There do not appear to be any noteworthy features in these plots. They each appear to follow a different distribution.
Y seems to correlate with X3 and X4 strongly, with some correlation shown for X1 and X2. There does not seem to be an issue with multicollinearity.
## Y X1 X2 X3 X4
## Y 1.0000000 0.5144107 0.4970057 0.8970645 0.8693865
## X1 0.5144107 1.0000000 0.1022689 0.1807692 0.3266632
## X2 0.4970057 0.1022689 1.0000000 0.5190448 0.3967101
## X3 0.8970645 0.1807692 0.5190448 1.0000000 0.7820385
## X4 0.8693865 0.3266632 0.3967101 0.7820385 1.0000000
Parameters are displayed in output below:
##
## Call:
## lm(formula = Y ~ X1 + X2 + X3 + X4, data = data)
##
## Coefficients:
## (Intercept) X1 X2 X3 X4
## -124.38182 0.29573 0.04829 1.30601 0.51982
## (Intercept) X1 X2 X3 X4
## -124.38182058 0.29572537 0.04828772 1.30601100 0.51981909
##
## Call:
## lm(formula = Y ~ X1 + X2 + X3 + X4, data = data)
##
## Residuals:
## Min 1Q Median 3Q Max
## -5.9779 -3.4506 0.0941 2.4749 5.9959
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -124.38182 9.94106 -12.512 6.48e-11 ***
## X1 0.29573 0.04397 6.725 1.52e-06 ***
## X2 0.04829 0.05662 0.853 0.40383
## X3 1.30601 0.16409 7.959 1.26e-07 ***
## X4 0.51982 0.13194 3.940 0.00081 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 4.099 on 20 degrees of freedom
## Multiple R-squared: 0.9629, Adjusted R-squared: 0.9555
## F-statistic: 129.7 on 4 and 20 DF, p-value: 5.262e-14
## (Intercept) X1 X2 X3 X4
## 9.94106316 0.04397141 0.05661745 0.16409129 0.13194285
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -124.38182058 9.94106316 -12.5119234 6.475642e-11
## X1 0.29572537 0.04397141 6.7254011 1.523710e-06
## X2 0.04828772 0.05661745 0.8528769 4.038262e-01
## X3 1.30601100 0.16409129 7.9590514 1.261726e-07
## X4 0.51981909 0.13194285 3.9397290 8.099714e-04
It appears that all variables should be retained except for X2. X2 has the best case for deletion because its p-value is high.
The fitted model seems very reasonable. It follows the observed data very well.
Assumptoin of normality somewhat holds. It would be wise to do deeper analysis. One could interpret the data either way in this case.
## [1] 0.9772966
The best model is the model containing X1, X3, and X4.
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -124.38182058 9.94106316 -12.5119234 6.475642e-11
## X1 0.29572537 0.04397141 6.7254011 1.523710e-06
## X2 0.04828772 0.05661745 0.8528769 4.038262e-01
## X3 1.30601100 0.16409129 7.9590514 1.261726e-07
## X4 0.51981909 0.13194285 3.9397290 8.099714e-04
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -78.5413917 16.14208680 -4.865628 8.236882e-05
## X1 0.2523577 0.08692488 2.903170 8.503442e-03
## X2 0.2123617 0.10505114 2.021508 5.615531e-02
## X4 1.2884924 0.17909367 7.194517 4.321123e-07
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -7.9666688 23.3136535 -0.3417169 0.735806546
## X1 0.4482956 0.1501227 2.9861937 0.006808895
## X2 0.5044119 0.1762068 2.8626125 0.009048073
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 41.321561 18.0098510 2.294387 0.031231211
## X1 0.492245 0.1711054 2.876852 0.008517216
## [1] "Model 1 AIC: 147.901137560136 BIC: 155.214392509345"
## [1] "Model 2 AIC: 181.582996063248 BIC: 187.677375187589"
## [1] "Model 3 AIC: 210.649462021124 BIC: 215.524965320596"
## [1] "Model 4 AIC: 216.564937232918 BIC: 220.221564707523"
## [1] "Model 5 AIC: 222.249079238426 BIC: 224.686830888163"
## (Intercept) X1 X2 X4
## -78.5413917 0.2523577 0.2123617 1.2884924
## (Intercept) X1 X2 X4
## 16.14208680 0.08692488 0.10505114 0.17909367
## [1] 0.8453581
## [1] 0.8232664
## [1] "Y = X3 AIC : -36.834 BIC : -34.396"
## [1] "Y = X4 AIC : -31.248 BIC : -28.81"
## [1] "Y = X1 AIC : -3.684 BIC : -1.246"
## [1] "Y = X2 AIC : -3.093 BIC : -0.655"
## [1] "Y = X1+X3 AIC : -61.575 BIC : -57.918"
## [1] "Y = X3+X4 AIC : -46.442 BIC : -42.785"
## [1] "Y = X1+X4 AIC : -36.221 BIC : -32.564"
## [1] "Y = X2+X3 AIC : -35.007 BIC : -31.35"
## [1] "Y = X2+X4 AIC : -32.23 BIC : -28.574"
## [1] "Y = X1+X2 AIC : -9.6 BIC : -5.943"
## [1] "Y = X1+X3+X4 AIC : -73.455 BIC : -68.579"
## [1] "Y = X1+X2+X3 AIC : -59.988 BIC : -55.112"
## [1] "Y = X2+X3+X4 AIC : -44.793 BIC : -39.917"