  0.1775602 17.0000000  0.9999274 
## [1] " "
## [1] "STANDARD R2"
## [1] " "
## Warning: mu of 0.3 is too close to zero, estimate of random effect variances may be unreliable.
## # R2 for Mixed Models
## 
##   Conditional R2: 0.470
##      Marginal R2: 0.337
## [1] " "
## [1] "NAKAGAWA R2"
## [1] " "
## Warning: mu of 0.3 is too close to zero, estimate of random effect variances may be unreliable.
## # R2 for Mixed Models
## 
##   Conditional R2: 0.470
##      Marginal R2: 0.337
## [1] " "
## [1] "MODEL SUMMARY"
## [1] " "
##  Family: beta  ( logit )
## Formula:          all.tax.brepl ~ Dist_trail_std + (1 | ForestID)
## Data: Results2
## 
##      AIC      BIC   logLik deviance df.resid 
##    -47.4    -43.2     27.7    -55.4       17 
## 
## Random effects:
## 
## Conditional model:
##  Groups   Name        Variance Std.Dev.
##  ForestID (Intercept) 0.1613   0.4016  
## Number of obs: 21, groups:  ForestID, 5
## 
## Overdispersion parameter for beta family (): 2.26 
## 
## Conditional model:
##                Estimate Std. Error z value Pr(>|z|)   
## (Intercept)     -1.2313     0.3787  -3.251  0.00115 **
## Dist_trail_std  -0.6954     0.3399  -2.046  0.04074 * 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## [1] " "
## [1] "CHECKING MODEL GRAPHICALLY"
## [1] " "
## Not enough model terms in the conditional part of the model to check for multicollinearity.
## Warning: mu of 0.3 is too close to zero, estimate of random effect variances may be unreliable.

## [1] " "
## [1] " "
## [1] "CHECKING COLINEARITY"
## [1] " "
## [1] " "
## [1] "CHECKING COLINEARITY"
## [1] " "
## # Check for Multicollinearity
## 
## Low Correlation
## 
##       Parameter  VIF Increased SE
##   Dist_edge_std 1.45         1.21
##  Dist_trail_std 1.45         1.21
## [1] " "
## [1] "TESTING FOR OVERDISPERSION - P-VALUES < 0.05 meand overdispersion"
## [1] " "
## [1] " "
##      chisq      ratio        rdf          p 
##  3.8469197  0.2404325 16.0000000  0.9991423 
## [1] " "
## [1] "STANDARD R2"
## [1] " "
## Warning: Can't compute random effect variances. Some variance components equal zero.
##   Solution: Respecify random structure!
## Warning: mu of 0.3 is too close to zero, estimate of random effect variances may be unreliable.
## Random effect variances not available. Returned R2 does not account for random effects.
## # R2 for Mixed Models
## 
##   Conditional R2: NA
##      Marginal R2: 0.475
## [1] " "
## [1] "NAKAGAWA R2"
## [1] " "
## Warning: Can't compute random effect variances. Some variance components equal zero.
##   Solution: Respecify random structure!

## Warning: mu of 0.3 is too close to zero, estimate of random effect variances may be unreliable.
## Random effect variances not available. Returned R2 does not account for random effects.
## # R2 for Mixed Models
## 
##   Conditional R2: NA
##      Marginal R2: 0.475
## [1] " "
## [1] "MODEL SUMMARY"
## [1] " "
##  Family: beta  ( logit )
## Formula:          
## all.tax.brepl ~ Dist_edge_std + Dist_trail_std + (1 | ForestID)
## Data: Results2
## 
##      AIC      BIC   logLik deviance df.resid 
##    -48.2    -42.9     29.1    -58.2       16 
## 
## Random effects:
## 
## Conditional model:
##  Groups   Name        Variance  Std.Dev. 
##  ForestID (Intercept) 1.327e-08 0.0001152
## Number of obs: 21, groups:  ForestID, 5
## 
## Overdispersion parameter for beta family (): 2.35 
## 
## Conditional model:
##                Estimate Std. Error z value Pr(>|z|)    
## (Intercept)     -1.4674     0.3437  -4.269 1.96e-05 ***
## Dist_edge_std    0.6402     0.3526   1.816  0.06945 .  
## Dist_trail_std  -0.9475     0.3522  -2.690  0.00714 ** 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## [1] " "
## [1] "CHECKING MODEL GRAPHICALLY"
## [1] " "
## Warning: Can't compute random effect variances. Some variance components equal zero.
##   Solution: Respecify random structure!

## Warning: mu of 0.3 is too close to zero, estimate of random effect variances may be unreliable.

## [1] " "
## [1] " "
## [1] "CHECKING COLINEARITY"
## [1] " "
## [1] " "
## [1] "CHECKING COLINEARITY"
## [1] " "
## Not enough model terms in the conditional part of the model to check for multicollinearity.
## NULL
## [1] " "
## [1] "TESTING FOR OVERDISPERSION - P-VALUES < 0.05 meand overdispersion"
## [1] " "
## [1] " "
##      chisq      ratio        rdf          p 
##  2.2357030  0.1315119 17.0000000  0.9999920 
## [1] " "
## [1] "STANDARD R2"
## [1] " "
## Warning: mu of 0.3 is too close to zero, estimate of random effect variances may be unreliable.
## # R2 for Mixed Models
## 
##   Conditional R2: 0.860
##      Marginal R2: 0.530
## [1] " "
## [1] "NAKAGAWA R2"
## [1] " "
## Warning: mu of 0.3 is too close to zero, estimate of random effect variances may be unreliable.
## # R2 for Mixed Models
## 
##   Conditional R2: 0.860
##      Marginal R2: 0.530
## [1] " "
## [1] "MODEL SUMMARY"
## [1] " "
##  Family: beta  ( logit )
## Formula:          nat.tax.btotal ~ Dist_trail_std + (1 | ForestID)
## Data: Results2
## 
##      AIC      BIC   logLik deviance df.resid 
##    -37.4    -33.3     22.7    -45.4       17 
## 
## Random effects:
## 
## Conditional model:
##  Groups   Name        Variance Std.Dev.
##  ForestID (Intercept) 0.8423   0.9177  
## Number of obs: 21, groups:  ForestID, 5
## 
## Overdispersion parameter for beta family (): 3.69 
## 
## Conditional model:
##                Estimate Std. Error z value Pr(>|z|)   
## (Intercept)     -1.0376     0.4926  -2.106  0.03518 * 
## Dist_trail_std  -1.2646     0.3991  -3.168  0.00153 **
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## [1] " "
## [1] "CHECKING MODEL GRAPHICALLY"
## [1] " "
## Not enough model terms in the conditional part of the model to check for multicollinearity.
## Warning: mu of 0.3 is too close to zero, estimate of random effect variances may be unreliable.

## [1] " "
## [1] " "
## [1] "CHECKING COLINEARITY"
## [1] " "
## [1] " "
## [1] "CHECKING COLINEARITY"
## [1] " "
## # Check for Multicollinearity
## 
## Low Correlation
## 
##       Parameter  VIF Increased SE
##   Dist_edge_std 1.61         1.27
##  Dist_trail_std 1.61         1.27
## [1] " "
## [1] "TESTING FOR OVERDISPERSION - P-VALUES < 0.05 meand overdispersion"
## [1] " "
## [1] " "
##      chisq      ratio        rdf          p 
##  2.4201718  0.1512607 16.0000000  0.9999608 
## [1] " "
## [1] "STANDARD R2"
## [1] " "
## Warning: mu of 0.3 is too close to zero, estimate of random effect variances may be unreliable.
## # R2 for Mixed Models
## 
##   Conditional R2: 0.883
##      Marginal R2: 0.621
## [1] " "
## [1] "NAKAGAWA R2"
## [1] " "
## Warning: mu of 0.3 is too close to zero, estimate of random effect variances may be unreliable.
## # R2 for Mixed Models
## 
##   Conditional R2: 0.883
##      Marginal R2: 0.621
## [1] " "
## [1] "MODEL SUMMARY"
## [1] " "
##  Family: beta  ( logit )
## Formula:          
## nat.tax.btotal ~ Dist_edge_std + Dist_trail_std + (1 | ForestID)
## Data: Results2
## 
##      AIC      BIC   logLik deviance df.resid 
##    -38.7    -33.5     24.4    -48.7       16 
## 
## Random effects:
## 
## Conditional model:
##  Groups   Name        Variance Std.Dev.
##  ForestID (Intercept) 0.7393   0.8598  
## Number of obs: 21, groups:  ForestID, 5
## 
## Overdispersion parameter for beta family (): 4.14 
## 
## Conditional model:
##                Estimate Std. Error z value Pr(>|z|)    
## (Intercept)     -1.4310     0.5293  -2.704 0.006859 ** 
## Dist_edge_std    1.0727     0.6115   1.754 0.079376 .  
## Dist_trail_std  -1.6624     0.4307  -3.859 0.000114 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## [1] " "
## [1] "CHECKING MODEL GRAPHICALLY"
## [1] " "
## Warning: mu of 0.3 is too close to zero, estimate of random effect variances may be unreliable.

## [1] " "
## [1] " "
## [1] "CHECKING COLINEARITY"
## [1] " "
## [1] " "
## [1] "CHECKING COLINEARITY"
## [1] " "
## Not enough model terms in the conditional part of the model to check for multicollinearity.
## NULL
## [1] " "
## [1] "TESTING FOR OVERDISPERSION - P-VALUES < 0.05 meand overdispersion"
## [1] " "
## [1] " "
##     chisq     ratio       rdf         p 
##  3.698676  0.205482 18.000000  0.999866 
## [1] " "
## [1] "STANDARD R2"
## [1] " "
## Warning: Can't compute random effect variances. Some variance components equal zero.
##   Solution: Respecify random structure!
## Warning: mu of 0.1 is too close to zero, estimate of random effect variances may be unreliable.
## Random effect variances not available. Returned R2 does not account for random effects.
## # R2 for Mixed Models
## 
##   Conditional R2: NA
##      Marginal R2: 0.000
## [1] " "
## [1] "NAKAGAWA R2"
## [1] " "
## Warning: Can't compute random effect variances. Some variance components equal zero.
##   Solution: Respecify random structure!

## Warning: mu of 0.1 is too close to zero, estimate of random effect variances may be unreliable.
## Random effect variances not available. Returned R2 does not account for random effects.
## # R2 for Mixed Models
## 
##   Conditional R2: NA
##      Marginal R2: 0.000
## [1] " "
## [1] "MODEL SUMMARY"
## [1] " "
##  Family: beta  ( logit )
## Formula:          nat.tax.brich ~ (1 | ForestID)
## Data: Results2
## 
##      AIC      BIC   logLik deviance df.resid 
##   -135.8   -132.7     70.9   -141.8       18 
## 
## Random effects:
## 
## Conditional model:
##  Groups   Name        Variance  Std.Dev. 
##  ForestID (Intercept) 9.572e-10 3.094e-05
## Number of obs: 21, groups:  ForestID, 5
## 
## Overdispersion parameter for beta family (): 3.08 
## 
## Conditional model:
##             Estimate Std. Error z value Pr(>|z|)    
## (Intercept)  -2.6358     0.4236  -6.223 4.88e-10 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## [1] " "
## [1] "CHECKING MODEL GRAPHICALLY"
## [1] " "
## Not enough model terms in the conditional part of the model to check for multicollinearity.
## Warning: Can't compute random effect variances. Some variance components equal zero.
##   Solution: Respecify random structure!

## Warning: mu of 0.1 is too close to zero, estimate of random effect variances may be unreliable.
## Warning in predict.lm(model, newdata = data.frame(x = xseq), se.fit = se, :
## prediction from a rank-deficient fit may be misleading
## Warning in simpleLoess(y, x, w, span, degree = degree, parametric =
## parametric, : pseudoinverse used at 0.066869
## Warning in simpleLoess(y, x, w, span, degree = degree, parametric =
## parametric, : neighborhood radius 5.0264e-11
## Warning in simpleLoess(y, x, w, span, degree = degree, parametric =
## parametric, : reciprocal condition number 2.0135e-16
## Warning in simpleLoess(y, x, w, span, degree = degree, parametric =
## parametric, : There are other near singularities as well. 7.981e-22

## [1] " "
## [1] " "
## [1] "CHECKING COLINEARITY"
## [1] " "
## [1] " "
## [1] "CHECKING COLINEARITY"
## [1] " "
## Not enough model terms in the conditional part of the model to check for multicollinearity.
## NULL
## [1] " "
## [1] "TESTING FOR OVERDISPERSION - P-VALUES < 0.05 meand overdispersion"
## [1] " "
## [1] " "
##      chisq      ratio        rdf          p 
##  3.3206201  0.1953306 17.0000000  0.9998569 
## [1] " "
## [1] "STANDARD R2"
## [1] " "
## Warning: mu of 0.3 is too close to zero, estimate of random effect variances may be unreliable.
## # R2 for Mixed Models
## 
##   Conditional R2: 0.506
##      Marginal R2: 0.340
## [1] " "
## [1] "NAKAGAWA R2"
## [1] " "
## Warning: mu of 0.3 is too close to zero, estimate of random effect variances may be unreliable.
## # R2 for Mixed Models
## 
##   Conditional R2: 0.506
##      Marginal R2: 0.340
## [1] " "
## [1] "MODEL SUMMARY"
## [1] " "
##  Family: beta  ( logit )
## Formula:          nat.tax.brepl ~ Dist_trail_std + (1 | ForestID)
## Data: Results2
## 
##      AIC      BIC   logLik deviance df.resid 
##    -48.0    -43.8     28.0    -56.0       17 
## 
## Random effects:
## 
## Conditional model:
##  Groups   Name        Variance Std.Dev.
##  ForestID (Intercept) 0.2137   0.4623  
## Number of obs: 21, groups:  ForestID, 5
## 
## Overdispersion parameter for beta family (): 2.32 
## 
## Conditional model:
##                Estimate Std. Error z value Pr(>|z|)   
## (Intercept)     -1.2587     0.3933  -3.200  0.00137 **
## Dist_trail_std  -0.7198     0.3466  -2.077  0.03781 * 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## [1] " "
## [1] "CHECKING MODEL GRAPHICALLY"
## [1] " "
## Not enough model terms in the conditional part of the model to check for multicollinearity.
## Warning: mu of 0.3 is too close to zero, estimate of random effect variances may be unreliable.

## [1] " "
## [1] " "
## [1] "CHECKING COLINEARITY"
## [1] " "
## [1] " "
## [1] "CHECKING COLINEARITY"
## [1] " "
## # Check for Multicollinearity
## 
## Low Correlation
## 
##       Parameter  VIF Increased SE
##   Dist_edge_std 2.78         1.67
##  Dist_trail_std 2.78         1.67
## [1] " "
## [1] "TESTING FOR OVERDISPERSION - P-VALUES < 0.05 meand overdispersion"
## [1] " "
## [1] " "
##      chisq      ratio        rdf          p 
##  3.6036548  0.2252284 16.0000000  0.9994348 
## [1] " "
## [1] "STANDARD R2"
## [1] " "
## Warning: mu of 0.3 is too close to zero, estimate of random effect variances may be unreliable.
## # R2 for Mixed Models
## 
##   Conditional R2: 0.581
##      Marginal R2: 0.497
## [1] " "
## [1] "NAKAGAWA R2"
## [1] " "
## Warning: mu of 0.3 is too close to zero, estimate of random effect variances may be unreliable.
## # R2 for Mixed Models
## 
##   Conditional R2: 0.581
##      Marginal R2: 0.497
## [1] " "
## [1] "MODEL SUMMARY"
## [1] " "
##  Family: beta  ( logit )
## Formula:          
## nat.tax.brepl ~ Dist_edge_std + Dist_trail_std + (1 | ForestID)
## Data: Results2
## 
##      AIC      BIC   logLik deviance df.resid 
##    -48.8    -43.6     29.4    -58.8       16 
## 
## Random effects:
## 
## Conditional model:
##  Groups   Name        Variance Std.Dev.
##  ForestID (Intercept) 0.1223   0.3497  
## Number of obs: 21, groups:  ForestID, 5
## 
## Overdispersion parameter for beta family (): 2.56 
## 
## Conditional model:
##                Estimate Std. Error z value Pr(>|z|)   
## (Intercept)     -1.5571     0.4806  -3.240   0.0012 **
## Dist_edge_std    0.7591     0.5949   1.276   0.2020   
## Dist_trail_std  -1.0586     0.5402  -1.960   0.0500 . 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## [1] " "
## [1] "CHECKING MODEL GRAPHICALLY"
## [1] " "
## Warning: mu of 0.3 is too close to zero, estimate of random effect variances may be unreliable.

## [1] " "
## [1] " "
## [1] "CHECKING COLINEARITY"
## [1] " "
## [1] " "
## [1] "CHECKING COLINEARITY"
## [1] " "
## # Check for Multicollinearity
## 
## Low Correlation
## 
##       Parameter  VIF Increased SE
##   Dist_edge_std 1.36         1.16
##  Dist_trail_std 1.36         1.16
## [1] " "
## [1] "TESTING FOR OVERDISPERSION - P-VALUES < 0.05 meand overdispersion"
## [1] " "
## [1] " "
##     chisq     ratio       rdf         p 
## 11.164000  0.697750 16.000000  0.799251 
## [1] " "
## [1] "STANDARD R2"
## [1] " "
## Warning: Can't compute random effect variances. Some variance components equal zero.
##   Solution: Respecify random structure!
## Warning: mu of 1.2 is too close to zero, estimate of random effect variances may be unreliable.
## Random effect variances not available. Returned R2 does not account for random effects.
## # R2 for Mixed Models
## 
##   Conditional R2: NA
##      Marginal R2: 1.176
## [1] " "
## [1] "NAKAGAWA R2"
## [1] " "
## Warning: Can't compute random effect variances. Some variance components equal zero.
##   Solution: Respecify random structure!

## Warning: mu of 1.2 is too close to zero, estimate of random effect variances may be unreliable.
## Random effect variances not available. Returned R2 does not account for random effects.
## # R2 for Mixed Models
## 
##   Conditional R2: NA
##      Marginal R2: 1.176
## [1] " "
## [1] "MODEL SUMMARY"
## [1] " "
##  Family: beta  ( logit )
## Formula:          
## nind.tax.btotal ~ Dist_edge_std + Dist_trail_std + (1 | ForestID)
## Data: Results2
## 
##      AIC      BIC   logLik deviance df.resid 
##   -153.4   -148.2     81.7   -163.4       16 
## 
## Random effects:
## 
## Conditional model:
##  Groups   Name        Variance  Std.Dev. 
##  ForestID (Intercept) 1.876e-09 4.331e-05
## Number of obs: 21, groups:  ForestID, 5
## 
## Overdispersion parameter for beta family (): 0.396 
## 
## Conditional model:
##                Estimate Std. Error z value Pr(>|z|)  
## (Intercept)    -0.03587    0.38041  -0.094   0.9249  
## Dist_edge_std   0.90713    0.44137   2.055   0.0399 *
## Dist_trail_std -0.97860    0.40175  -2.436   0.0149 *
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## [1] " "
## [1] "CHECKING MODEL GRAPHICALLY"
## [1] " "
## Warning: Can't compute random effect variances. Some variance components equal zero.
##   Solution: Respecify random structure!

## Warning: mu of 1.2 is too close to zero, estimate of random effect variances may be unreliable.
## Warning in sqrt(insight::get_variance_residual(model)): NaNs produced
## Warning: Removed 21 rows containing non-finite values (stat_smooth).
## Warning: Removed 21 rows containing missing values (geom_point).

## [1] " "
## [1] " "
## [1] "CHECKING COLINEARITY"
## [1] " "
## [1] " "
## [1] "CHECKING COLINEARITY"
## [1] " "
## Not enough model terms in the conditional part of the model to check for multicollinearity.
## NULL
## [1] " "
## [1] "TESTING FOR OVERDISPERSION - P-VALUES < 0.05 meand overdispersion"
## [1] " "
## [1] " "
##      chisq      ratio        rdf          p 
## 16.4515482  0.9139749 18.0000000  0.5610653 
## [1] " "
## [1] "STANDARD R2"
## [1] " "
## Warning: Can't compute random effect variances. Some variance components equal zero.
##   Solution: Respecify random structure!
## Warning: mu of 1.2 is too close to zero, estimate of random effect variances may be unreliable.
## Random effect variances not available. Returned R2 does not account for random effects.
## # R2 for Mixed Models
## 
##   Conditional R2: NA
##      Marginal R2: -0.000
## [1] " "
## [1] "NAKAGAWA R2"
## [1] " "
## Warning: Can't compute random effect variances. Some variance components equal zero.
##   Solution: Respecify random structure!

## Warning: mu of 1.2 is too close to zero, estimate of random effect variances may be unreliable.
## Random effect variances not available. Returned R2 does not account for random effects.
## # R2 for Mixed Models
## 
##   Conditional R2: NA
##      Marginal R2: -0.000
## [1] " "
## [1] "MODEL SUMMARY"
## [1] " "
##  Family: beta  ( logit )
## Formula:          nind.tax.btotal ~ (1 | ForestID)
## Data: Results2
## 
##      AIC      BIC   logLik deviance df.resid 
##   -150.5   -147.4     78.3   -156.5       18 
## 
## Random effects:
## 
## Conditional model:
##  Groups   Name        Variance  Std.Dev. 
##  ForestID (Intercept) 4.211e-09 6.489e-05
## Number of obs: 21, groups:  ForestID, 5
## 
## Overdispersion parameter for beta family (): 0.287 
## 
## Conditional model:
##             Estimate Std. Error z value Pr(>|z|)
## (Intercept)   0.1433     0.3052    0.47    0.639
## [1] " "
## [1] "CHECKING MODEL GRAPHICALLY"
## [1] " "
## Not enough model terms in the conditional part of the model to check for multicollinearity.
## Warning: Can't compute random effect variances. Some variance components equal zero.
##   Solution: Respecify random structure!

## Warning: mu of 1.2 is too close to zero, estimate of random effect variances may be unreliable.
## Warning in sqrt(insight::get_variance_residual(model)): NaNs produced
## Warning in predict.lm(model, newdata = data.frame(x = xseq), se.fit = se, :
## prediction from a rank-deficient fit may be misleading
## Warning: Removed 21 rows containing non-finite values (stat_smooth).
## Warning: Removed 21 rows containing missing values (geom_point).

## [1] " "
## [1] " "
## [1] "CHECKING COLINEARITY"
## [1] " "
## [1] " "
## [1] "CHECKING COLINEARITY"
## [1] " "
## Not enough model terms in the conditional part of the model to check for multicollinearity.
## NULL
## [1] " "
## [1] "TESTING FOR OVERDISPERSION - P-VALUES < 0.05 meand overdispersion"
## [1] " "
## [1] " "
##      chisq      ratio        rdf          p 
## 14.0916376  0.8289199 17.0000000  0.6606050 
## [1] " "
## [1] "STANDARD R2"
## [1] " "
## Warning: Can't compute random effect variances. Some variance components equal zero.
##   Solution: Respecify random structure!
## Warning: mu of 1.2 is too close to zero, estimate of random effect variances may be unreliable.
## Random effect variances not available. Returned R2 does not account for random effects.
## # R2 for Mixed Models
## 
##   Conditional R2: NA
##      Marginal R2: 1.740
## [1] " "
## [1] "NAKAGAWA R2"
## [1] " "
## Warning: Can't compute random effect variances. Some variance components equal zero.
##   Solution: Respecify random structure!

## Warning: mu of 1.2 is too close to zero, estimate of random effect variances may be unreliable.
## Random effect variances not available. Returned R2 does not account for random effects.
## # R2 for Mixed Models
## 
##   Conditional R2: NA
##      Marginal R2: 1.740
## [1] " "
## [1] "MODEL SUMMARY"
## [1] " "
##  Family: beta  ( logit )
## Formula:          nind.tax.btotal ~ Dist_trail_std + (1 | ForestID)
## Data: Results2
## 
##      AIC      BIC   logLik deviance df.resid 
##   -151.2   -147.1     79.6   -159.2       17 
## 
## Random effects:
## 
## Conditional model:
##  Groups   Name        Variance  Std.Dev. 
##  ForestID (Intercept) 7.475e-09 8.646e-05
## Number of obs: 21, groups:  ForestID, 5
## 
## Overdispersion parameter for beta family (): 0.327 
## 
## Conditional model:
##                Estimate Std. Error z value Pr(>|z|)
## (Intercept)      0.3882     0.3348   1.160    0.246
## Dist_trail_std  -0.5428     0.3386  -1.603    0.109
## [1] " "
## [1] "CHECKING MODEL GRAPHICALLY"
## [1] " "
## Not enough model terms in the conditional part of the model to check for multicollinearity.
## Warning: Can't compute random effect variances. Some variance components equal zero.
##   Solution: Respecify random structure!

## Warning: mu of 1.2 is too close to zero, estimate of random effect variances may be unreliable.
## Warning in sqrt(insight::get_variance_residual(model)): NaNs produced
## Warning: Removed 21 rows containing non-finite values (stat_smooth).
## Warning: Removed 21 rows containing missing values (geom_point).

## [1] " "
## [1] " "
## [1] "CHECKING COLINEARITY"
## [1] " "
## [1] " "
## [1] "CHECKING COLINEARITY"
## [1] " "
## # Check for Multicollinearity
## 
## Low Correlation
## 
##       Parameter  VIF Increased SE
##   Dist_edge_std 1.53         1.24
##  Dist_trail_std 1.53         1.24
## [1] " "
## [1] "TESTING FOR OVERDISPERSION - P-VALUES < 0.05 meand overdispersion"
## [1] " "
## [1] " "
##      chisq      ratio        rdf          p 
##  8.6087198  0.5380450 16.0000000  0.9286488 
## [1] " "
## [1] "STANDARD R2"
## [1] " "
## Warning: Can't compute random effect variances. Some variance components equal zero.
##   Solution: Respecify random structure!
## Warning: mu of 0.8 is too close to zero, estimate of random effect variances may be unreliable.
## Random effect variances not available. Returned R2 does not account for random effects.
## # R2 for Mixed Models
## 
##   Conditional R2: NA
##      Marginal R2: 0.908
## [1] " "
## [1] "NAKAGAWA R2"
## [1] " "
## Warning: Can't compute random effect variances. Some variance components equal zero.
##   Solution: Respecify random structure!

## Warning: mu of 0.8 is too close to zero, estimate of random effect variances may be unreliable.
## Random effect variances not available. Returned R2 does not account for random effects.
## # R2 for Mixed Models
## 
##   Conditional R2: NA
##      Marginal R2: 0.908
## [1] " "
## [1] "MODEL SUMMARY"
## [1] " "
##  Family: beta  ( logit )
## Formula:          
## nind.tax.brich ~ Dist_edge_std + Dist_trail_std + (1 | ForestID)
## Data: Results2
## 
##      AIC      BIC   logLik deviance df.resid 
##   -155.8   -150.5     82.9   -165.8       16 
## 
## Random effects:
## 
## Conditional model:
##  Groups   Name        Variance  Std.Dev. 
##  ForestID (Intercept) 2.665e-09 5.162e-05
## Number of obs: 21, groups:  ForestID, 5
## 
## Overdispersion parameter for beta family (): 0.479 
## 
## Conditional model:
##                Estimate Std. Error z value Pr(>|z|)   
## (Intercept)     -0.6909     0.3859  -1.790  0.07342 . 
## Dist_edge_std    1.4233     0.4788   2.973  0.00295 **
## Dist_trail_std  -1.0907     0.4112  -2.652  0.00799 **
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## [1] " "
## [1] "CHECKING MODEL GRAPHICALLY"
## [1] " "
## Warning: Can't compute random effect variances. Some variance components equal zero.
##   Solution: Respecify random structure!

## Warning: mu of 0.8 is too close to zero, estimate of random effect variances may be unreliable.

## [1] " "
## [1] " "
## [1] "CHECKING COLINEARITY"
## [1] " "
## [1] " "
## [1] "CHECKING COLINEARITY"
## [1] " "
## Not enough model terms in the conditional part of the model to check for multicollinearity.
## NULL
## [1] " "
## [1] "TESTING FOR OVERDISPERSION - P-VALUES < 0.05 meand overdispersion"
## [1] " "
## [1] " "
##      chisq      ratio        rdf          p 
## 12.0360372  0.6686687 18.0000000  0.8453714 
## [1] " "
## [1] "STANDARD R2"
## [1] " "
## Warning: Can't compute random effect variances. Some variance components equal zero.
##   Solution: Respecify random structure!
## Warning: mu of 0.2 is too close to zero, estimate of random effect variances may be unreliable.
## Random effect variances not available. Returned R2 does not account for random effects.
## # R2 for Mixed Models
## 
##   Conditional R2: NA
##      Marginal R2: 0.000
## [1] " "
## [1] "NAKAGAWA R2"
## [1] " "
## Warning: Can't compute random effect variances. Some variance components equal zero.
##   Solution: Respecify random structure!

## Warning: mu of 0.2 is too close to zero, estimate of random effect variances may be unreliable.
## Random effect variances not available. Returned R2 does not account for random effects.
## # R2 for Mixed Models
## 
##   Conditional R2: NA
##      Marginal R2: 0.000
## [1] " "
## [1] "MODEL SUMMARY"
## [1] " "
##  Family: beta  ( logit )
## Formula:          nind.tax.brepl ~ (1 | ForestID)
## Data: Results2
## 
##      AIC      BIC   logLik deviance df.resid 
##   -156.0   -152.9     81.0   -162.0       18 
## 
## Random effects:
## 
## Conditional model:
##  Groups   Name        Variance  Std.Dev. 
##  ForestID (Intercept) 1.685e-08 0.0001298
## Number of obs: 21, groups:  ForestID, 5
## 
## Overdispersion parameter for beta family (): 1.08 
## 
## Conditional model:
##             Estimate Std. Error z value Pr(>|z|)    
## (Intercept)  -1.8618     0.4048    -4.6 4.23e-06 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## [1] " "
## [1] "CHECKING MODEL GRAPHICALLY"
## [1] " "
## Not enough model terms in the conditional part of the model to check for multicollinearity.
## Warning: Can't compute random effect variances. Some variance components equal zero.
##   Solution: Respecify random structure!

## Warning: mu of 0.2 is too close to zero, estimate of random effect variances may be unreliable.
## Warning in predict.lm(model, newdata = data.frame(x = xseq), se.fit = se, :
## prediction from a rank-deficient fit may be misleading

## [1] " "
## [1] " "
## [1] "CHECKING COLINEARITY"
## [1] " "
## [1] " "
## [1] "CHECKING COLINEARITY"
## [1] " "
## Not enough model terms in the conditional part of the model to check for multicollinearity.
## NULL
## [1] " "
## [1] "TESTING FOR OVERDISPERSION - P-VALUES < 0.05 meand overdispersion"
## [1] " "
## [1] " "
##      chisq      ratio        rdf          p 
##  9.5742292  0.5631900 17.0000000  0.9205096 
## [1] " "
## [1] "STANDARD R2"
## [1] " "
## Warning: Can't compute random effect variances. Some variance components equal zero.
##   Solution: Respecify random structure!
## Warning: mu of 0.2 is too close to zero, estimate of random effect variances may be unreliable.
## Random effect variances not available. Returned R2 does not account for random effects.
## # R2 for Mixed Models
## 
##   Conditional R2: NA
##      Marginal R2: 0.072
## [1] " "
## [1] "NAKAGAWA R2"
## [1] " "
## Warning: Can't compute random effect variances. Some variance components equal zero.
##   Solution: Respecify random structure!

## Warning: mu of 0.2 is too close to zero, estimate of random effect variances may be unreliable.
## Random effect variances not available. Returned R2 does not account for random effects.
## # R2 for Mixed Models
## 
##   Conditional R2: NA
##      Marginal R2: 0.072
## [1] " "
## [1] "MODEL SUMMARY"
## [1] " "
##  Family: beta  ( logit )
## Formula:          nind.tax.brepl ~ Dist_edge_std + (1 | ForestID)
## Data: Results2
## 
##      AIC      BIC   logLik deviance df.resid 
##   -155.6   -151.4     81.8   -163.6       17 
## 
## Random effects:
## 
## Conditional model:
##  Groups   Name        Variance  Std.Dev. 
##  ForestID (Intercept) 1.105e-08 0.0001051
## Number of obs: 21, groups:  ForestID, 5
## 
## Overdispersion parameter for beta family (): 1.16 
## 
## Conditional model:
##               Estimate Std. Error z value Pr(>|z|)    
## (Intercept)    -1.6300     0.4351  -3.746  0.00018 ***
## Dist_edge_std  -0.3985     0.3195  -1.247  0.21226    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## [1] " "
## [1] "CHECKING MODEL GRAPHICALLY"
## [1] " "
## Not enough model terms in the conditional part of the model to check for multicollinearity.
## Warning: Can't compute random effect variances. Some variance components equal zero.
##   Solution: Respecify random structure!

## Warning: mu of 0.2 is too close to zero, estimate of random effect variances may be unreliable.

## [1] " "
## [1] " "
## [1] "CHECKING COLINEARITY"
## [1] " "
## [1] " "
## [1] "CHECKING COLINEARITY"
## [1] " "
## Not enough model terms in the conditional part of the model to check for multicollinearity.
## NULL
## [1] " "
## [1] "TESTING FOR OVERDISPERSION - P-VALUES < 0.05 meand overdispersion"
## [1] " "
## [1] " "
##      chisq      ratio        rdf          p 
##  3.0771443  0.1810085 17.0000000  0.9999166 
## [1] " "
## [1] "STANDARD R2"
## [1] " "
## Warning: mu of 0.4 is too close to zero, estimate of random effect variances may be unreliable.
## # R2 for Mixed Models
## 
##   Conditional R2: 0.832
##      Marginal R2: 0.542
## [1] " "
## [1] "NAKAGAWA R2"
## [1] " "
## Warning: mu of 0.4 is too close to zero, estimate of random effect variances may be unreliable.
## # R2 for Mixed Models
## 
##   Conditional R2: 0.832
##      Marginal R2: 0.542
## [1] " "
## [1] "MODEL SUMMARY"
## [1] " "
##  Family: beta  ( logit )
## Formula:          all.func.btotal ~ Dist_trail_std + (1 | ForestID)
## Data: Results2
## 
##      AIC      BIC   logLik deviance df.resid 
##    -33.4    -29.3     20.7    -41.4       17 
## 
## Random effects:
## 
## Conditional model:
##  Groups   Name        Variance Std.Dev.
##  ForestID (Intercept) 0.6208   0.7879  
## Number of obs: 21, groups:  ForestID, 5
## 
## Overdispersion parameter for beta family (): 2.66 
## 
## Conditional model:
##                Estimate Std. Error z value Pr(>|z|)   
## (Intercept)     -0.8169     0.4538  -1.800  0.07186 . 
## Dist_trail_std  -1.1691     0.4214  -2.775  0.00553 **
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## [1] " "
## [1] "CHECKING MODEL GRAPHICALLY"
## [1] " "
## Not enough model terms in the conditional part of the model to check for multicollinearity.
## Warning: mu of 0.4 is too close to zero, estimate of random effect variances may be unreliable.

## [1] " "
## [1] " "
## [1] "CHECKING COLINEARITY"
## [1] " "
## [1] " "
## [1] "CHECKING COLINEARITY"
## [1] " "
## # Check for Multicollinearity
## 
## Low Correlation
## 
##       Parameter  VIF Increased SE
##   Dist_edge_std 1.79         1.34
##  Dist_trail_std 1.79         1.34
## [1] " "
## [1] "TESTING FOR OVERDISPERSION - P-VALUES < 0.05 meand overdispersion"
## [1] " "
## [1] " "
##      chisq      ratio        rdf          p 
##  3.1770939  0.1985684 16.0000000  0.9997516 
## [1] " "
## [1] "STANDARD R2"
## [1] " "
## Warning: mu of 0.4 is too close to zero, estimate of random effect variances may be unreliable.
## # R2 for Mixed Models
## 
##   Conditional R2: 0.865
##      Marginal R2: 0.660
## [1] " "
## [1] "NAKAGAWA R2"
## [1] " "
## Warning: mu of 0.4 is too close to zero, estimate of random effect variances may be unreliable.
## # R2 for Mixed Models
## 
##   Conditional R2: 0.865
##      Marginal R2: 0.660
## [1] " "
## [1] "MODEL SUMMARY"
## [1] " "
##  Family: beta  ( logit )
## Formula:          
## all.func.btotal ~ Dist_edge_std + Dist_trail_std + (1 | ForestID)
## Data: Results2
## 
##      AIC      BIC   logLik deviance df.resid 
##    -34.9    -29.7     22.5    -44.9       16 
## 
## Random effects:
## 
## Conditional model:
##  Groups   Name        Variance Std.Dev.
##  ForestID (Intercept) 0.5002   0.7072  
## Number of obs: 21, groups:  ForestID, 5
## 
## Overdispersion parameter for beta family (): 3.03 
## 
## Conditional model:
##                Estimate Std. Error z value Pr(>|z|)    
## (Intercept)     -1.2038     0.4923  -2.445  0.01448 *  
## Dist_edge_std    1.0580     0.6150   1.720  0.08536 .  
## Dist_trail_std  -1.5955     0.4718  -3.382  0.00072 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## [1] " "
## [1] "CHECKING MODEL GRAPHICALLY"
## [1] " "
## Warning: mu of 0.4 is too close to zero, estimate of random effect variances may be unreliable.

## [1] " "
## [1] " "
## [1] "CHECKING COLINEARITY"
## [1] " "
## [1] " "
## [1] "CHECKING COLINEARITY"
## [1] " "
## Not enough model terms in the conditional part of the model to check for multicollinearity.
## NULL
## [1] " "
## [1] "TESTING FOR OVERDISPERSION - P-VALUES < 0.05 meand overdispersion"
## [1] " "
## [1] " "
##      chisq      ratio        rdf          p 
##  3.0800536  0.1811796 17.0000000  0.9999161 
## [1] " "
## [1] "STANDARD R2"
## [1] " "
## Warning: Can't compute random effect variances. Some variance components equal zero.
##   Solution: Respecify random structure!

## Warning: mu of 0.2 is too close to zero, estimate of random effect variances may be unreliable.
## Random effect variances not available. Returned R2 does not account for random effects.
## # R2 for Mixed Models
## 
##   Conditional R2: NA
##      Marginal R2: 0.326
## [1] " "
## [1] "NAKAGAWA R2"
## [1] " "
## Warning: Can't compute random effect variances. Some variance components equal zero.
##   Solution: Respecify random structure!

## Warning: mu of 0.2 is too close to zero, estimate of random effect variances may be unreliable.
## Random effect variances not available. Returned R2 does not account for random effects.
## # R2 for Mixed Models
## 
##   Conditional R2: NA
##      Marginal R2: 0.326
## [1] " "
## [1] "MODEL SUMMARY"
## [1] " "
##  Family: beta  ( logit )
## Formula:          all.func.brich ~ Dist_trail_std + (1 | ForestID)
## Data: Results2
## 
##      AIC      BIC   logLik deviance df.resid 
##    -53.8    -49.6     30.9    -61.8       17 
## 
## Random effects:
## 
## Conditional model:
##  Groups   Name        Variance  Std.Dev. 
##  ForestID (Intercept) 2.731e-09 5.226e-05
## Number of obs: 21, groups:  ForestID, 5
## 
## Overdispersion parameter for beta family ():    3 
## 
## Conditional model:
##                Estimate Std. Error z value Pr(>|z|)    
## (Intercept)     -1.4636     0.2954  -4.955 7.22e-07 ***
## Dist_trail_std  -0.6470     0.2886  -2.242    0.025 *  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## [1] " "
## [1] "CHECKING MODEL GRAPHICALLY"
## [1] " "
## Not enough model terms in the conditional part of the model to check for multicollinearity.
## Warning: Can't compute random effect variances. Some variance components equal zero.
##   Solution: Respecify random structure!

## Warning: mu of 0.2 is too close to zero, estimate of random effect variances may be unreliable.

## [1] " "
## [1] " "
## [1] "CHECKING COLINEARITY"
## [1] " "
## [1] " "
## [1] "CHECKING COLINEARITY"
## [1] " "
## # Check for Multicollinearity
## 
## Low Correlation
## 
##       Parameter  VIF Increased SE
##   Dist_edge_std 1.36         1.17
##  Dist_trail_std 1.36         1.17
## [1] " "
## [1] "TESTING FOR OVERDISPERSION - P-VALUES < 0.05 meand overdispersion"
## [1] " "
## [1] " "
##      chisq      ratio        rdf          p 
##  3.1695803  0.1980988 16.0000000  0.9997555 
## [1] " "
## [1] "STANDARD R2"
## [1] " "
## Warning: Can't compute random effect variances. Some variance components equal zero.
##   Solution: Respecify random structure!

## Warning: mu of 0.2 is too close to zero, estimate of random effect variances may be unreliable.
## Random effect variances not available. Returned R2 does not account for random effects.
## # R2 for Mixed Models
## 
##   Conditional R2: NA
##      Marginal R2: 0.453
## [1] " "
## [1] "NAKAGAWA R2"
## [1] " "
## Warning: Can't compute random effect variances. Some variance components equal zero.
##   Solution: Respecify random structure!

## Warning: mu of 0.2 is too close to zero, estimate of random effect variances may be unreliable.
## Random effect variances not available. Returned R2 does not account for random effects.
## # R2 for Mixed Models
## 
##   Conditional R2: NA
##      Marginal R2: 0.453
## [1] " "
## [1] "MODEL SUMMARY"
## [1] " "
##  Family: beta  ( logit )
## Formula:          
## all.func.brich ~ Dist_edge_std + Dist_trail_std + (1 | ForestID)
## Data: Results2
## 
##      AIC      BIC   logLik deviance df.resid 
##    -54.4    -49.2     32.2    -64.4       16 
## 
## Random effects:
## 
## Conditional model:
##  Groups   Name        Variance  Std.Dev. 
##  ForestID (Intercept) 1.254e-09 3.542e-05
## Number of obs: 21, groups:  ForestID, 5
## 
## Overdispersion parameter for beta family (): 3.48 
## 
## Conditional model:
##                Estimate Std. Error z value Pr(>|z|)    
## (Intercept)     -1.7317     0.3294  -5.257 1.46e-07 ***
## Dist_edge_std    0.5463     0.3226   1.694  0.09035 .  
## Dist_trail_std  -0.9422     0.3389  -2.780  0.00543 ** 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## [1] " "
## [1] "CHECKING MODEL GRAPHICALLY"
## [1] " "
## Warning: Can't compute random effect variances. Some variance components equal zero.
##   Solution: Respecify random structure!

## Warning: mu of 0.2 is too close to zero, estimate of random effect variances may be unreliable.

## [1] " "
## [1] " "
## [1] "CHECKING COLINEARITY"
## [1] " "
## [1] " "
## [1] "CHECKING COLINEARITY"
## [1] " "
## Not enough model terms in the conditional part of the model to check for multicollinearity.
## NULL
## [1] " "
## [1] "TESTING FOR OVERDISPERSION - P-VALUES < 0.05 meand overdispersion"
## [1] " "
## [1] " "
##       chisq       ratio         rdf           p 
##  1.15079724  0.06769396 17.00000000  0.99999995 
## [1] " "
## [1] "STANDARD R2"
## [1] " "
## Warning: mu of 0.2 is too close to zero, estimate of random effect variances may be unreliable.
## # R2 for Mixed Models
## 
##   Conditional R2: 0.872
##      Marginal R2: 0.510
## [1] " "
## [1] "NAKAGAWA R2"
## [1] " "
## Warning: mu of 0.2 is too close to zero, estimate of random effect variances may be unreliable.
## # R2 for Mixed Models
## 
##   Conditional R2: 0.872
##      Marginal R2: 0.510
## [1] " "
## [1] "MODEL SUMMARY"
## [1] " "
##  Family: beta  ( logit )
## Formula:          all.func.brepl ~ Dist_trail_std + (1 | ForestID)
## Data: Results2
## 
##      AIC      BIC   logLik deviance df.resid 
##    -55.3    -51.1     31.6    -63.3       17 
## 
## Random effects:
## 
## Conditional model:
##  Groups   Name        Variance Std.Dev.
##  ForestID (Intercept) 1.069    1.034   
## Number of obs: 21, groups:  ForestID, 5
## 
## Overdispersion parameter for beta family (): 7.85 
## 
## Conditional model:
##                Estimate Std. Error z value Pr(>|z|)    
## (Intercept)     -1.7452     0.5325  -3.277 0.001048 ** 
## Dist_trail_std  -1.3352     0.3762  -3.549 0.000387 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## [1] " "
## [1] "CHECKING MODEL GRAPHICALLY"
## [1] " "
## Not enough model terms in the conditional part of the model to check for multicollinearity.
## Warning: mu of 0.2 is too close to zero, estimate of random effect variances may be unreliable.

## [1] " "
## [1] " "
## [1] "CHECKING COLINEARITY"
## [1] " "
## [1] " "
## [1] "CHECKING COLINEARITY"
## [1] " "
## # Check for Multicollinearity
## 
## Low Correlation
## 
##       Parameter  VIF Increased SE
##   Dist_edge_std 1.20         1.09
##  Dist_trail_std 1.20         1.09
## [1] " "
## [1] "TESTING FOR OVERDISPERSION - P-VALUES < 0.05 meand overdispersion"
## [1] " "
## [1] " "
##       chisq       ratio         rdf           p 
##  1.25871265  0.07866954 16.00000000  0.99999965 
## [1] " "
## [1] "STANDARD R2"
## [1] " "
## Warning: mu of 0.2 is too close to zero, estimate of random effect variances may be unreliable.
## # R2 for Mixed Models
## 
##   Conditional R2: 0.842
##      Marginal R2: 0.573
## [1] " "
## [1] "NAKAGAWA R2"
## [1] " "
## Warning: mu of 0.2 is too close to zero, estimate of random effect variances may be unreliable.
## # R2 for Mixed Models
## 
##   Conditional R2: 0.842
##      Marginal R2: 0.573
## [1] " "
## [1] "MODEL SUMMARY"
## [1] " "
##  Family: beta  ( logit )
## Formula:          
## all.func.brepl ~ Dist_edge_std + Dist_trail_std + (1 | ForestID)
## Data: Results2
## 
##      AIC      BIC   logLik deviance df.resid 
##    -55.1    -49.9     32.5    -65.1       16 
## 
## Random effects:
## 
## Conditional model:
##  Groups   Name        Variance Std.Dev.
##  ForestID (Intercept) 0.6732   0.8205  
## Number of obs: 21, groups:  ForestID, 5
## 
## Overdispersion parameter for beta family (): 7.36 
## 
## Conditional model:
##                Estimate Std. Error z value Pr(>|z|)    
## (Intercept)     -1.9694     0.4866  -4.047 5.18e-05 ***
## Dist_edge_std    0.7494     0.5172   1.449    0.147    
## Dist_trail_std  -1.5033     0.3766  -3.992 6.55e-05 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## [1] " "
## [1] "CHECKING MODEL GRAPHICALLY"
## [1] " "
## Warning: mu of 0.2 is too close to zero, estimate of random effect variances may be unreliable.

## [1] " "
## [1] " "
## [1] "CHECKING COLINEARITY"
## [1] " "
## [1] " "
## [1] "CHECKING COLINEARITY"
## [1] " "
## Not enough model terms in the conditional part of the model to check for multicollinearity.
## NULL
## [1] " "
## [1] "TESTING FOR OVERDISPERSION - P-VALUES < 0.05 meand overdispersion"
## [1] " "
## [1] " "
##      chisq      ratio        rdf          p 
##  3.2690116  0.1922948 17.0000000  0.9998719 
## [1] " "
## [1] "STANDARD R2"
## [1] " "
## Warning: mu of 0.4 is too close to zero, estimate of random effect variances may be unreliable.
## # R2 for Mixed Models
## 
##   Conditional R2: 0.826
##      Marginal R2: 0.546
## [1] " "
## [1] "NAKAGAWA R2"
## [1] " "
## Warning: mu of 0.4 is too close to zero, estimate of random effect variances may be unreliable.
## # R2 for Mixed Models
## 
##   Conditional R2: 0.826
##      Marginal R2: 0.546
## [1] " "
## [1] "MODEL SUMMARY"
## [1] " "
##  Family: beta  ( logit )
## Formula:          nat.func.btotal ~ Dist_trail_std + (1 | ForestID)
## Data: Results2
## 
##      AIC      BIC   logLik deviance df.resid 
##    -32.4    -28.3     20.2    -40.4       17 
## 
## Random effects:
## 
## Conditional model:
##  Groups   Name        Variance Std.Dev.
##  ForestID (Intercept) 0.5708   0.7555  
## Number of obs: 21, groups:  ForestID, 5
## 
## Overdispersion parameter for beta family (): 2.48 
## 
## Conditional model:
##                Estimate Std. Error z value Pr(>|z|)   
## (Intercept)     -0.7555     0.4443  -1.701  0.08903 . 
## Dist_trail_std  -1.1455     0.4259  -2.690  0.00715 **
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## [1] " "
## [1] "CHECKING MODEL GRAPHICALLY"
## [1] " "
## Not enough model terms in the conditional part of the model to check for multicollinearity.
## Warning: mu of 0.4 is too close to zero, estimate of random effect variances may be unreliable.

## [1] " "
## [1] " "
## [1] "CHECKING COLINEARITY"
## [1] " "
## [1] " "
## [1] "CHECKING COLINEARITY"
## [1] " "
## # Check for Multicollinearity
## 
## Low Correlation
## 
##       Parameter  VIF Increased SE
##   Dist_edge_std 1.75         1.32
##  Dist_trail_std 1.75         1.32
## [1] " "
## [1] "TESTING FOR OVERDISPERSION - P-VALUES < 0.05 meand overdispersion"
## [1] " "
## [1] " "
##      chisq      ratio        rdf          p 
##  3.4625313  0.2164082 16.0000000  0.9995634 
## [1] " "
## [1] "STANDARD R2"
## [1] " "
## Warning: mu of 0.4 is too close to zero, estimate of random effect variances may be unreliable.
## # R2 for Mixed Models
## 
##   Conditional R2: 0.853
##      Marginal R2: 0.645
## [1] " "
## [1] "NAKAGAWA R2"
## [1] " "
## Warning: mu of 0.4 is too close to zero, estimate of random effect variances may be unreliable.
## # R2 for Mixed Models
## 
##   Conditional R2: 0.853
##      Marginal R2: 0.645
## [1] " "
## [1] "MODEL SUMMARY"
## [1] " "
##  Family: beta  ( logit )
## Formula:          
## nat.func.btotal ~ Dist_edge_std + Dist_trail_std + (1 | ForestID)
## Data: Results2
## 
##      AIC      BIC   logLik deviance df.resid 
##    -33.3    -28.1     21.6    -43.3       16 
## 
## Random effects:
## 
## Conditional model:
##  Groups   Name        Variance Std.Dev.
##  ForestID (Intercept) 0.4731   0.6878  
## Number of obs: 21, groups:  ForestID, 5
## 
## Overdispersion parameter for beta family (): 2.74 
## 
## Conditional model:
##                Estimate Std. Error z value Pr(>|z|)   
## (Intercept)     -1.0996     0.4853  -2.266  0.02345 * 
## Dist_edge_std    0.9476     0.6052   1.566  0.11739   
## Dist_trail_std  -1.5235     0.4747  -3.209  0.00133 **
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## [1] " "
## [1] "CHECKING MODEL GRAPHICALLY"
## [1] " "
## Warning: mu of 0.4 is too close to zero, estimate of random effect variances may be unreliable.

## [1] " "
## [1] " "
## [1] "CHECKING COLINEARITY"
## [1] " "
## [1] " "
## [1] "CHECKING COLINEARITY"
## [1] " "
## Not enough model terms in the conditional part of the model to check for multicollinearity.
## NULL
## [1] " "
## [1] "TESTING FOR OVERDISPERSION - P-VALUES < 0.05 meand overdispersion"
## [1] " "
## [1] " "
##      chisq      ratio        rdf          p 
##  3.9103731  0.2300219 17.0000000  0.9995565 
## [1] " "
## [1] "STANDARD R2"
## [1] " "
## Warning: Can't compute random effect variances. Some variance components equal zero.
##   Solution: Respecify random structure!

## Warning: mu of 0.2 is too close to zero, estimate of random effect variances may be unreliable.
## Random effect variances not available. Returned R2 does not account for random effects.
## # R2 for Mixed Models
## 
##   Conditional R2: NA
##      Marginal R2: 0.260
## [1] " "
## [1] "NAKAGAWA R2"
## [1] " "
## Warning: Can't compute random effect variances. Some variance components equal zero.
##   Solution: Respecify random structure!

## Warning: mu of 0.2 is too close to zero, estimate of random effect variances may be unreliable.
## Random effect variances not available. Returned R2 does not account for random effects.
## # R2 for Mixed Models
## 
##   Conditional R2: NA
##      Marginal R2: 0.260
## [1] " "
## [1] "MODEL SUMMARY"
## [1] " "
##  Family: beta  ( logit )
## Formula:          nat.func.brich ~ Dist_trail_std + (1 | ForestID)
## Data: Results2
## 
##      AIC      BIC   logLik deviance df.resid 
##    -56.6    -52.4     32.3    -64.6       17 
## 
## Random effects:
## 
## Conditional model:
##  Groups   Name        Variance  Std.Dev. 
##  ForestID (Intercept) 7.296e-10 2.701e-05
## Number of obs: 21, groups:  ForestID, 5
## 
## Overdispersion parameter for beta family (): 2.75 
## 
## Conditional model:
##                Estimate Std. Error z value Pr(>|z|)    
## (Intercept)     -1.5156     0.3081  -4.919 8.72e-07 ***
## Dist_trail_std  -0.5725     0.2789  -2.053   0.0401 *  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## [1] " "
## [1] "CHECKING MODEL GRAPHICALLY"
## [1] " "
## Not enough model terms in the conditional part of the model to check for multicollinearity.
## Warning: Can't compute random effect variances. Some variance components equal zero.
##   Solution: Respecify random structure!

## Warning: mu of 0.2 is too close to zero, estimate of random effect variances may be unreliable.
## Warning in simpleLoess(y, x, w, span, degree = degree, parametric =
## parametric, : pseudoinverse used at 0.18088
## Warning in simpleLoess(y, x, w, span, degree = degree, parametric =
## parametric, : neighborhood radius 0.00077524
## Warning in simpleLoess(y, x, w, span, degree = degree, parametric =
## parametric, : reciprocal condition number 7.6857e-16

## [1] " "
## [1] " "
## [1] "CHECKING COLINEARITY"
## [1] " "
## [1] " "
## [1] "CHECKING COLINEARITY"
## [1] " "
## # Check for Multicollinearity
## 
## Low Correlation
## 
##       Parameter  VIF Increased SE
##   Dist_edge_std 1.40         1.18
##  Dist_trail_std 1.40         1.18
## [1] " "
## [1] "TESTING FOR OVERDISPERSION - P-VALUES < 0.05 meand overdispersion"
## [1] " "
## [1] " "
##      chisq      ratio        rdf          p 
##  4.0314491  0.2519656 16.0000000  0.9988482 
## [1] " "
## [1] "STANDARD R2"
## [1] " "
## Warning: Can't compute random effect variances. Some variance components equal zero.
##   Solution: Respecify random structure!
## Warning: mu of 0.2 is too close to zero, estimate of random effect variances may be unreliable.
## Random effect variances not available. Returned R2 does not account for random effects.
## # R2 for Mixed Models
## 
##   Conditional R2: NA
##      Marginal R2: 0.393
## [1] " "
## [1] "NAKAGAWA R2"
## [1] " "
## Warning: Can't compute random effect variances. Some variance components equal zero.
##   Solution: Respecify random structure!

## Warning: mu of 0.2 is too close to zero, estimate of random effect variances may be unreliable.
## Random effect variances not available. Returned R2 does not account for random effects.
## # R2 for Mixed Models
## 
##   Conditional R2: NA
##      Marginal R2: 0.393
## [1] " "
## [1] "MODEL SUMMARY"
## [1] " "
##  Family: beta  ( logit )
## Formula:          
## nat.func.brich ~ Dist_edge_std + Dist_trail_std + (1 | ForestID)
## Data: Results2
## 
##      AIC      BIC   logLik deviance df.resid 
##    -57.1    -51.9     33.6    -67.1       16 
## 
## Random effects:
## 
## Conditional model:
##  Groups   Name        Variance  Std.Dev. 
##  ForestID (Intercept) 8.997e-10 2.999e-05
## Number of obs: 21, groups:  ForestID, 5
## 
## Overdispersion parameter for beta family (): 3.18 
## 
## Conditional model:
##                Estimate Std. Error z value Pr(>|z|)    
## (Intercept)     -1.7868     0.3435  -5.202 1.98e-07 ***
## Dist_edge_std    0.5497     0.3319   1.656  0.09767 .  
## Dist_trail_std  -0.8650     0.3327  -2.600  0.00933 ** 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## [1] " "
## [1] "CHECKING MODEL GRAPHICALLY"
## [1] " "
## Warning: Can't compute random effect variances. Some variance components equal zero.
##   Solution: Respecify random structure!

## Warning: mu of 0.2 is too close to zero, estimate of random effect variances may be unreliable.

## [1] " "
## [1] " "
## [1] "CHECKING COLINEARITY"
## [1] " "
## [1] " "
## [1] "CHECKING COLINEARITY"
## [1] " "
## Not enough model terms in the conditional part of the model to check for multicollinearity.
## NULL
## [1] " "
## [1] "TESTING FOR OVERDISPERSION - P-VALUES < 0.05 meand overdispersion"
## [1] " "
## [1] " "
##       chisq       ratio         rdf           p 
##  1.64497455  0.09676321 17.00000000  0.99999923 
## [1] " "
## [1] "STANDARD R2"
## [1] " "
## Warning: mu of 0.2 is too close to zero, estimate of random effect variances may be unreliable.
## # R2 for Mixed Models
## 
##   Conditional R2: 0.866
##      Marginal R2: 0.490
## [1] " "
## [1] "NAKAGAWA R2"
## [1] " "
## Warning: mu of 0.2 is too close to zero, estimate of random effect variances may be unreliable.
## # R2 for Mixed Models
## 
##   Conditional R2: 0.866
##      Marginal R2: 0.490
## [1] " "
## [1] "MODEL SUMMARY"
## [1] " "
##  Family: beta  ( logit )
## Formula:          nat.func.brepl ~ Dist_trail_std + (1 | ForestID)
## Data: Results2
## 
##      AIC      BIC   logLik deviance df.resid 
##    -52.9    -48.7     30.4    -60.9       17 
## 
## Random effects:
## 
## Conditional model:
##  Groups   Name        Variance Std.Dev.
##  ForestID (Intercept) 1.112    1.054   
## Number of obs: 21, groups:  ForestID, 5
## 
## Overdispersion parameter for beta family (): 6.22 
## 
## Conditional model:
##                Estimate Std. Error z value Pr(>|z|)    
## (Intercept)     -1.5986     0.5436  -2.941 0.003276 ** 
## Dist_trail_std  -1.3075     0.3824  -3.419 0.000628 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## [1] " "
## [1] "CHECKING MODEL GRAPHICALLY"
## [1] " "
## Not enough model terms in the conditional part of the model to check for multicollinearity.
## Warning: mu of 0.2 is too close to zero, estimate of random effect variances may be unreliable.

## [1] " "
## [1] " "
## [1] "CHECKING COLINEARITY"
## [1] " "
## [1] " "
## [1] "CHECKING COLINEARITY"
## [1] " "
## # Check for Multicollinearity
## 
## Low Correlation
## 
##       Parameter  VIF Increased SE
##   Dist_edge_std 1.40         1.18
##  Dist_trail_std 1.40         1.18
## [1] " "
## [1] "TESTING FOR OVERDISPERSION - P-VALUES < 0.05 meand overdispersion"
## [1] " "
## [1] " "
##      chisq      ratio        rdf          p 
## 11.2042651  0.7002666 16.0000000  0.7967050 
## [1] " "
## [1] "STANDARD R2"
## [1] " "
## Warning: Can't compute random effect variances. Some variance components equal zero.
##   Solution: Respecify random structure!
## Warning: mu of 1.1 is too close to zero, estimate of random effect variances may be unreliable.
## Random effect variances not available. Returned R2 does not account for random effects.
## # R2 for Mixed Models
## 
##   Conditional R2: NA
##      Marginal R2: 1.058
## [1] " "
## [1] "NAKAGAWA R2"
## [1] " "
## Warning: Can't compute random effect variances. Some variance components equal zero.
##   Solution: Respecify random structure!

## Warning: mu of 1.1 is too close to zero, estimate of random effect variances may be unreliable.
## Random effect variances not available. Returned R2 does not account for random effects.
## # R2 for Mixed Models
## 
##   Conditional R2: NA
##      Marginal R2: 1.058
## [1] " "
## [1] "MODEL SUMMARY"
## [1] " "
##  Family: beta  ( logit )
## Formula:          
## nind.func.btotal ~ Dist_edge_std + Dist_trail_std + (1 | ForestID)
## Data: Results2
## 
##      AIC      BIC   logLik deviance df.resid 
##   -136.4   -131.2     73.2   -146.4       16 
## 
## Random effects:
## 
## Conditional model:
##  Groups   Name        Variance  Std.Dev. 
##  ForestID (Intercept) 1.254e-09 3.541e-05
## Number of obs: 21, groups:  ForestID, 5
## 
## Overdispersion parameter for beta family (): 0.468 
## 
## Conditional model:
##                Estimate Std. Error z value Pr(>|z|)   
## (Intercept)     -0.2244     0.3775  -0.594  0.55231   
## Dist_edge_std    1.1157     0.4471   2.496  0.01258 * 
## Dist_trail_std  -1.0829     0.4067  -2.663  0.00775 **
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## [1] " "
## [1] "CHECKING MODEL GRAPHICALLY"
## [1] " "
## Warning: Can't compute random effect variances. Some variance components equal zero.
##   Solution: Respecify random structure!

## Warning: mu of 1.1 is too close to zero, estimate of random effect variances may be unreliable.
## Warning in sqrt(insight::get_variance_residual(model)): NaNs produced
## Warning: Removed 21 rows containing non-finite values (stat_smooth).
## Warning: Removed 21 rows containing missing values (geom_point).

## [1] " "
## [1] " "
## [1] "CHECKING COLINEARITY"
## [1] " "
## [1] " "
## [1] "CHECKING COLINEARITY"
## [1] " "
## # Check for Multicollinearity
## 
## Low Correlation
## 
##       Parameter  VIF Increased SE
##   Dist_edge_std 1.42         1.19
##  Dist_trail_std 1.42         1.19
## [1] " "
## [1] "TESTING FOR OVERDISPERSION - P-VALUES < 0.05 meand overdispersion"
## [1] " "
## [1] " "
##      chisq      ratio        rdf          p 
##  9.9632102  0.6227006 16.0000000  0.8685425 
## [1] " "
## [1] "STANDARD R2"
## [1] " "
## Warning: Can't compute random effect variances. Some variance components equal zero.
##   Solution: Respecify random structure!
## Warning: mu of 1.0 is too close to zero, estimate of random effect variances may be unreliable.
## Random effect variances not available. Returned R2 does not account for random effects.
## # R2 for Mixed Models
## 
##   Conditional R2: NA
##      Marginal R2: 1.022
## [1] " "
## [1] "NAKAGAWA R2"
## [1] " "
## Warning: Can't compute random effect variances. Some variance components equal zero.
##   Solution: Respecify random structure!

## Warning: mu of 1.0 is too close to zero, estimate of random effect variances may be unreliable.
## Random effect variances not available. Returned R2 does not account for random effects.
## # R2 for Mixed Models
## 
##   Conditional R2: NA
##      Marginal R2: 1.022
## [1] " "
## [1] "MODEL SUMMARY"
## [1] " "
##  Family: beta  ( logit )
## Formula:          
## nind.func.brich ~ Dist_edge_std + Dist_trail_std + (1 | ForestID)
## Data: Results2
## 
##      AIC      BIC   logLik deviance df.resid 
##   -133.3   -128.1     71.6   -143.3       16 
## 
## Random effects:
## 
## Conditional model:
##  Groups   Name        Variance  Std.Dev. 
##  ForestID (Intercept) 1.364e-09 3.693e-05
## Number of obs: 21, groups:  ForestID, 5
## 
## Overdispersion parameter for beta family (): 0.496 
## 
## Conditional model:
##                Estimate Std. Error z value Pr(>|z|)   
## (Intercept)     -0.3288     0.3773  -0.872  0.38343   
## Dist_edge_std    1.2141     0.4522   2.685  0.00726 **
## Dist_trail_std  -1.1193     0.4092  -2.735  0.00624 **
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## [1] " "
## [1] "CHECKING MODEL GRAPHICALLY"
## [1] " "
## Warning: Can't compute random effect variances. Some variance components equal zero.
##   Solution: Respecify random structure!

## Warning: mu of 1.0 is too close to zero, estimate of random effect variances may be unreliable.
## Warning in sqrt(insight::get_variance_residual(model)): NaNs produced
## Warning: Removed 21 rows containing non-finite values (stat_smooth).
## Warning: Removed 21 rows containing missing values (geom_point).

## [1] " "
## [1] " "
## [1] "CHECKING COLINEARITY"
## [1] " "
## [1] " "
## [1] "CHECKING COLINEARITY"
## [1] " "
## Not enough model terms in the conditional part of the model to check for multicollinearity.
## NULL
## [1] " "
## [1] "TESTING FOR OVERDISPERSION - P-VALUES < 0.05 meand overdispersion"
## [1] " "
## [1] " "
##      chisq      ratio        rdf          p 
##  6.3657915  0.3536551 18.0000000  0.9944736 
## [1] " "
## [1] "STANDARD R2"
## [1] " "
## Warning: Can't compute random effect variances. Some variance components equal zero.
##   Solution: Respecify random structure!
## Warning: mu of 0.0 is too close to zero, estimate of random effect variances may be unreliable.
## Random effect variances not available. Returned R2 does not account for random effects.
## # R2 for Mixed Models
## 
##   Conditional R2: NA
##      Marginal R2: 0.000
## [1] " "
## [1] "NAKAGAWA R2"
## [1] " "
## Warning: Can't compute random effect variances. Some variance components equal zero.
##   Solution: Respecify random structure!

## Warning: mu of 0.0 is too close to zero, estimate of random effect variances may be unreliable.
## Random effect variances not available. Returned R2 does not account for random effects.
## # R2 for Mixed Models
## 
##   Conditional R2: NA
##      Marginal R2: 0.000
## [1] " "
## [1] "MODEL SUMMARY"
## [1] " "
##  Family: beta  ( logit )
## Formula:          nind.func.brepl ~ (1 | ForestID)
## Data: Results2
## 
##      AIC      BIC   logLik deviance df.resid 
##   -172.7   -169.5     89.3   -178.7       18 
## 
## Random effects:
## 
## Conditional model:
##  Groups   Name        Variance  Std.Dev. 
##  ForestID (Intercept) 1.093e-08 0.0001045
## Number of obs: 21, groups:  ForestID, 5
## 
## Overdispersion parameter for beta family (): 3.76 
## 
## Conditional model:
##             Estimate Std. Error z value Pr(>|z|)    
## (Intercept)  -2.9995     0.4635  -6.471 9.71e-11 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## [1] " "
## [1] "CHECKING MODEL GRAPHICALLY"
## [1] " "
## Not enough model terms in the conditional part of the model to check for multicollinearity.
## Warning: Can't compute random effect variances. Some variance components equal zero.
##   Solution: Respecify random structure!

## Warning: mu of 0.0 is too close to zero, estimate of random effect variances may be unreliable.
## Warning in predict.lm(model, newdata = data.frame(x = xseq), se.fit = se, :
## prediction from a rank-deficient fit may be misleading

## [1] " "
## [1] " "
## [1] "CHECKING COLINEARITY"
## [1] " "
## [1] " "
## [1] "CHECKING COLINEARITY"
## [1] " "
## Not enough model terms in the conditional part of the model to check for multicollinearity.
## NULL
## [1] " "
## [1] "TESTING FOR OVERDISPERSION - P-VALUES < 0.05 meand overdispersion"
## [1] " "
## [1] " "
##      chisq      ratio        rdf          p 
##  5.1487467  0.3028675 17.0000000  0.9973187 
## [1] " "
## [1] "STANDARD R2"
## [1] " "
## Warning: Can't compute random effect variances. Some variance components equal zero.
##   Solution: Respecify random structure!
## Warning: mu of 0.0 is too close to zero, estimate of random effect variances may be unreliable.
## Random effect variances not available. Returned R2 does not account for random effects.
## # R2 for Mixed Models
## 
##   Conditional R2: NA
##      Marginal R2: 0.053
## [1] " "
## [1] "NAKAGAWA R2"
## [1] " "
## Warning: Can't compute random effect variances. Some variance components equal zero.
##   Solution: Respecify random structure!

## Warning: mu of 0.0 is too close to zero, estimate of random effect variances may be unreliable.
## Random effect variances not available. Returned R2 does not account for random effects.
## # R2 for Mixed Models
## 
##   Conditional R2: NA
##      Marginal R2: 0.053
## [1] " "
## [1] "MODEL SUMMARY"
## [1] " "
##  Family: beta  ( logit )
## Formula:          nind.func.brepl ~ Dist_edge_std + (1 | ForestID)
## Data: Results2
## 
##      AIC      BIC   logLik deviance df.resid 
##   -172.4   -168.2     90.2   -180.4       17 
## 
## Random effects:
## 
## Conditional model:
##  Groups   Name        Variance  Std.Dev. 
##  ForestID (Intercept) 1.965e-08 0.0001402
## Number of obs: 21, groups:  ForestID, 5
## 
## Overdispersion parameter for beta family (): 4.07 
## 
## Conditional model:
##               Estimate Std. Error z value Pr(>|z|)    
## (Intercept)    -2.7956     0.4708  -5.939 2.87e-09 ***
## Dist_edge_std  -0.3791     0.2983  -1.271    0.204    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## [1] " "
## [1] "CHECKING MODEL GRAPHICALLY"
## [1] " "
## Not enough model terms in the conditional part of the model to check for multicollinearity.
## Warning: Can't compute random effect variances. Some variance components equal zero.
##   Solution: Respecify random structure!

## Warning: mu of 0.0 is too close to zero, estimate of random effect variances may be unreliable.

## [1] " "