Suggested Citation:
Mendez Carlos (2020). Univariate distribution dynamics in R: Using the ggridges package. R Studio/RPubs. Available at https://rpubs.com/quarcs-lab/univariate-distribution-dynamics
This work is licensed under the Creative Commons Attribution-Share Alike 4.0 International License. 
Load the Data
Let us use a dataset containing the per-capita GDP of 152 Countries over the 1970-2003 period. The data is from the package ConvergenceClubs
Plot distribution dynamics

Scale parameter
A setting of scale=1
means the tallest density curve just touches the baseline of the next higher one.

Larger scale
values create more overlap.

Fill colors

Map the probabilities directly onto color.

Indicate quantiles
Any quantile

Color by Quartile

Further modifications


LS0tCnRpdGxlOiAiVW5pdmFyaWF0ZSBkaXN0cmlidXRpb24gZHluYW1pY3MgaW4gUjoiCnN1YnRpdGxlOiAiVXNpbmcgdGhlIGdncmlkZ2VzIFBhY2thZ2UiCmF1dGhvcjogIkNhcmxvcyBNZW5kZXoiCm91dHB1dDogCiAgaHRtbF9ub3RlYm9vazoKICAgIHRvYzogdHJ1ZQogICAgdG9jX2Zsb2F0OgogICAgICBjb2xsYXBzZWQ6IGZhbHNlCiAgICAgIHNtb290aF9zY3JvbGw6IGZhbHNlCiAgICB0b2NfZGVwdGg6IDQKICAgIG51bWJlcl9zZWN0aW9uczogdHJ1ZQogICAgY29kZV9mb2xkaW5nOiAic2hvdyIKICAgIHRoZW1lOiAiY29zbW8iCiAgICBoaWdobGlnaHQ6ICJtb25vY2hyb21lIgogICAgZGZfcHJpbnQ6ICJrYWJsZSIKICBnaXRodWJfZG9jdW1lbnQ6IGRlZmF1bHQKLS0tCgoKPHN0eWxlPgpoMS50aXRsZSB7Zm9udC1zaXplOiAxOHB0OyBjb2xvcjogRGFya0JsdWU7fSAKYm9keSwgaDEsIGgyLCBoMywgaDQge2ZvbnQtZmFtaWx5OiAiUGFsYXRpbm8iLCBzZXJpZjt9CmJvZHkge2ZvbnQtc2l6ZTogMTJwdDt9Ci8qIEhlYWRlcnMgKi8KaDEsaDIsaDMsaDQsaDUsaDZ7Zm9udC1zaXplOiAxNHB0OyBjb2xvcjogIzAwMDA4Qjt9CmJvZHkge2NvbG9yOiAjMzMzMzMzO30KYSwgYTpob3ZlciB7Y29sb3I6ICM4QjNBNjI7fQpwcmUge2ZvbnQtc2l6ZTogMTJweDt9Cjwvc3R5bGU+CgoKCgpgYGB7ciBzZXR1cCwgaW5jbHVkZT1GQUxTRX0Ka25pdHI6Om9wdHNfY2h1bmskc2V0KGVjaG8gPSBUUlVFKQoKbGlicmFyeSh0aWR5dmVyc2UpCmxpYnJhcnkoQ29udmVyZ2VuY2VDbHVicykgIyBjb252ZXJnZW5jZSBjbHVicwpsaWJyYXJ5KGdncmlkZ2VzKQoKIyBDaGFuZ2UgdGhlIHByZXNlbnRhdGlvbiBvZiBkZWNpbWFsIG51bWJlcnMgdG8gNCBhbmQgYXZvaWQgc2NpZW50aWZpYyBub3RhdGlvbgpvcHRpb25zKHByb21wdD0iUj4gIiwgZGlnaXRzPTQsIHNjaXBlbj05OTkpCmBgYAoKCgpTdWdnZXN0ZWQgQ2l0YXRpb246IAoKPiBNZW5kZXogQ2FybG9zICgyMDIwKS4gVW5pdmFyaWF0ZSBkaXN0cmlidXRpb24gZHluYW1pY3MgaW4gUjogVXNpbmcgdGhlIGdncmlkZ2VzIHBhY2thZ2UuIFIgU3R1ZGlvL1JQdWJzLiBBdmFpbGFibGUgYXQgPGh0dHBzOi8vcnB1YnMuY29tL3F1YXJjcy1sYWIvdW5pdmFyaWF0ZS1kaXN0cmlidXRpb24tZHluYW1pY3M+CgpUaGlzIHdvcmsgaXMgbGljZW5zZWQgdW5kZXIgdGhlIENyZWF0aXZlIENvbW1vbnMgQXR0cmlidXRpb24tU2hhcmUgQWxpa2UgNC4wIEludGVybmF0aW9uYWwgTGljZW5zZS4gCiFbXShMaWNlbnNlLnBuZykKCgojIExvYWQgdGhlIERhdGEKCkxldCB1cyB1c2UgYSBbZGF0YXNldF0oaHR0cHM6Ly9yZHJyLmlvL2NyYW4vQ29udmVyZ2VuY2VDbHVicy9tYW4vR0RQLmh0bWwpIGNvbnRhaW5pbmcgdGhlIHBlci1jYXBpdGEgR0RQIG9mIDE1MiBDb3VudHJpZXMgb3ZlciB0aGUgMTk3MC0yMDAzIHBlcmlvZC4gVGhlIGRhdGEgaXMgZnJvbSB0aGUgcGFja2FnZSBbYENvbnZlcmdlbmNlQ2x1YnNgXShodHRwczovL3JkcnIuaW8vY3Jhbi9Db252ZXJnZW5jZUNsdWJzL2FwaS8pCgpgYGB7cn0KZGF0YShHRFApCkdEUApgYGAKCiMgRGF0YSB0cmFuc2Zvcm1hdGlvbnMKCiMjIFBpdm90IGZyb20gd2lkZSB0byBsb25nCgpgYGB7cn0KZGF0X2xvbmcgPC0gR0RQICU+JSAKICBwaXZvdF9sb25nZXIoCiAgICBjb2xzID0gc3RhcnRzX3dpdGgoIlkiKSwKICAgIG5hbWVzX3ByZWZpeCA9ICJZIiwKICAgIG5hbWVzX3RvID0gInllYXIiLAogICAgdmFsdWVzX3RvID0gIkdEUHBjIgogICkKZGF0X2xvbmcKYGBgCgoKIyMgVGFrZSB0aGUgbG9nIG9mIEdQRHBjCgpgYGB7cn0KZGF0X2xvbmcgPC0gZGF0X2xvbmcgJT4lIAogIG11dGF0ZSgKICAgIGxuX0dQRHBjID0gbG9nKEdEUHBjKQogICkKYGBgCgojIyBGb2N1cyBvbiB0aGUgbGFzdCB0aGUgeWVhcnMKCmBgYHtyfQpkYXRfbG9uZyA8LSBkYXRfbG9uZyAlPiUgCiAgZmlsdGVyKAogICAgeWVhciA+PSAxOTk4CiAgKQpgYGAKCgoKIyBQbG90IGRpc3RyaWJ1dGlvbiBkeW5hbWljcwoKCmBgYHtyfQpkYXRfbG9uZyAlPiUgCiAgZ2dwbG90KGFlcyh4ID0gbG5fR1BEcGMsIHkgPSB5ZWFyKSkgKwogIGdlb21fZGVuc2l0eV9yaWRnZXMoKSArCiAgdGhlbWVfcmlkZ2VzKCkKYGBgCgoKIyMgU2NhbGUgcGFyYW1ldGVyCgpBIHNldHRpbmcgb2YgYHNjYWxlPTFgIG1lYW5zIHRoZSB0YWxsZXN0IGRlbnNpdHkgY3VydmUganVzdCB0b3VjaGVzIHRoZSBiYXNlbGluZSBvZiB0aGUgbmV4dCBoaWdoZXIgb25lLiAgCgpgYGB7cn0KZGF0X2xvbmcgJT4lIAogIGdncGxvdChhZXMoeCA9IGxuX0dQRHBjLCB5ID0geWVhcikpICsKICBnZW9tX2RlbnNpdHlfcmlkZ2VzKHNjYWxlID0gMSkgKyAKICB0aGVtZV9yaWRnZXMoKQpgYGAKCgpMYXJnZXIgYHNjYWxlYCB2YWx1ZXMgY3JlYXRlIG1vcmUgb3ZlcmxhcC4KCgpgYGB7cn0KZGF0X2xvbmcgJT4lIAogIGdncGxvdChhZXMoeCA9IGxuX0dQRHBjLCB5ID0geWVhcikpICsKICBnZW9tX2RlbnNpdHlfcmlkZ2VzKHNjYWxlID0gMTApICsgCiAgdGhlbWVfcmlkZ2VzKCkKYGBgCgojIyBGaWxsIGNvbG9ycwoKYGBge3J9CmRhdF9sb25nICU+JSAKICBnZ3Bsb3QoYWVzKHggPSBsbl9HUERwYywgeSA9IHllYXIsIGZpbGwgPSBzdGF0KHgpKSkgKwogIGdlb21fZGVuc2l0eV9yaWRnZXNfZ3JhZGllbnQoc2NhbGUgPSAxMCkgKwogIHNjYWxlX2ZpbGxfdmlyaWRpc19jKG5hbWUgPSAiTG4gb2YgR1BEcGMiKSArCiAgdGhlbWVfcmlkZ2VzKCkKYGBgCgojIyBNYXAgdGhlIHByb2JhYmlsaXRpZXMgZGlyZWN0bHkgb250byBjb2xvci4KCgpgYGB7cn0KZGF0X2xvbmcgJT4lIAogIGdncGxvdChhZXMoCiAgICB4ID0gbG5fR1BEcGMsCiAgICB5ID0geWVhciwKICAgIGZpbGwgPSAgMC41IC0gYWJzKDAuNSAtIHN0YXQoZWNkZikpCiAgICAgICAgICAgICkKICAgICAgICApICsKc3RhdF9kZW5zaXR5X3JpZGdlcygKICBnZW9tID0gImRlbnNpdHlfcmlkZ2VzX2dyYWRpZW50IiwKICBjYWxjX2VjZGYgPSBUUlVFLAogIHNjYWxlID0gMTAKICAgICAgICAgICAgICAgICAgICApICsKICBzY2FsZV9maWxsX3ZpcmlkaXNfYyhuYW1lID0gIlRhaWwgcHJvYmFiaWxpdHkiLAogICAgICAgICAgICAgICAgICAgICAgIGRpcmVjdGlvbiA9IC0xKSArCiAgdGhlbWVfcmlkZ2VzKCkKYGBgCgoKCgojIyBJbmRpY2F0ZSBxdWFudGlsZXMKCiMjIyBNZWRpYW4KCmBgYHtyfQpkYXRfbG9uZyAlPiUgCiAgZ2dwbG90KGFlcyh4ID0gbG5fR1BEcGMsIHkgPSB5ZWFyKSkgKwogIHN0YXRfZGVuc2l0eV9yaWRnZXMocXVhbnRpbGVfbGluZXMgPSBUUlVFLCAKICAgICAgICAgICAgICAgICAgICAgIHF1YW50aWxlcyA9IDIsCiAgICAgICAgICAgICAgICAgICAgICBzY2FsZSA9IDEwKSArCiAgdGhlbWVfcmlkZ2VzKCkKYGBgCgoKIyMjIEFueSBxdWFudGlsZQoKYGBge3J9CmRhdF9sb25nICU+JSAKICBnZ3Bsb3QoYWVzKHggPSBsbl9HUERwYywgeSA9IHllYXIpKSArCiAgc3RhdF9kZW5zaXR5X3JpZGdlcyhxdWFudGlsZV9saW5lcyA9IFRSVUUsIAogICAgICAgICAgICAgICAgICAgICAgcXVhbnRpbGVzID0gYygwLjAyNSwgMC45NzUpLAogICAgICAgICAgICAgICAgICAgICAgc2NhbGUgPSAxMCwKICAgICAgICAgICAgICAgICAgICAgIGFscGhhID0gMC43KSArCiAgdGhlbWVfcmlkZ2VzKCkKYGBgCgojIyMgQ29sb3IgYnkgUXVhcnRpbGUKCgpgYGB7cn0KZGF0X2xvbmcgJT4lIAogIGdncGxvdChhZXMoeCA9IGxuX0dQRHBjLAogICAgICAgICAgICAgeSA9IHllYXIsCiAgICAgICAgICAgICBmaWxsID0gZmFjdG9yKHN0YXQocXVhbnRpbGUpKQogICAgICAgICAgICAgKQogICAgICAgICApICsKICBzdGF0X2RlbnNpdHlfcmlkZ2VzKAogICAgZ2VvbSA9ICJkZW5zaXR5X3JpZGdlc19ncmFkaWVudCIsIAogICAgY2FsY19lY2RmID0gVFJVRSwKICAgIHF1YW50aWxlcyA9IDQsIAogICAgcXVhbnRpbGVfbGluZXMgPSBUUlVFLAogICAgc2NhbGUgPSAxMAogICAgKSArCiAgc2NhbGVfZmlsbF92aXJpZGlzX2QobmFtZSA9ICJRdWFydGlsZXMiKSArCiAgdGhlbWVfcmlkZ2VzKCkKYGBgCgoKIyMgRnVydGhlciBtb2RpZmljYXRpb25zCgpgYGB7cn0KZGF0X2xvbmcgJT4lIAogIGdncGxvdChhZXMoeCA9IGxuX0dQRHBjLAogICAgICAgICAgICAgeSA9IHllYXIsCiAgICAgICAgICAgICBmaWxsID0gZmFjdG9yKHN0YXQocXVhbnRpbGUpKQogICAgICAgICAgICAgKQogICAgICAgICApICsKICBzdGF0X2RlbnNpdHlfcmlkZ2VzKAogICAgZ2VvbSA9ICJkZW5zaXR5X3JpZGdlc19ncmFkaWVudCIsIAogICAgY2FsY19lY2RmID0gVFJVRSwKICAgIHF1YW50aWxlcyA9IDQsIAogICAgcXVhbnRpbGVfbGluZXMgPSBUUlVFLAogICAgc2NhbGUgPSAxMAogICAgKSArCiAgc2NhbGVfZmlsbF92aXJpZGlzX2QobmFtZSA9ICJRdWFydGlsZXMiKSArCiAgdGhlbWVfcmlkZ2VzKCkgKwogIHNjYWxlX3hfY29udGludW91cyhleHBhbmQgPSBjKDAsIDApKSArCiAgc2NhbGVfeV9kaXNjcmV0ZShleHBhbmQgPSBjKDAsIDApKSArCiAgY29vcmRfY2FydGVzaWFuKGNsaXAgPSAib2ZmIikgCmBgYAoKCmBgYHtyfQpkYXRfbG9uZyAlPiUgCiAgZ2dwbG90KGFlcyh4ID0gbG5fR1BEcGMsCiAgICAgICAgICAgICB5ID0geWVhciwKICAgICAgICAgICAgIGZpbGwgPSBmYWN0b3Ioc3RhdChxdWFudGlsZSkpCiAgICAgICAgICAgICApCiAgICAgICAgICkgKwogIHN0YXRfZGVuc2l0eV9yaWRnZXMoCiAgICBnZW9tID0gImRlbnNpdHlfcmlkZ2VzX2dyYWRpZW50IiwgCiAgICBjYWxjX2VjZGYgPSBUUlVFLAogICAgcXVhbnRpbGVzID0gNCwgCiAgICBxdWFudGlsZV9saW5lcyA9IFRSVUUsCiAgICBzY2FsZSA9IDEwCiAgICApICsKICBzY2FsZV9maWxsX3ZpcmlkaXNfZChuYW1lID0gIlF1YXJ0aWxlcyIpICsKICBzY2FsZV94X2NvbnRpbnVvdXMoZXhwYW5kID0gYygwLCAwKSkgKwogIHNjYWxlX3lfZGlzY3JldGUoZXhwYW5kID0gYygwLCAwKSkgKwogIGNvb3JkX2NhcnRlc2lhbihjbGlwID0gIm9mZiIpICsgCiAgdGhlbWVfcmlkZ2VzKGdyaWQgPSBGQUxTRSwgY2VudGVyX2F4aXNfbGFiZWxzID0gVFJVRSkKYGBgCgoKIyBSZWZlcmVuY2VzCgotIDxodHRwczovL3dpbGtlbGFiLm9yZy9nZ3JpZGdlcy8+Ci0gPGh0dHBzOi8vd2lsa2VsYWIub3JnL2dncmlkZ2VzL2FydGljbGVzL2ludHJvZHVjdGlvbi5odG1sPgoKRU5ECg==