Vratika Chaudhary
01.17.2020


Differential equation format
\[ \frac{dN}{dT}=rN \]
Intergral format
\[ N_t=N_oe^{rt} \]
where
r = per capita population growth rate
lambda = finite or discrete time growth rate
\[ \lambda=e^r \]
\[ r=ln(\lambda)=ln[{\frac{N_t+1}{N_t}}] \] *In R, log means natural log
\[ y=mx+b \]
#regression
population =c(400,475,540,580,598,500,600,610,645,670)#example data
year=1:10 #example data
x= year
y = log(population)
model= lm(y~x)
#regression
summary(model)
#
# Call:
# lm(formula = y ~ x)
#
# Residuals:
# Min 1Q Median 3Q Max
# -0.129456 -0.016554 -0.004167 0.063969 0.109088
#
# Coefficients:
# Estimate Std. Error t value Pr(>|t|)
# (Intercept) 6.076581 0.059882 101.475 9.93e-14 ***
# x 0.044340 0.009651 4.594 0.00177 **
# ---
# Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
#
# Residual standard error: 0.08766 on 8 degrees of freedom
# Multiple R-squared: 0.7252, Adjusted R-squared: 0.6908
# F-statistic: 21.11 on 1 and 8 DF, p-value: 0.001769
r= model$coefficients[[2]]
r #per capita growth rate
[1] 0.04433963
plot(x,y)
abline(model)
\[ \lambda= \frac{N_{t+1}}{N_t} \]
#Ratio method
pop<- c(500,524,560,579,589,600,650)#population vecto
pop #population vector
# [1] 500 524 560 579 589 600 650
len<- length(pop)
len #length of population vector
[1] 7
lambda<- pop[-1]/pop[-len]
#Ratio method
lambda<- pop[-1]/pop[-len]
lambda.mean = mean(lambda)
lambda.mean
# [1] 1.044985
r = log(lambda.mean) #per capita growth rate
r
# [1] 0.0440027
Often sampling does not take place every year, sometime there is no money for consecutive sampling
This method uses a new variable 'tau' which is the time difference between two consecutive sampling occassions.
Fits linear regression without intercept and uses process mean(slope of regression line) and process variance.
\[ y_i= \frac{log(\frac{N_{t+1}}{N_t})}{\tau} \]
\[ y_i= \frac{log(\frac{N_{t+1}}{N_t})}{\tau} \]
lambda = (Nt+1/Nt)
x = sqrt(tau) #square root of tau
y = log(lambda)/x
mod.fit= lm(y~ 0+x)
summary(mod.fit)
mu = summary(au.fit)$coefficients[1]
r = mu + var(mod.fit$residuals)/2
Doubling time = log(2)/r
Tripling time = log(3)/r
Halving time = log(0.5)/r