The objective of this assignment is to introduce you to R and R markdown and to complete some basic data simulation exercises.
Please include all code needed to perform the tasks. This is an R Markdown document. Markdown is a simple formatting syntax for authoring HTML, PDF, and MS Word documents. For more details on using R Markdown see http://rmarkdown.rstudio.com.
To submit this homework you will create the document in Rstudio, using the knitr package (button included in Rstudio) and then submit the document to your Rpubs account. Once uploaded you will submit the link to that document on Canvas. Please make sure that this link is hyperlinked and that I can see the visualization and the code required to create it.
# place the code to simulate the data here
set.seed(22)
x = rnorm(30,mean=c(0,3,8),sd=c(1,8,20))
x
## [1] -0.512139088 22.881469423 28.156523005 0.292814572 1.328325111
## [6] 45.161847796 -0.066026405 1.697880386 4.002786402 0.300561734
## [11] -3.111258260 9.639238076 0.743028275 2.327822449 -7.857890331
## [16] -0.922153631 9.892499028 48.058843753 0.936551013 -9.925878973
## [21] -3.501131784 -0.003973089 -2.408900826 -12.992565506 -0.543280568
## [26] 7.449156243 13.056754340 -0.901814675 9.595130850 -23.205595046
# place the code to simulate the data here
set.seed(23)
x1 = rnorm(20, 24, 6)
x2 = rnorm(20, 27, 6)
plot(x1, x2, main="Scatterplot x1~x2",
xlab="x1 ", ylab="x2 ", pch=19)
abline(lm(x2 ~ x1), col = "blue")
# place the code to simulate the data here
set.seed(24)
y = rnorm(30, 0, 1)
x1 = runif(30, min=0, max=1)
x2 = runif(30, min=0, max=1)
z <- lm(y ~ x1 + x2) #linear regression model
summary(z)
##
## Call:
## lm(formula = y ~ x1 + x2)
##
## Residuals:
## Min 1Q Median 3Q Max
## -1.44221 -0.35273 -0.04635 0.41187 1.79593
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -0.4573 0.3449 -1.326 0.196
## x1 0.1208 0.4615 0.262 0.795
## x2 0.4671 0.4693 0.995 0.328
##
## Residual standard error: 0.7323 on 27 degrees of freedom
## Multiple R-squared: 0.03786, Adjusted R-squared: -0.03341
## F-statistic: 0.5312 on 2 and 27 DF, p-value: 0.5939
# place the code to simulate the data here
rep(letters[1:3],each=2,times=2)
## [1] "a" "a" "b" "b" "c" "c" "a" "a" "b" "b" "c" "c"
# place the code to simulate the data here
set.seed(24)
group = rep(letters[1:3],length.out=27)
factor= rep(letters[4:5], length.out=27)
response = replicate(n=2, expr = rnorm(27, mean = 0, sd = 1))
data.frame(group, factor, response)
## group factor X1 X2
## 1 a d -0.545880758 0.11953107
## 2 b e 0.536585304 -0.11629639
## 3 c d 0.419623149 -0.94382724
## 4 a e -0.583627199 -0.03373792
## 5 b d 0.847460017 -0.58542756
## 6 c e 0.266021979 0.61285136
## 7 a d 0.444585270 1.51712249
## 8 b e -0.466495124 0.65738044
## 9 c d -0.848370044 -1.07418134
## 10 a e 0.002311942 -4.46956441
## 11 b d -1.316908124 0.36904502
## 12 c e 0.598269113 0.16922669
## 13 a d -0.762214370 -1.82219032
## 14 b e -1.429090303 0.06735770
## 15 c d 0.332244449 0.01710596
## 16 a e -0.469060688 -0.34365937
## 17 b d -0.334986794 -0.66789220
## 18 c e 1.536252156 -0.25574457
## 19 a d 0.609994533 -0.46120796
## 20 b e 0.516335698 1.47164158
## 21 c d -0.074308561 -0.09196032
## 22 a e -0.605156946 0.33519430
## 23 b d -1.709645185 -0.23186459
## 24 c e -0.268693105 0.52665256
## 25 a d -0.648591507 -1.07362607
## 26 b e -0.094110127 0.76968188
## 27 c d -0.085540951 1.77090538