This is an R Markdown document. Markdown is a simple formatting syntax for authoring HTML, PDF, and MS Word documents. For more details on using R Markdown see http://rmarkdown.rstudio.com.
When you click the Knit button a document will be generated that includes both content as well as the output of any embedded R code chunks within the document. You can embed an R code chunk like this:
80, 121, 132, 145, 151, 119, 133, 134, 200, 195, 90, 121, 132, 123, 145, 151, 119, 133, 134, 151, 168
x = c(80, 121, 132, 145, 151, 119, 133, 134, 200, 195, 90, 121, 132, 123, 145, 151, 119, 133, 134, 151, 168)
boxplot.stats(x, coef = 3)
## $stats
## [1] 80 121 133 151 200
##
## $n
## [1] 21
##
## $conf
## [1] 122.6565 143.3435
##
## $out
## numeric(0)
range(x)
## [1] 80 200
quantile(x, type=2)
## 0% 25% 50% 75% 100%
## 80 121 133 151 200
q1 = 121
q3 = 151
iqr = 151-121
c(q1-3*iqr, q3+3*iqr)
## [1] 31 241
Norminal
41,37,27,41,18,48,41,50,54,37,25
x = c(41,37,27,41,18,48,41,50,54,37,25)
max(x)-min(x)
## [1] 36
table(x)
## x
## 18 25 27 37 41 48 50 54
## 1 1 1 2 3 1 1 1
19,18,26,9,15,23,10,5,15,17,8,22,12
x = c(19,18,26,9,15,23,10,5,15,17,8,22,12)
sd(x)
## [1] 6.329621
x = c(3.8, 1.8, 2.4, 3.7, 4.1, 3.9, 1.2, 3.6, 4.2, 3.4, 3.7, 2.2, 1.6, 4.2, 3.5, 2.6, 0.4, 3.7, 2.0, 3.6)
median(x)
## [1] 3.55
quantile(x, type=2)
## 0% 25% 50% 75% 100%
## 0.40 2.10 3.55 3.75 4.20
The normal monthly precipitation (in inches) for August is listed for 20 different U.S. cities. Find the variance of the data.
3.8, 1.8, 2.4, 3.7, 4.1, 3.9, 1.2, 3.6, 4.2, 3.4, 3.7, 2.2, 1.6, 4.2, 3.5, 2.6, 0.4, 3.7, 2.0, 3.6
x = c(3.8, 1.8, 2.4, 3.7, 4.1, 3.9, 1.2, 3.6, 4.2, 3.4, 3.7, 2.2, 1.6, 4.2, 3.5, 2.6, 0.4, 3.7, 2.0, 3.6)
var(x)
## [1] 1.246947
60.1 - 67.1 # =7
## [1] -7
74.1 - 67.1 # =7
## [1] 7
k = 7/3.5
1-1/k^2
## [1] 0.75
The data below consists of the heights (in inches) of 20 randomly selected women. Find the 20% trimmed mean of the data set. Round to two decimal places. (Do not use Excel. Use R.)
69, 68, 64, 61, 65, 64, 71, 67, 62, 63, 61, 64, 75, 67, 60, 59, 64, 69, 65, 72
x = c(69, 68, 64, 61, 65, 64, 71, 67, 62, 63, 61, 64, 75, 67, 60, 59, 64, 69, 65, 72)
mean(x, trim=.2)
## [1] 65.16667
The test scores of 40 students are summarized in the frequency distribution below. Find the standard deviation. Use the procedure in Business Statistics Section 3.3. Score Students 50-59 5 60-69 7 70-79 9 80-89 10 90-99 9
freq = c(5, 12, 14, 15, 8, 4)
mid = seq(3, 13, 2)
fx = freq*mid
fx2 = freq*(mid^2)
tbl = data.frame(freq, mid, fx, fx2)
tbl
## freq mid fx fx2
## 1 5 3 15 45
## 2 12 5 60 300
## 3 14 7 98 686
## 4 15 9 135 1215
## 5 8 11 88 968
## 6 4 13 52 676
avg = sum(fx)/sum(freq)
avg
## [1] 7.724138
v = sum((mid-avg)^2*freq)/(sum(freq)-1)
v
## [1] 7.5366
v2 = sum((mid-avg)^2*freq)/(sum(freq))
v2
## [1] 7.406659
s2 = v2^.5
s2
## [1] 2.721518
freq = c(5, 7, 9, 10, 9)
freq
## [1] 5 7 9 10 9
mid = seq((59-50)/2+50, (99-90)/2+90, 10)
mid
## [1] 54.5 64.5 74.5 84.5 94.5
fx = freq*mid
fx2 = freq*(mid^2)
tbl = data.frame(freq, mid, fx, fx2)
tbl
## freq mid fx fx2
## 1 5 54.5 272.5 14851.25
## 2 7 64.5 451.5 29121.75
## 3 9 74.5 670.5 49952.25
## 4 10 84.5 845.0 71402.50
## 5 9 94.5 850.5 80372.25
# mean
avg = sum(fx)/sum(freq)
avg
## [1] 77.25
# Sample var and sd
v = sum((mid-avg)^2*freq)/(sum(freq)-1)
v
## [1] 179.4231
s = v^.5
s
## [1] 13.39489
When investigating times required for drive-through service, the following results (in seconds) were obtained. Restaurant A 120 67 89 97 124 68 72 96 Restaurant B 115 126 49 56 98 76 78 95
A = c(120, 67, 89, 97, 124, 68, 72, 96)
B = c(115, 126, 49, 56, 98, 76, 78, 95)
stat = function(v) {
return(c(max(v)-min(v), var(v), sd(v)))
}
stat(A)
## [1] 57.00000 493.98214 22.22571
stat(B)
## [1] 77.00000 727.98214 26.98114
{r pressure, echo=FALSE} Note that the echo = FALSE parameter was added to the code chunk to prevent printing of the R code that generated the plot.