## Warning in checkMatrixPackageVersion(): Package version inconsistency detected.
## TMB was built with Matrix version 1.2.17
## Current Matrix version is 1.2.18
## Please re-install 'TMB' from source using install.packages('TMB', type = 'source') or ask CRAN for a binary version of 'TMB' matching CRAN's 'Matrix' package
## Formula:          TAlphaAll ~ (1 | ForestID)
## Data: Results2
##       AIC       BIC    logLik  df.resid 
## 113.82930 115.91834 -54.91465        19 
## Random-effects (co)variances:
## 
## Conditional model:
##  Groups   Name        Std.Dev.
##  ForestID (Intercept) 0.2564  
## 
## Number of obs: 21 / Conditional model: ForestID, 5
## 
## Fixed Effects:
## 
## Conditional model:
## (Intercept)  
##       2.481  
##  Family: poisson  ( log )
## Formula:          TAlphaAll ~ (1 | ForestID)
## Data: Results2
## 
##      AIC      BIC   logLik deviance df.resid 
##    113.8    115.9    -54.9    109.8       19 
## 
## Random effects:
## 
## Conditional model:
##  Groups   Name        Variance Std.Dev.
##  ForestID (Intercept) 0.06576  0.2564  
## Number of obs: 21, groups:  ForestID, 5
## 
## Conditional model:
##             Estimate Std. Error z value Pr(>|z|)    
## (Intercept)   2.4814     0.1356   18.29   <2e-16 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## # R2 for Mixed Models
## 
##   Conditional R2: 0.450
##      Marginal R2: 0.000
##      chisq      ratio        rdf          p 
## 10.1261416  0.5329548 19.0000000  0.9497652
## Formula:          TAlphaNat ~ (1 | ForestID)
## Data: Results2
##       AIC       BIC    logLik  df.resid 
##  95.91131  98.00035 -45.95565        19 
## Random-effects (co)variances:
## 
## Conditional model:
##  Groups   Name        Std.Dev.
##  ForestID (Intercept) 9.93e-06
## 
## Number of obs: 21 / Conditional model: ForestID, 5
## 
## Fixed Effects:
## 
## Conditional model:
## (Intercept)  
##       2.203  
##  Family: poisson  ( log )
## Formula:          TAlphaNat ~ (1 | ForestID)
## Data: Results2
## 
##      AIC      BIC   logLik deviance df.resid 
##     95.9     98.0    -46.0     91.9       19 
## 
## Random effects:
## 
## Conditional model:
##  Groups   Name        Variance  Std.Dev.
##  ForestID (Intercept) 9.861e-11 9.93e-06
## Number of obs: 21, groups:  ForestID, 5
## 
## Conditional model:
##             Estimate Std. Error z value Pr(>|z|)    
## (Intercept)  2.20250    0.07255   30.36   <2e-16 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## Warning: Can't compute random effect variances. Some variance components equal zero.
##   Solution: Respecify random structure!
## Random effect variances not available. Returned R2 does not account for random effects.
## # R2 for Mixed Models
## 
##   Conditional R2: NA
##      Marginal R2: 0.000
##      chisq      ratio        rdf          p 
##  6.7368420  0.3545706 19.0000000  0.9954900
## Formula:          TAlphaNInd ~ (1 | ForestID)
## Data: Results2
##       AIC       BIC    logLik  df.resid 
##  85.90528  87.99432 -40.95264        19 
## Random-effects (co)variances:
## 
## Conditional model:
##  Groups   Name        Std.Dev.
##  ForestID (Intercept) 0.7897  
## 
## Number of obs: 21 / Conditional model: ForestID, 5
## 
## Fixed Effects:
## 
## Conditional model:
## (Intercept)  
##      0.8873  
##  Family: poisson  ( log )
## Formula:          TAlphaNInd ~ (1 | ForestID)
## Data: Results2
## 
##      AIC      BIC   logLik deviance df.resid 
##     85.9     88.0    -41.0     81.9       19 
## 
## Random effects:
## 
## Conditional model:
##  Groups   Name        Variance Std.Dev.
##  ForestID (Intercept) 0.6236   0.7897  
## Number of obs: 21, groups:  ForestID, 5
## 
## Conditional model:
##             Estimate Std. Error z value Pr(>|z|)  
## (Intercept)   0.8873     0.3857     2.3   0.0214 *
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## Warning: mu of 2.4 is too close to zero, estimate of random effect variances may be unreliable.
## # R2 for Mixed Models
## 
##   Conditional R2: 0.644
##      Marginal R2: 0.000
##      chisq      ratio        rdf          p 
## 18.0549702  0.9502616 19.0000000  0.5187692
## Formula:          TAlphaNInd ~ Dist_trail_beginning_std + (1 | ForestID)
## Data: Results2
##       AIC       BIC    logLik  df.resid 
##  85.55084  88.68440 -39.77542        18 
## Random-effects (co)variances:
## 
## Conditional model:
##  Groups   Name        Std.Dev.
##  ForestID (Intercept) 0.7681  
## 
## Number of obs: 21 / Conditional model: ForestID, 5
## 
## Fixed Effects:
## 
## Conditional model:
##              (Intercept)  Dist_trail_beginning_std  
##                   1.0243                   -0.3052  
##  Family: poisson  ( log )
## Formula:          TAlphaNInd ~ Dist_trail_beginning_std + (1 | ForestID)
## Data: Results2
## 
##      AIC      BIC   logLik deviance df.resid 
##     85.6     88.7    -39.8     79.6       18 
## 
## Random effects:
## 
## Conditional model:
##  Groups   Name        Variance Std.Dev.
##  ForestID (Intercept) 0.5899   0.7681  
## Number of obs: 21, groups:  ForestID, 5
## 
## Conditional model:
##                          Estimate Std. Error z value Pr(>|z|)   
## (Intercept)                1.0243     0.3866   2.650  0.00806 **
## Dist_trail_beginning_std  -0.3052     0.2162  -1.412  0.15806   
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## Warning: mu of 2.4 is too close to zero, estimate of random effect variances may be unreliable.
## # R2 for Mixed Models
## 
##   Conditional R2: 0.653
##      Marginal R2: 0.060
##      chisq      ratio        rdf          p 
## 15.8344488  0.8796916 18.0000000  0.6041000
## Formula:          TAlphaNInd ~ Dist_trail_std + (1 | ForestID)
## Data: Results2
##       AIC       BIC    logLik  df.resid 
##  86.72401  89.85758 -40.36200        18 
## Random-effects (co)variances:
## 
## Conditional model:
##  Groups   Name        Std.Dev.
##  ForestID (Intercept) 0.7797  
## 
## Number of obs: 21 / Conditional model: ForestID, 5
## 
## Fixed Effects:
## 
## Conditional model:
##    (Intercept)  Dist_trail_std  
##         0.9374         -0.1872  
##  Family: poisson  ( log )
## Formula:          TAlphaNInd ~ Dist_trail_std + (1 | ForestID)
## Data: Results2
## 
##      AIC      BIC   logLik deviance df.resid 
##     86.7     89.9    -40.4     80.7       18 
## 
## Random effects:
## 
## Conditional model:
##  Groups   Name        Variance Std.Dev.
##  ForestID (Intercept) 0.6079   0.7797  
## Number of obs: 21, groups:  ForestID, 5
## 
## Conditional model:
##                Estimate Std. Error z value Pr(>|z|)  
## (Intercept)      0.9374     0.3839   2.442   0.0146 *
## Dist_trail_std  -0.1872     0.1866  -1.004   0.3156  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## Warning: mu of 2.4 is too close to zero, estimate of random effect variances may be unreliable.
## # R2 for Mixed Models
## 
##   Conditional R2: 0.649
##      Marginal R2: 0.030
##      chisq      ratio        rdf          p 
## 16.6030729  0.9223929 18.0000000  0.5505350
## Formula:          TAlphaNInd ~ Dist_edge_std + (1 | ForestID)
## Data: Results2
##       AIC       BIC    logLik  df.resid 
##  87.09460  90.22817 -40.54730        18 
## Random-effects (co)variances:
## 
## Conditional model:
##  Groups   Name        Std.Dev.
##  ForestID (Intercept) 0.7282  
## 
## Number of obs: 21 / Conditional model: ForestID, 5
## 
## Fixed Effects:
## 
## Conditional model:
##   (Intercept)  Dist_edge_std  
##        1.0070        -0.2665  
##  Family: poisson  ( log )
## Formula:          TAlphaNInd ~ Dist_edge_std + (1 | ForestID)
## Data: Results2
## 
##      AIC      BIC   logLik deviance df.resid 
##     87.1     90.2    -40.5     81.1       18 
## 
## Random effects:
## 
## Conditional model:
##  Groups   Name        Variance Std.Dev.
##  ForestID (Intercept) 0.5302   0.7282  
## Number of obs: 21, groups:  ForestID, 5
## 
## Conditional model:
##               Estimate Std. Error z value Pr(>|z|)   
## (Intercept)     1.0070     0.3835   2.626  0.00863 **
## Dist_edge_std  -0.2665     0.3060  -0.871  0.38375   
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## Warning: mu of 2.4 is too close to zero, estimate of random effect variances may be unreliable.
## # R2 for Mixed Models
## 
##   Conditional R2: 0.625
##      Marginal R2: 0.047
##      chisq      ratio        rdf          p 
## 17.2869103  0.9603839 18.0000000  0.5034692
## Warning in nlminb(start = par, objective = fn, gradient = gr, control =
## control$optCtrl): NA/NaN function evaluation
## Warning in nlminb(start = par, objective = fn, gradient = gr, control =
## control$optCtrl): NA/NaN function evaluation

## Warning in nlminb(start = par, objective = fn, gradient = gr, control =
## control$optCtrl): NA/NaN function evaluation

## Warning in nlminb(start = par, objective = fn, gradient = gr, control =
## control$optCtrl): NA/NaN function evaluation

## Warning in nlminb(start = par, objective = fn, gradient = gr, control =
## control$optCtrl): NA/NaN function evaluation

## Warning in nlminb(start = par, objective = fn, gradient = gr, control =
## control$optCtrl): NA/NaN function evaluation

## Warning in nlminb(start = par, objective = fn, gradient = gr, control =
## control$optCtrl): NA/NaN function evaluation

## Warning in nlminb(start = par, objective = fn, gradient = gr, control =
## control$optCtrl): NA/NaN function evaluation

## Warning in nlminb(start = par, objective = fn, gradient = gr, control =
## control$optCtrl): NA/NaN function evaluation

## Warning in nlminb(start = par, objective = fn, gradient = gr, control =
## control$optCtrl): NA/NaN function evaluation

## Warning in nlminb(start = par, objective = fn, gradient = gr, control =
## control$optCtrl): NA/NaN function evaluation

## Warning in nlminb(start = par, objective = fn, gradient = gr, control =
## control$optCtrl): NA/NaN function evaluation

## Warning in nlminb(start = par, objective = fn, gradient = gr, control =
## control$optCtrl): NA/NaN function evaluation

## Warning in nlminb(start = par, objective = fn, gradient = gr, control =
## control$optCtrl): NA/NaN function evaluation
## Formula:          FAlphaAll ~ (1 | ForestID)
## Data: Results2
##       AIC       BIC    logLik  df.resid 
##  68.95103  72.08460 -31.47552        18 
## Random-effects (co)variances:
## 
## Conditional model:
##  Groups   Name        Std.Dev.
##  ForestID (Intercept) 0.04381 
## 
## Number of obs: 21 / Conditional model: ForestID, 5
## 
## Dispersion estimate for Gamma family (sigma^2): 0.0377 
## 
## Fixed Effects:
## 
## Conditional model:
## (Intercept)  
##      0.2074  
##  Family: Gamma  ( inverse )
## Formula:          FAlphaAll ~ (1 | ForestID)
## Data: Results2
## 
##      AIC      BIC   logLik deviance df.resid 
##     69.0     72.1    -31.5     63.0       18 
## 
## Random effects:
## 
## Conditional model:
##  Groups   Name        Variance Std.Dev.
##  ForestID (Intercept) 0.00192  0.04381 
## Number of obs: 21, groups:  ForestID, 5
## 
## Dispersion estimate for Gamma family (sigma^2): 0.0377 
## 
## Conditional model:
##             Estimate Std. Error z value Pr(>|z|)    
## (Intercept)  0.20744    0.02177   9.529   <2e-16 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## # R2 for Mixed Models
## 
##   Conditional R2: 0.048
##      Marginal R2: 0.000
##       chisq       ratio         rdf           p 
##  0.60177879  0.03343215 18.00000000  1.00000000
## Warning in nlminb(start = par, objective = fn, gradient = gr, control =
## control$optCtrl): NA/NaN function evaluation

## Warning in nlminb(start = par, objective = fn, gradient = gr, control =
## control$optCtrl): NA/NaN function evaluation

## Warning in nlminb(start = par, objective = fn, gradient = gr, control =
## control$optCtrl): NA/NaN function evaluation

## Warning in nlminb(start = par, objective = fn, gradient = gr, control =
## control$optCtrl): NA/NaN function evaluation

## Warning in nlminb(start = par, objective = fn, gradient = gr, control =
## control$optCtrl): NA/NaN function evaluation

## Warning in nlminb(start = par, objective = fn, gradient = gr, control =
## control$optCtrl): NA/NaN function evaluation

## Warning in nlminb(start = par, objective = fn, gradient = gr, control =
## control$optCtrl): NA/NaN function evaluation

## Warning in nlminb(start = par, objective = fn, gradient = gr, control =
## control$optCtrl): NA/NaN function evaluation

## Warning in nlminb(start = par, objective = fn, gradient = gr, control =
## control$optCtrl): NA/NaN function evaluation

## Warning in nlminb(start = par, objective = fn, gradient = gr, control =
## control$optCtrl): NA/NaN function evaluation

## Warning in nlminb(start = par, objective = fn, gradient = gr, control =
## control$optCtrl): NA/NaN function evaluation

## Warning in nlminb(start = par, objective = fn, gradient = gr, control =
## control$optCtrl): NA/NaN function evaluation

## Warning in nlminb(start = par, objective = fn, gradient = gr, control =
## control$optCtrl): NA/NaN function evaluation

## Warning in nlminb(start = par, objective = fn, gradient = gr, control =
## control$optCtrl): NA/NaN function evaluation

## Warning in nlminb(start = par, objective = fn, gradient = gr, control =
## control$optCtrl): NA/NaN function evaluation

## Warning in nlminb(start = par, objective = fn, gradient = gr, control =
## control$optCtrl): NA/NaN function evaluation

## Warning in nlminb(start = par, objective = fn, gradient = gr, control =
## control$optCtrl): NA/NaN function evaluation
## Formula:          FAlphaAll ~ Dist_trail_beginning_std + (1 | ForestID)
## Data: Results2
##       AIC       BIC    logLik  df.resid 
##  69.42266  73.60075 -30.71133        17 
## Random-effects (co)variances:
## 
## Conditional model:
##  Groups   Name        Std.Dev.
##  ForestID (Intercept) 0.04412 
## 
## Number of obs: 21 / Conditional model: ForestID, 5
## 
## Dispersion estimate for Gamma family (sigma^2): 0.0343 
## 
## Fixed Effects:
## 
## Conditional model:
##              (Intercept)  Dist_trail_beginning_std  
##                   0.2002                    0.0147  
##  Family: Gamma  ( inverse )
## Formula:          FAlphaAll ~ Dist_trail_beginning_std + (1 | ForestID)
## Data: Results2
## 
##      AIC      BIC   logLik deviance df.resid 
##     69.4     73.6    -30.7     61.4       17 
## 
## Random effects:
## 
## Conditional model:
##  Groups   Name        Variance Std.Dev.
##  ForestID (Intercept) 0.001946 0.04412 
## Number of obs: 21, groups:  ForestID, 5
## 
## Dispersion estimate for Gamma family (sigma^2): 0.0343 
## 
## Conditional model:
##                          Estimate Std. Error z value Pr(>|z|)    
## (Intercept)               0.20020    0.02233   8.965   <2e-16 ***
## Dist_trail_beginning_std  0.01470    0.01200   1.225    0.221    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## # R2 for Mixed Models
## 
##   Conditional R2: 0.057
##      Marginal R2: 0.004
##       chisq       ratio         rdf           p 
##  0.52889840  0.03111167 17.00000000  1.00000000
## Warning in nlminb(start = par, objective = fn, gradient = gr, control =
## control$optCtrl): NA/NaN function evaluation

## Warning in nlminb(start = par, objective = fn, gradient = gr, control =
## control$optCtrl): NA/NaN function evaluation

## Warning in nlminb(start = par, objective = fn, gradient = gr, control =
## control$optCtrl): NA/NaN function evaluation
## Formula:          FAlphaNat ~ (1 | ForestID)
## Data: Results2
##      AIC      BIC   logLik df.resid 
##  7.86818 11.00175 -0.93409       18 
## Random-effects (co)variances:
## 
## Conditional model:
##  Groups   Name        Std.Dev.
##  ForestID (Intercept) 0.03963 
## 
## Number of obs: 21 / Conditional model: ForestID, 5
## 
## Dispersion estimate for Gamma family (sigma^2): 0.0108 
## 
## Fixed Effects:
## 
## Conditional model:
## (Intercept)  
##      0.4686  
##  Family: Gamma  ( inverse )
## Formula:          FAlphaNat ~ (1 | ForestID)
## Data: Results2
## 
##      AIC      BIC   logLik deviance df.resid 
##      7.9     11.0     -0.9      1.9       18 
## 
## Random effects:
## 
## Conditional model:
##  Groups   Name        Variance Std.Dev.
##  ForestID (Intercept) 0.00157  0.03963 
## Number of obs: 21, groups:  ForestID, 5
## 
## Dispersion estimate for Gamma family (sigma^2): 0.0108 
## 
## Conditional model:
##             Estimate Std. Error z value Pr(>|z|)    
## (Intercept)   0.4686     0.0217   21.59   <2e-16 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## # R2 for Mixed Models
## 
##   Conditional R2: 0.127
##      Marginal R2: 0.000
##       chisq       ratio         rdf           p 
##  0.18188683  0.01010482 18.00000000  1.00000000
## Formula:          FAlphaNInd ~ (1 | ForestID)
## Data: Results2
##       AIC       BIC    logLik  df.resid 
##  45.92022  48.00927 -20.96011        19 
## Random-effects (co)variances:
## 
## Conditional model:
##  Groups   Name        Std.Dev.
##  ForestID (Intercept) 2.72e-05
## 
## Number of obs: 21 / Conditional model: ForestID, 5
## 
## Fixed Effects:
## 
## Conditional model:
## (Intercept)  
##     -0.2706  
##  Family: poisson  ( log )
## Formula:          FAlphaNInd ~ (1 | ForestID)
## Data: Results2
## 
##      AIC      BIC   logLik deviance df.resid 
##     45.9     48.0    -21.0     41.9       19 
## 
## Random effects:
## 
## Conditional model:
##  Groups   Name        Variance  Std.Dev.
##  ForestID (Intercept) 7.396e-10 2.72e-05
## Number of obs: 21, groups:  ForestID, 5
## 
## Conditional model:
##             Estimate Std. Error z value Pr(>|z|)
## (Intercept)  -0.2706     0.2498  -1.083    0.279
## Warning: Can't compute random effect variances. Some variance components equal zero.
##   Solution: Respecify random structure!
## Warning: mu of 0.8 is too close to zero, estimate of random effect variances may be unreliable.
## Random effect variances not available. Returned R2 does not account for random effects.
## # R2 for Mixed Models
## 
##   Conditional R2: NA
##      Marginal R2: 0.000
##      chisq      ratio        rdf          p 
##  8.0661820  0.4245359 19.0000000  0.9859925
## Formula:          
## abund.all ~ Dist_edge_std + Dist_trail_beginning_std + Dist_trail_std +  
##     (1 | ForestID)
## Data: Results2
##       AIC       BIC    logLik  df.resid 
##  312.2955  317.5181 -151.1478        16 
## Random-effects (co)variances:
## 
## Conditional model:
##  Groups   Name        Std.Dev.
##  ForestID (Intercept) 0.3339  
## 
## Number of obs: 21 / Conditional model: ForestID, 5
## 
## Fixed Effects:
## 
## Conditional model:
##              (Intercept)             Dist_edge_std  
##                   5.0043                   -0.3643  
## Dist_trail_beginning_std            Dist_trail_std  
##                   0.1158                    0.1432  
##  Family: poisson  ( log )
## Formula:          
## abund.all ~ Dist_edge_std + Dist_trail_beginning_std + Dist_trail_std +  
##     (1 | ForestID)
## Data: Results2
## 
##      AIC      BIC   logLik deviance df.resid 
##    312.3    317.5   -151.1    302.3       16 
## 
## Random effects:
## 
## Conditional model:
##  Groups   Name        Variance Std.Dev.
##  ForestID (Intercept) 0.1115   0.3339  
## Number of obs: 21, groups:  ForestID, 5
## 
## Conditional model:
##                          Estimate Std. Error z value Pr(>|z|)    
## (Intercept)               5.00429    0.15344   32.61  < 2e-16 ***
## Dist_edge_std            -0.36428    0.09194   -3.96 7.43e-05 ***
## Dist_trail_beginning_std  0.11582    0.04337    2.67  0.00757 ** 
## Dist_trail_std            0.14315    0.04481    3.19  0.00140 ** 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## # R2 for Mixed Models
## 
##   Conditional R2: 0.962
##      Marginal R2: 0.364
##        chisq        ratio          rdf            p 
## 1.329744e+02 8.310902e+00 1.600000e+01 1.695091e-20
## Formula:          
## abund.nat ~ Dist_edge_std + Dist_trail_beginning_std + Dist_trail_std +  
##     (1 | ForestID)
## Data: Results2
##       AIC       BIC    logLik  df.resid 
##  293.7646  298.9872 -141.8823        16 
## Random-effects (co)variances:
## 
## Conditional model:
##  Groups   Name        Std.Dev.
##  ForestID (Intercept) 0.3492  
## 
## Number of obs: 21 / Conditional model: ForestID, 5
## 
## Fixed Effects:
## 
## Conditional model:
##              (Intercept)             Dist_edge_std  
##                   4.9394                   -0.4281  
## Dist_trail_beginning_std            Dist_trail_std  
##                   0.1264                    0.1357  
##  Family: poisson  ( log )
## Formula:          
## abund.nat ~ Dist_edge_std + Dist_trail_beginning_std + Dist_trail_std +  
##     (1 | ForestID)
## Data: Results2
## 
##      AIC      BIC   logLik deviance df.resid 
##    293.8    299.0   -141.9    283.8       16 
## 
## Random effects:
## 
## Conditional model:
##  Groups   Name        Variance Std.Dev.
##  ForestID (Intercept) 0.1219   0.3492  
## Number of obs: 21, groups:  ForestID, 5
## 
## Conditional model:
##                          Estimate Std. Error z value Pr(>|z|)    
## (Intercept)               4.93944    0.16055  30.765  < 2e-16 ***
## Dist_edge_std            -0.42809    0.09715  -4.406 1.05e-05 ***
## Dist_trail_beginning_std  0.12639    0.04587   2.755  0.00587 ** 
## Dist_trail_std            0.13571    0.04661   2.911  0.00360 ** 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## # R2 for Mixed Models
## 
##   Conditional R2: 0.964
##      Marginal R2: 0.408
##        chisq        ratio          rdf            p 
## 1.169212e+02 7.307573e+00 1.600000e+01 2.141864e-17
## Formula:          abund.nind ~ Dist_edge_std + (1 | ForestID)
## Data: Results2
##       AIC       BIC    logLik  df.resid 
##  221.3960  224.5296 -107.6980        18 
## Random-effects (co)variances:
## 
## Conditional model:
##  Groups   Name        Std.Dev.
##  ForestID (Intercept) 1.015   
## 
## Number of obs: 21 / Conditional model: ForestID, 5
## 
## Fixed Effects:
## 
## Conditional model:
##   (Intercept)  Dist_edge_std  
##        1.9888         0.4281  
##  Family: poisson  ( log )
## Formula:          abund.nind ~ Dist_edge_std + (1 | ForestID)
## Data: Results2
## 
##      AIC      BIC   logLik deviance df.resid 
##    221.4    224.5   -107.7    215.4       18 
## 
## Random effects:
## 
## Conditional model:
##  Groups   Name        Variance Std.Dev.
##  ForestID (Intercept) 1.03     1.015   
## Number of obs: 21, groups:  ForestID, 5
## 
## Conditional model:
##               Estimate Std. Error z value Pr(>|z|)    
## (Intercept)     1.9888     0.4658   4.269 1.96e-05 ***
## Dist_edge_std   0.4281     0.1017   4.212 2.53e-05 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## # R2 for Mixed Models
## 
##   Conditional R2: 0.916
##      Marginal R2: 0.090
##        chisq        ratio          rdf            p 
## 1.240372e+02 6.890958e+00 1.800000e+01 7.230178e-18
## Formula:          abund.nind ~ Dist_trail_std + (1 | ForestID)
## Data: Results2
##       AIC       BIC    logLik  df.resid 
##  222.1632  225.2967 -108.0816        18 
## Random-effects (co)variances:
## 
## Conditional model:
##  Groups   Name        Std.Dev.
##  ForestID (Intercept) 0.9499  
## 
## Number of obs: 21 / Conditional model: ForestID, 5
## 
## Fixed Effects:
## 
## Conditional model:
##    (Intercept)  Dist_trail_std  
##         2.1198          0.2152  
##  Family: poisson  ( log )
## Formula:          abund.nind ~ Dist_trail_std + (1 | ForestID)
## Data: Results2
## 
##      AIC      BIC   logLik deviance df.resid 
##    222.2    225.3   -108.1    216.2       18 
## 
## Random effects:
## 
## Conditional model:
##  Groups   Name        Variance Std.Dev.
##  ForestID (Intercept) 0.9023   0.9499  
## Number of obs: 21, groups:  ForestID, 5
## 
## Conditional model:
##                Estimate Std. Error z value Pr(>|z|)    
## (Intercept)     2.11983    0.43479   4.876 1.09e-06 ***
## Dist_trail_std  0.21521    0.05228   4.116 3.85e-05 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## # R2 for Mixed Models
## 
##   Conditional R2: 0.900
##      Marginal R2: 0.037
##        chisq        ratio          rdf            p 
## 1.224116e+02 6.800647e+00 1.800000e+01 1.469360e-17
## Formula:          prop.Talpha ~ (1 | ForestID)
## Data: Results2
##       AIC       BIC    logLik  df.resid 
## -44.45760 -41.32404  25.22880        18 
## Random-effects (co)variances:
## 
## Conditional model:
##  Groups   Name        Std.Dev.
##  ForestID (Intercept) 0.7403  
## 
## Number of obs: 21 / Conditional model: ForestID, 5
## 
## Overdispersion parameter for beta family (): 4.98 
## 
## Fixed Effects:
## 
## Conditional model:
## (Intercept)  
##       1.708  
##  Family: beta  ( logit )
## Formula:          prop.Talpha ~ (1 | ForestID)
## Data: Results2
## 
##      AIC      BIC   logLik deviance df.resid 
##    -44.5    -41.3     25.2    -50.5       18 
## 
## Random effects:
## 
## Conditional model:
##  Groups   Name        Variance Std.Dev.
##  ForestID (Intercept) 0.5481   0.7403  
## Number of obs: 21, groups:  ForestID, 5
## 
## Overdispersion parameter for beta family (): 4.98 
## 
## Conditional model:
##             Estimate Std. Error z value Pr(>|z|)    
## (Intercept)   1.7080     0.4264   4.006 6.18e-05 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## Warning: mu of 5.5 is too close to zero, estimate of random effect variances may be unreliable.
## # R2 for Mixed Models
## 
##   Conditional R2: 1.367
##      Marginal R2: 0.000
##      chisq      ratio        rdf          p 
##  2.2023134  0.1223507 18.0000000  0.9999976
## Formula:          prop.Talpha ~ Dist_trail_std + (1 | ForestID)
## Data: Results2
##       AIC       BIC    logLik  df.resid 
## -45.26116 -41.08307  26.63058        17 
## Random-effects (co)variances:
## 
## Conditional model:
##  Groups   Name        Std.Dev.
##  ForestID (Intercept) 0.7349  
## 
## Number of obs: 21 / Conditional model: ForestID, 5
## 
## Overdispersion parameter for beta family (): 5.74 
## 
## Fixed Effects:
## 
## Conditional model:
##    (Intercept)  Dist_trail_std  
##         1.5663          0.4633  
##  Family: beta  ( logit )
## Formula:          prop.Talpha ~ Dist_trail_std + (1 | ForestID)
## Data: Results2
## 
##      AIC      BIC   logLik deviance df.resid 
##    -45.3    -41.1     26.6    -53.3       17 
## 
## Random effects:
## 
## Conditional model:
##  Groups   Name        Variance Std.Dev.
##  ForestID (Intercept) 0.54     0.7349  
## Number of obs: 21, groups:  ForestID, 5
## 
## Overdispersion parameter for beta family (): 5.74 
## 
## Conditional model:
##                Estimate Std. Error z value Pr(>|z|)    
## (Intercept)      1.5663     0.4205   3.725 0.000196 ***
## Dist_trail_std   0.4633     0.3251   1.425 0.154114    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## Warning: mu of 5.5 is too close to zero, estimate of random effect variances may be unreliable.
## # R2 for Mixed Models
## 
##   Conditional R2: 1.219
##      Marginal R2: 0.307
##      chisq      ratio        rdf          p 
##  2.3882907  0.1404877 17.0000000  0.9999869
## Formula:          prop.Falpha ~ (1 | ForestID)
## Data: Results2
##       AIC       BIC    logLik  df.resid 
## -50.54869 -47.41512  28.27434        18 
## Random-effects (co)variances:
## 
## Conditional model:
##  Groups   Name        Std.Dev.
##  ForestID (Intercept) 0.142   
## 
## Number of obs: 21 / Conditional model: ForestID, 5
## 
## Overdispersion parameter for beta family (): 77.1 
## 
## Fixed Effects:
## 
## Conditional model:
## (Intercept)  
##     -0.1659  
##  Family: beta  ( logit )
## Formula:          prop.Falpha ~ (1 | ForestID)
## Data: Results2
## 
##      AIC      BIC   logLik deviance df.resid 
##    -50.5    -47.4     28.3    -56.5       18 
## 
## Random effects:
## 
## Conditional model:
##  Groups   Name        Variance Std.Dev.
##  ForestID (Intercept) 0.02016  0.142   
## Number of obs: 21, groups:  ForestID, 5
## 
## Overdispersion parameter for beta family (): 77.1 
## 
## Conditional model:
##             Estimate Std. Error z value Pr(>|z|)  
## (Intercept) -0.16590    0.09412  -1.762    0.078 .
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## Warning: mu of 0.8 is too close to zero, estimate of random effect variances may be unreliable.
## # R2 for Mixed Models
## 
##   Conditional R2: 0.897
##      Marginal R2: 0.000
##       chisq       ratio         rdf           p 
##  0.22976531  0.01276474 18.00000000  1.00000000
## Formula:          prop.Falpha ~ Dist_trail_beginning_std + (1 | ForestID)
## Data: Results2
##       AIC       BIC    logLik  df.resid 
## -49.65403 -45.47594  28.82702        17 
## Random-effects (co)variances:
## 
## Conditional model:
##  Groups   Name        Std.Dev.
##  ForestID (Intercept) 0.1767  
## 
## Number of obs: 21 / Conditional model: ForestID, 5
## 
## Overdispersion parameter for beta family (): 88.7 
## 
## Fixed Effects:
## 
## Conditional model:
##              (Intercept)  Dist_trail_beginning_std  
##                 -0.21851                   0.07238  
##  Family: beta  ( logit )
## Formula:          prop.Falpha ~ Dist_trail_beginning_std + (1 | ForestID)
## Data: Results2
## 
##      AIC      BIC   logLik deviance df.resid 
##    -49.7    -45.5     28.8    -57.7       17 
## 
## Random effects:
## 
## Conditional model:
##  Groups   Name        Variance Std.Dev.
##  ForestID (Intercept) 0.03122  0.1767  
## Number of obs: 21, groups:  ForestID, 5
## 
## Overdispersion parameter for beta family (): 88.7 
## 
## Conditional model:
##                          Estimate Std. Error z value Pr(>|z|)  
## (Intercept)              -0.21851    0.10782  -2.027   0.0427 *
## Dist_trail_beginning_std  0.07238    0.06581   1.100   0.2715  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## Warning: mu of 0.8 is too close to zero, estimate of random effect variances may be unreliable.
## # R2 for Mixed Models
## 
##   Conditional R2: 0.945
##      Marginal R2: 0.092
##       chisq       ratio         rdf           p 
##  0.19503099  0.01147241 17.00000000  1.00000000
## Formula:          prop.abund ~ (1 | ForestID)
## Data: Results2
##       AIC       BIC    logLik  df.resid 
## -78.42321 -75.28964  42.21160        18 
## Random-effects (co)variances:
## 
## Conditional model:
##  Groups   Name        Std.Dev.
##  ForestID (Intercept) 0.5683  
## 
## Number of obs: 21 / Conditional model: ForestID, 5
## 
## Overdispersion parameter for beta family (): 9.46 
## 
## Fixed Effects:
## 
## Conditional model:
## (Intercept)  
##       2.659  
##  Family: beta  ( logit )
## Formula:          prop.abund ~ (1 | ForestID)
## Data: Results2
## 
##      AIC      BIC   logLik deviance df.resid 
##    -78.4    -75.3     42.2    -84.4       18 
## 
## Random effects:
## 
## Conditional model:
##  Groups   Name        Variance Std.Dev.
##  ForestID (Intercept) 0.323    0.5683  
## Number of obs: 21, groups:  ForestID, 5
## 
## Overdispersion parameter for beta family (): 9.46 
## 
## Conditional model:
##             Estimate Std. Error z value Pr(>|z|)    
## (Intercept)   2.6587     0.3817   6.966 3.26e-12 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## # R2 for Mixed Models
## 
##   Conditional R2: 1.405
##      Marginal R2: 0.000
##       chisq       ratio         rdf           p 
##  1.01738616  0.05652145 18.00000000  1.00000000
## Formula:          all.tax.btotal ~ Dist_trail_std + (1 | ForestID)
## Data: Results2
##       AIC       BIC    logLik  df.resid 
## -33.88890 -29.71081  20.94445        17 
## Random-effects (co)variances:
## 
## Conditional model:
##  Groups   Name        Std.Dev.
##  ForestID (Intercept) 0.9278  
## 
## Number of obs: 21 / Conditional model: ForestID, 5
## 
## Overdispersion parameter for beta family ():    3 
## 
## Fixed Effects:
## 
## Conditional model:
##    (Intercept)  Dist_trail_std  
##        -0.8334         -1.2546  
##  Family: beta  ( logit )
## Formula:          all.tax.btotal ~ Dist_trail_std + (1 | ForestID)
## Data: Results2
## 
##      AIC      BIC   logLik deviance df.resid 
##    -33.9    -29.7     20.9    -41.9       17 
## 
## Random effects:
## 
## Conditional model:
##  Groups   Name        Variance Std.Dev.
##  ForestID (Intercept) 0.8608   0.9278  
## Number of obs: 21, groups:  ForestID, 5
## 
## Overdispersion parameter for beta family ():    3 
## 
## Conditional model:
##                Estimate Std. Error z value Pr(>|z|)   
## (Intercept)     -0.8334     0.4983  -1.673  0.09443 . 
## Dist_trail_std  -1.2546     0.4024  -3.118  0.00182 **
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## Warning: mu of 0.4 is too close to zero, estimate of random effect variances may be unreliable.
## # R2 for Mixed Models
## 
##   Conditional R2: 0.870
##      Marginal R2: 0.528
##      chisq      ratio        rdf          p 
##  2.7779510  0.1634089 17.0000000  0.9999601
## Formula:          
## all.tax.btotal ~ Dist_edge_std + Dist_trail_std + (1 | ForestID)
## Data: Results2
##       AIC       BIC    logLik  df.resid 
## -35.16903 -29.94641  22.58451        16 
## Random-effects (co)variances:
## 
## Conditional model:
##  Groups   Name        Std.Dev.
##  ForestID (Intercept) 0.914   
## 
## Number of obs: 21 / Conditional model: ForestID, 5
## 
## Overdispersion parameter for beta family (): 3.46 
## 
## Fixed Effects:
## 
## Conditional model:
##    (Intercept)   Dist_edge_std  Dist_trail_std  
##         -1.250           1.132          -1.704  
##  Family: beta  ( logit )
## Formula:          
## all.tax.btotal ~ Dist_edge_std + Dist_trail_std + (1 | ForestID)
## Data: Results2
## 
##      AIC      BIC   logLik deviance df.resid 
##    -35.2    -29.9     22.6    -45.2       16 
## 
## Random effects:
## 
## Conditional model:
##  Groups   Name        Variance Std.Dev.
##  ForestID (Intercept) 0.8354   0.914   
## Number of obs: 21, groups:  ForestID, 5
## 
## Overdispersion parameter for beta family (): 3.46 
## 
## Conditional model:
##                Estimate Std. Error z value Pr(>|z|)    
## (Intercept)     -1.2502     0.5557  -2.250 0.024453 *  
## Dist_edge_std    1.1322     0.6595   1.717 0.086022 .  
## Dist_trail_std  -1.7044     0.4517  -3.773 0.000161 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## Warning: mu of 0.4 is too close to zero, estimate of random effect variances may be unreliable.
## # R2 for Mixed Models
## 
##   Conditional R2: 0.899
##      Marginal R2: 0.619
##      chisq      ratio        rdf          p 
##  2.8891280  0.1805705 16.0000000  0.9998683
## Formula:          all.tax.brich ~ Dist_trail_std + (1 | ForestID)
## Data: Results2
##       AIC       BIC    logLik  df.resid 
## -79.19751 -75.01942  43.59875        17 
## Random-effects (co)variances:
## 
## Conditional model:
##  Groups   Name        Std.Dev.
##  ForestID (Intercept) 1.258   
## 
## Number of obs: 21 / Conditional model: ForestID, 5
## 
## Overdispersion parameter for beta family ():   15 
## 
## Fixed Effects:
## 
## Conditional model:
##    (Intercept)  Dist_trail_std  
##         -2.424          -1.450  
##  Family: beta  ( logit )
## Formula:          all.tax.brich ~ Dist_trail_std + (1 | ForestID)
## Data: Results2
## 
##      AIC      BIC   logLik deviance df.resid 
##    -79.2    -75.0     43.6    -87.2       17 
## 
## Random effects:
## 
## Conditional model:
##  Groups   Name        Variance Std.Dev.
##  ForestID (Intercept) 1.581    1.258   
## Number of obs: 21, groups:  ForestID, 5
## 
## Overdispersion parameter for beta family ():   15 
## 
## Conditional model:
##                Estimate Std. Error z value Pr(>|z|)    
## (Intercept)     -2.4243     0.6253  -3.877 0.000106 ***
## Dist_trail_std  -1.4497     0.3959  -3.662 0.000250 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## Warning: mu of 0.1 is too close to zero, estimate of random effect variances may be unreliable.
## # R2 for Mixed Models
## 
##   Conditional R2: 0.901
##      Marginal R2: 0.477
##       chisq       ratio         rdf           p 
##  0.69342191  0.04078952 17.00000000  1.00000000
## Formula:          
## all.tax.brich ~ Dist_edge_std + Dist_trail_std + (1 | ForestID)
## Data: Results2
##       AIC       BIC    logLik  df.resid 
## -79.78142 -74.55881  44.89071        16 
## Random-effects (co)variances:
## 
## Conditional model:
##  Groups   Name        Std.Dev.
##  ForestID (Intercept) 1.077   
## 
## Number of obs: 21 / Conditional model: ForestID, 5
## 
## Overdispersion parameter for beta family (): 14.7 
## 
## Fixed Effects:
## 
## Conditional model:
##    (Intercept)   Dist_edge_std  Dist_trail_std  
##        -2.7132          0.8819         -1.6443  
##  Family: beta  ( logit )
## Formula:          
## all.tax.brich ~ Dist_edge_std + Dist_trail_std + (1 | ForestID)
## Data: Results2
## 
##      AIC      BIC   logLik deviance df.resid 
##    -79.8    -74.6     44.9    -89.8       16 
## 
## Random effects:
## 
## Conditional model:
##  Groups   Name        Variance Std.Dev.
##  ForestID (Intercept) 1.16     1.077   
## Number of obs: 21, groups:  ForestID, 5
## 
## Overdispersion parameter for beta family (): 14.7 
## 
## Conditional model:
##                Estimate Std. Error z value Pr(>|z|)    
## (Intercept)     -2.7132     0.5796  -4.681 2.86e-06 ***
## Dist_edge_std    0.8819     0.5185   1.701    0.089 .  
## Dist_trail_std  -1.6443     0.3823  -4.301 1.70e-05 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## Warning: mu of 0.1 is too close to zero, estimate of random effect variances may be unreliable.
## # R2 for Mixed Models
## 
##   Conditional R2: 0.884
##      Marginal R2: 0.527
##       chisq       ratio         rdf           p 
##  0.81349415  0.05084338 16.00000000  0.99999999
## Formula:          all.tax.brepl ~ Dist_trail_std + (1 | ForestID)
## Data: Results2
##       AIC       BIC    logLik  df.resid 
## -47.39823 -43.22014  27.69911        17 
## Random-effects (co)variances:
## 
## Conditional model:
##  Groups   Name        Std.Dev.
##  ForestID (Intercept) 0.4016  
## 
## Number of obs: 21 / Conditional model: ForestID, 5
## 
## Overdispersion parameter for beta family (): 2.26 
## 
## Fixed Effects:
## 
## Conditional model:
##    (Intercept)  Dist_trail_std  
##        -1.2313         -0.6954  
##  Family: beta  ( logit )
## Formula:          all.tax.brepl ~ Dist_trail_std + (1 | ForestID)
## Data: Results2
## 
##      AIC      BIC   logLik deviance df.resid 
##    -47.4    -43.2     27.7    -55.4       17 
## 
## Random effects:
## 
## Conditional model:
##  Groups   Name        Variance Std.Dev.
##  ForestID (Intercept) 0.1613   0.4016  
## Number of obs: 21, groups:  ForestID, 5
## 
## Overdispersion parameter for beta family (): 2.26 
## 
## Conditional model:
##                Estimate Std. Error z value Pr(>|z|)   
## (Intercept)     -1.2313     0.3787  -3.251  0.00115 **
## Dist_trail_std  -0.6954     0.3399  -2.046  0.04074 * 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## Warning: mu of 0.3 is too close to zero, estimate of random effect variances may be unreliable.
## # R2 for Mixed Models
## 
##   Conditional R2: 0.470
##      Marginal R2: 0.337
##      chisq      ratio        rdf          p 
##  3.0185237  0.1775602 17.0000000  0.9999274
## Formula:          
## all.tax.brepl ~ Dist_edge_std + Dist_trail_std + (1 | ForestID)
## Data: Results2
##       AIC       BIC    logLik  df.resid 
## -48.16975 -42.94714  29.08488        16 
## Random-effects (co)variances:
## 
## Conditional model:
##  Groups   Name        Std.Dev. 
##  ForestID (Intercept) 0.0001152
## 
## Number of obs: 21 / Conditional model: ForestID, 5
## 
## Overdispersion parameter for beta family (): 2.35 
## 
## Fixed Effects:
## 
## Conditional model:
##    (Intercept)   Dist_edge_std  Dist_trail_std  
##        -1.4674          0.6402         -0.9475  
##  Family: beta  ( logit )
## Formula:          
## all.tax.brepl ~ Dist_edge_std + Dist_trail_std + (1 | ForestID)
## Data: Results2
## 
##      AIC      BIC   logLik deviance df.resid 
##    -48.2    -42.9     29.1    -58.2       16 
## 
## Random effects:
## 
## Conditional model:
##  Groups   Name        Variance  Std.Dev. 
##  ForestID (Intercept) 1.327e-08 0.0001152
## Number of obs: 21, groups:  ForestID, 5
## 
## Overdispersion parameter for beta family (): 2.35 
## 
## Conditional model:
##                Estimate Std. Error z value Pr(>|z|)    
## (Intercept)     -1.4674     0.3437  -4.269 1.96e-05 ***
## Dist_edge_std    0.6402     0.3526   1.816  0.06945 .  
## Dist_trail_std  -0.9475     0.3522  -2.690  0.00714 ** 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## Warning: Can't compute random effect variances. Some variance components equal zero.
##   Solution: Respecify random structure!
## Warning: mu of 0.3 is too close to zero, estimate of random effect variances may be unreliable.
## Random effect variances not available. Returned R2 does not account for random effects.
## # R2 for Mixed Models
## 
##   Conditional R2: NA
##      Marginal R2: 0.475
##      chisq      ratio        rdf          p 
##  3.8469197  0.2404325 16.0000000  0.9991423
## Formula:          nat.tax.btotal ~ Dist_trail_std + (1 | ForestID)
## Data: Results2
##       AIC       BIC    logLik  df.resid 
## -37.43930 -33.26121  22.71965        17 
## Random-effects (co)variances:
## 
## Conditional model:
##  Groups   Name        Std.Dev.
##  ForestID (Intercept) 0.9177  
## 
## Number of obs: 21 / Conditional model: ForestID, 5
## 
## Overdispersion parameter for beta family (): 3.69 
## 
## Fixed Effects:
## 
## Conditional model:
##    (Intercept)  Dist_trail_std  
##         -1.038          -1.265  
##  Family: beta  ( logit )
## Formula:          nat.tax.btotal ~ Dist_trail_std + (1 | ForestID)
## Data: Results2
## 
##      AIC      BIC   logLik deviance df.resid 
##    -37.4    -33.3     22.7    -45.4       17 
## 
## Random effects:
## 
## Conditional model:
##  Groups   Name        Variance Std.Dev.
##  ForestID (Intercept) 0.8423   0.9177  
## Number of obs: 21, groups:  ForestID, 5
## 
## Overdispersion parameter for beta family (): 3.69 
## 
## Conditional model:
##                Estimate Std. Error z value Pr(>|z|)   
## (Intercept)     -1.0376     0.4926  -2.106  0.03518 * 
## Dist_trail_std  -1.2646     0.3991  -3.168  0.00153 **
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## Warning: mu of 0.3 is too close to zero, estimate of random effect variances may be unreliable.
## # R2 for Mixed Models
## 
##   Conditional R2: 0.860
##      Marginal R2: 0.530
##      chisq      ratio        rdf          p 
##  2.2357030  0.1315119 17.0000000  0.9999920
## Formula:          
## nat.tax.btotal ~ Dist_edge_std + Dist_trail_std + (1 | ForestID)
## Data: Results2
##       AIC       BIC    logLik  df.resid 
## -38.73086 -33.50825  24.36543        16 
## Random-effects (co)variances:
## 
## Conditional model:
##  Groups   Name        Std.Dev.
##  ForestID (Intercept) 0.8598  
## 
## Number of obs: 21 / Conditional model: ForestID, 5
## 
## Overdispersion parameter for beta family (): 4.14 
## 
## Fixed Effects:
## 
## Conditional model:
##    (Intercept)   Dist_edge_std  Dist_trail_std  
##         -1.431           1.073          -1.662  
##  Family: beta  ( logit )
## Formula:          
## nat.tax.btotal ~ Dist_edge_std + Dist_trail_std + (1 | ForestID)
## Data: Results2
## 
##      AIC      BIC   logLik deviance df.resid 
##    -38.7    -33.5     24.4    -48.7       16 
## 
## Random effects:
## 
## Conditional model:
##  Groups   Name        Variance Std.Dev.
##  ForestID (Intercept) 0.7393   0.8598  
## Number of obs: 21, groups:  ForestID, 5
## 
## Overdispersion parameter for beta family (): 4.14 
## 
## Conditional model:
##                Estimate Std. Error z value Pr(>|z|)    
## (Intercept)     -1.4310     0.5293  -2.704 0.006859 ** 
## Dist_edge_std    1.0727     0.6115   1.754 0.079376 .  
## Dist_trail_std  -1.6624     0.4307  -3.859 0.000114 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## Warning: mu of 0.3 is too close to zero, estimate of random effect variances may be unreliable.
## # R2 for Mixed Models
## 
##   Conditional R2: 0.883
##      Marginal R2: 0.621
##      chisq      ratio        rdf          p 
##  2.4201718  0.1512607 16.0000000  0.9999608
## Formula:          nat.tax.brich ~ (1 | ForestID)
## Data: Results2
##        AIC        BIC     logLik   df.resid 
## -135.83009 -132.69652   70.91504         18 
## Random-effects (co)variances:
## 
## Conditional model:
##  Groups   Name        Std.Dev. 
##  ForestID (Intercept) 3.094e-05
## 
## Number of obs: 21 / Conditional model: ForestID, 5
## 
## Overdispersion parameter for beta family (): 3.08 
## 
## Fixed Effects:
## 
## Conditional model:
## (Intercept)  
##      -2.636  
##  Family: beta  ( logit )
## Formula:          nat.tax.brich ~ (1 | ForestID)
## Data: Results2
## 
##      AIC      BIC   logLik deviance df.resid 
##   -135.8   -132.7     70.9   -141.8       18 
## 
## Random effects:
## 
## Conditional model:
##  Groups   Name        Variance  Std.Dev. 
##  ForestID (Intercept) 9.572e-10 3.094e-05
## Number of obs: 21, groups:  ForestID, 5
## 
## Overdispersion parameter for beta family (): 3.08 
## 
## Conditional model:
##             Estimate Std. Error z value Pr(>|z|)    
## (Intercept)  -2.6358     0.4236  -6.223 4.88e-10 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## Warning: Can't compute random effect variances. Some variance components equal zero.
##   Solution: Respecify random structure!
## Warning: mu of 0.1 is too close to zero, estimate of random effect variances may be unreliable.
## Random effect variances not available. Returned R2 does not account for random effects.
## # R2 for Mixed Models
## 
##   Conditional R2: NA
##      Marginal R2: 0.000
##     chisq     ratio       rdf         p 
##  3.698676  0.205482 18.000000  0.999866
## Formula:          nat.tax.brepl ~ Dist_trail_std + (1 | ForestID)
## Data: Results2
##       AIC       BIC    logLik  df.resid 
## -47.98269 -43.80460  27.99135        17 
## Random-effects (co)variances:
## 
## Conditional model:
##  Groups   Name        Std.Dev.
##  ForestID (Intercept) 0.4623  
## 
## Number of obs: 21 / Conditional model: ForestID, 5
## 
## Overdispersion parameter for beta family (): 2.32 
## 
## Fixed Effects:
## 
## Conditional model:
##    (Intercept)  Dist_trail_std  
##        -1.2587         -0.7198  
##  Family: beta  ( logit )
## Formula:          nat.tax.brepl ~ Dist_trail_std + (1 | ForestID)
## Data: Results2
## 
##      AIC      BIC   logLik deviance df.resid 
##    -48.0    -43.8     28.0    -56.0       17 
## 
## Random effects:
## 
## Conditional model:
##  Groups   Name        Variance Std.Dev.
##  ForestID (Intercept) 0.2137   0.4623  
## Number of obs: 21, groups:  ForestID, 5
## 
## Overdispersion parameter for beta family (): 2.32 
## 
## Conditional model:
##                Estimate Std. Error z value Pr(>|z|)   
## (Intercept)     -1.2587     0.3933  -3.200  0.00137 **
## Dist_trail_std  -0.7198     0.3466  -2.077  0.03781 * 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## Warning: mu of 0.3 is too close to zero, estimate of random effect variances may be unreliable.
## # R2 for Mixed Models
## 
##   Conditional R2: 0.506
##      Marginal R2: 0.340
##      chisq      ratio        rdf          p 
##  3.3206201  0.1953306 17.0000000  0.9998569
## Formula:          
## nat.tax.brepl ~ Dist_edge_std + Dist_trail_std + (1 | ForestID)
## Data: Results2
##       AIC       BIC    logLik  df.resid 
## -48.84569 -43.62308  29.42285        16 
## Random-effects (co)variances:
## 
## Conditional model:
##  Groups   Name        Std.Dev.
##  ForestID (Intercept) 0.3497  
## 
## Number of obs: 21 / Conditional model: ForestID, 5
## 
## Overdispersion parameter for beta family (): 2.56 
## 
## Fixed Effects:
## 
## Conditional model:
##    (Intercept)   Dist_edge_std  Dist_trail_std  
##        -1.5571          0.7591         -1.0586  
##  Family: beta  ( logit )
## Formula:          
## nat.tax.brepl ~ Dist_edge_std + Dist_trail_std + (1 | ForestID)
## Data: Results2
## 
##      AIC      BIC   logLik deviance df.resid 
##    -48.8    -43.6     29.4    -58.8       16 
## 
## Random effects:
## 
## Conditional model:
##  Groups   Name        Variance Std.Dev.
##  ForestID (Intercept) 0.1223   0.3497  
## Number of obs: 21, groups:  ForestID, 5
## 
## Overdispersion parameter for beta family (): 2.56 
## 
## Conditional model:
##                Estimate Std. Error z value Pr(>|z|)   
## (Intercept)     -1.5571     0.4806  -3.240   0.0012 **
## Dist_edge_std    0.7591     0.5949   1.276   0.2020   
## Dist_trail_std  -1.0586     0.5402  -1.960   0.0500 . 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## Warning: mu of 0.3 is too close to zero, estimate of random effect variances may be unreliable.
## # R2 for Mixed Models
## 
##   Conditional R2: 0.581
##      Marginal R2: 0.497
##      chisq      ratio        rdf          p 
##  3.6036548  0.2252284 16.0000000  0.9994348
## Formula:          
## nind.tax.btotal ~ Dist_edge_std + Dist_trail_std + (1 | ForestID)
## Data: Results2
##        AIC        BIC     logLik   df.resid 
## -153.39008 -148.16747   81.69504         16 
## Random-effects (co)variances:
## 
## Conditional model:
##  Groups   Name        Std.Dev. 
##  ForestID (Intercept) 4.331e-05
## 
## Number of obs: 21 / Conditional model: ForestID, 5
## 
## Overdispersion parameter for beta family (): 0.396 
## 
## Fixed Effects:
## 
## Conditional model:
##    (Intercept)   Dist_edge_std  Dist_trail_std  
##       -0.03587         0.90713        -0.97860  
##  Family: beta  ( logit )
## Formula:          
## nind.tax.btotal ~ Dist_edge_std + Dist_trail_std + (1 | ForestID)
## Data: Results2
## 
##      AIC      BIC   logLik deviance df.resid 
##   -153.4   -148.2     81.7   -163.4       16 
## 
## Random effects:
## 
## Conditional model:
##  Groups   Name        Variance  Std.Dev. 
##  ForestID (Intercept) 1.876e-09 4.331e-05
## Number of obs: 21, groups:  ForestID, 5
## 
## Overdispersion parameter for beta family (): 0.396 
## 
## Conditional model:
##                Estimate Std. Error z value Pr(>|z|)  
## (Intercept)    -0.03587    0.38041  -0.094   0.9249  
## Dist_edge_std   0.90713    0.44137   2.055   0.0399 *
## Dist_trail_std -0.97860    0.40175  -2.436   0.0149 *
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## Warning: Can't compute random effect variances. Some variance components equal zero.
##   Solution: Respecify random structure!
## Warning: mu of 1.2 is too close to zero, estimate of random effect variances may be unreliable.
## Random effect variances not available. Returned R2 does not account for random effects.
## # R2 for Mixed Models
## 
##   Conditional R2: NA
##      Marginal R2: 1.176
##     chisq     ratio       rdf         p 
## 11.164000  0.697750 16.000000  0.799251
## Formula:          nind.tax.btotal ~ (1 | ForestID)
## Data: Results2
##        AIC        BIC     logLik   df.resid 
## -150.52152 -147.38796   78.26076         18 
## Random-effects (co)variances:
## 
## Conditional model:
##  Groups   Name        Std.Dev. 
##  ForestID (Intercept) 6.489e-05
## 
## Number of obs: 21 / Conditional model: ForestID, 5
## 
## Overdispersion parameter for beta family (): 0.287 
## 
## Fixed Effects:
## 
## Conditional model:
## (Intercept)  
##      0.1433  
##  Family: beta  ( logit )
## Formula:          nind.tax.btotal ~ (1 | ForestID)
## Data: Results2
## 
##      AIC      BIC   logLik deviance df.resid 
##   -150.5   -147.4     78.3   -156.5       18 
## 
## Random effects:
## 
## Conditional model:
##  Groups   Name        Variance  Std.Dev. 
##  ForestID (Intercept) 4.211e-09 6.489e-05
## Number of obs: 21, groups:  ForestID, 5
## 
## Overdispersion parameter for beta family (): 0.287 
## 
## Conditional model:
##             Estimate Std. Error z value Pr(>|z|)
## (Intercept)   0.1433     0.3052    0.47    0.639
## Warning: Can't compute random effect variances. Some variance components equal zero.
##   Solution: Respecify random structure!

## Warning: mu of 1.2 is too close to zero, estimate of random effect variances may be unreliable.
## Random effect variances not available. Returned R2 does not account for random effects.
## # R2 for Mixed Models
## 
##   Conditional R2: NA
##      Marginal R2: -0.000
##      chisq      ratio        rdf          p 
## 16.4515482  0.9139749 18.0000000  0.5610653
## Formula:          nind.tax.btotal ~ Dist_trail_std + (1 | ForestID)
## Data: Results2
##        AIC        BIC     logLik   df.resid 
## -151.22891 -147.05082   79.61446         17 
## Random-effects (co)variances:
## 
## Conditional model:
##  Groups   Name        Std.Dev. 
##  ForestID (Intercept) 8.646e-05
## 
## Number of obs: 21 / Conditional model: ForestID, 5
## 
## Overdispersion parameter for beta family (): 0.327 
## 
## Fixed Effects:
## 
## Conditional model:
##    (Intercept)  Dist_trail_std  
##         0.3882         -0.5428  
##  Family: beta  ( logit )
## Formula:          nind.tax.btotal ~ Dist_trail_std + (1 | ForestID)
## Data: Results2
## 
##      AIC      BIC   logLik deviance df.resid 
##   -151.2   -147.1     79.6   -159.2       17 
## 
## Random effects:
## 
## Conditional model:
##  Groups   Name        Variance  Std.Dev. 
##  ForestID (Intercept) 7.475e-09 8.646e-05
## Number of obs: 21, groups:  ForestID, 5
## 
## Overdispersion parameter for beta family (): 0.327 
## 
## Conditional model:
##                Estimate Std. Error z value Pr(>|z|)
## (Intercept)      0.3882     0.3348   1.160    0.246
## Dist_trail_std  -0.5428     0.3386  -1.603    0.109
## Warning: Can't compute random effect variances. Some variance components equal zero.
##   Solution: Respecify random structure!

## Warning: mu of 1.2 is too close to zero, estimate of random effect variances may be unreliable.
## Random effect variances not available. Returned R2 does not account for random effects.
## # R2 for Mixed Models
## 
##   Conditional R2: NA
##      Marginal R2: 1.740
##      chisq      ratio        rdf          p 
## 14.0916376  0.8289199 17.0000000  0.6606050
## Formula:          
## nind.tax.brich ~ Dist_edge_std + Dist_trail_std + (1 | ForestID)
## Data: Results2
##       AIC       BIC    logLik  df.resid 
## -155.7636 -150.5410   82.8818        16 
## Random-effects (co)variances:
## 
## Conditional model:
##  Groups   Name        Std.Dev. 
##  ForestID (Intercept) 5.162e-05
## 
## Number of obs: 21 / Conditional model: ForestID, 5
## 
## Overdispersion parameter for beta family (): 0.479 
## 
## Fixed Effects:
## 
## Conditional model:
##    (Intercept)   Dist_edge_std  Dist_trail_std  
##        -0.6909          1.4233         -1.0907  
##  Family: beta  ( logit )
## Formula:          
## nind.tax.brich ~ Dist_edge_std + Dist_trail_std + (1 | ForestID)
## Data: Results2
## 
##      AIC      BIC   logLik deviance df.resid 
##   -155.8   -150.5     82.9   -165.8       16 
## 
## Random effects:
## 
## Conditional model:
##  Groups   Name        Variance  Std.Dev. 
##  ForestID (Intercept) 2.665e-09 5.162e-05
## Number of obs: 21, groups:  ForestID, 5
## 
## Overdispersion parameter for beta family (): 0.479 
## 
## Conditional model:
##                Estimate Std. Error z value Pr(>|z|)   
## (Intercept)     -0.6909     0.3859  -1.790  0.07342 . 
## Dist_edge_std    1.4233     0.4788   2.973  0.00295 **
## Dist_trail_std  -1.0907     0.4112  -2.652  0.00799 **
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## Warning: Can't compute random effect variances. Some variance components equal zero.
##   Solution: Respecify random structure!
## Warning: mu of 0.8 is too close to zero, estimate of random effect variances may be unreliable.
## Random effect variances not available. Returned R2 does not account for random effects.
## # R2 for Mixed Models
## 
##   Conditional R2: NA
##      Marginal R2: 0.908
##      chisq      ratio        rdf          p 
##  8.6087198  0.5380450 16.0000000  0.9286488
## Formula:          nind.tax.brepl ~ (1 | ForestID)
## Data: Results2
##        AIC        BIC     logLik   df.resid 
## -155.99305 -152.85948   80.99652         18 
## Random-effects (co)variances:
## 
## Conditional model:
##  Groups   Name        Std.Dev. 
##  ForestID (Intercept) 0.0001298
## 
## Number of obs: 21 / Conditional model: ForestID, 5
## 
## Overdispersion parameter for beta family (): 1.08 
## 
## Fixed Effects:
## 
## Conditional model:
## (Intercept)  
##      -1.862  
##  Family: beta  ( logit )
## Formula:          nind.tax.brepl ~ (1 | ForestID)
## Data: Results2
## 
##      AIC      BIC   logLik deviance df.resid 
##   -156.0   -152.9     81.0   -162.0       18 
## 
## Random effects:
## 
## Conditional model:
##  Groups   Name        Variance  Std.Dev. 
##  ForestID (Intercept) 1.685e-08 0.0001298
## Number of obs: 21, groups:  ForestID, 5
## 
## Overdispersion parameter for beta family (): 1.08 
## 
## Conditional model:
##             Estimate Std. Error z value Pr(>|z|)    
## (Intercept)  -1.8618     0.4048    -4.6 4.23e-06 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## Warning: Can't compute random effect variances. Some variance components equal zero.
##   Solution: Respecify random structure!
## Warning: mu of 0.2 is too close to zero, estimate of random effect variances may be unreliable.
## Random effect variances not available. Returned R2 does not account for random effects.
## # R2 for Mixed Models
## 
##   Conditional R2: NA
##      Marginal R2: 0.000
##      chisq      ratio        rdf          p 
## 12.0360372  0.6686687 18.0000000  0.8453714
## Formula:          nind.tax.brepl ~ Dist_edge_std + (1 | ForestID)
## Data: Results2
##        AIC        BIC     logLik   df.resid 
## -155.59071 -151.41263   81.79536         17 
## Random-effects (co)variances:
## 
## Conditional model:
##  Groups   Name        Std.Dev. 
##  ForestID (Intercept) 0.0001051
## 
## Number of obs: 21 / Conditional model: ForestID, 5
## 
## Overdispersion parameter for beta family (): 1.16 
## 
## Fixed Effects:
## 
## Conditional model:
##   (Intercept)  Dist_edge_std  
##       -1.6300        -0.3985  
##  Family: beta  ( logit )
## Formula:          nind.tax.brepl ~ Dist_edge_std + (1 | ForestID)
## Data: Results2
## 
##      AIC      BIC   logLik deviance df.resid 
##   -155.6   -151.4     81.8   -163.6       17 
## 
## Random effects:
## 
## Conditional model:
##  Groups   Name        Variance  Std.Dev. 
##  ForestID (Intercept) 1.105e-08 0.0001051
## Number of obs: 21, groups:  ForestID, 5
## 
## Overdispersion parameter for beta family (): 1.16 
## 
## Conditional model:
##               Estimate Std. Error z value Pr(>|z|)    
## (Intercept)    -1.6300     0.4351  -3.746  0.00018 ***
## Dist_edge_std  -0.3985     0.3195  -1.247  0.21226    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## Warning: Can't compute random effect variances. Some variance components equal zero.
##   Solution: Respecify random structure!

## Warning: mu of 0.2 is too close to zero, estimate of random effect variances may be unreliable.
## Random effect variances not available. Returned R2 does not account for random effects.
## # R2 for Mixed Models
## 
##   Conditional R2: NA
##      Marginal R2: 0.072
##      chisq      ratio        rdf          p 
##  9.5742292  0.5631900 17.0000000  0.9205096
## Formula:          all.func.btotal ~ Dist_trail_std + (1 | ForestID)
## Data: Results2
##       AIC       BIC    logLik  df.resid 
## -33.44919 -29.27110  20.72459        17 
## Random-effects (co)variances:
## 
## Conditional model:
##  Groups   Name        Std.Dev.
##  ForestID (Intercept) 0.7879  
## 
## Number of obs: 21 / Conditional model: ForestID, 5
## 
## Overdispersion parameter for beta family (): 2.66 
## 
## Fixed Effects:
## 
## Conditional model:
##    (Intercept)  Dist_trail_std  
##        -0.8169         -1.1691  
##  Family: beta  ( logit )
## Formula:          all.func.btotal ~ Dist_trail_std + (1 | ForestID)
## Data: Results2
## 
##      AIC      BIC   logLik deviance df.resid 
##    -33.4    -29.3     20.7    -41.4       17 
## 
## Random effects:
## 
## Conditional model:
##  Groups   Name        Variance Std.Dev.
##  ForestID (Intercept) 0.6208   0.7879  
## Number of obs: 21, groups:  ForestID, 5
## 
## Overdispersion parameter for beta family (): 2.66 
## 
## Conditional model:
##                Estimate Std. Error z value Pr(>|z|)   
## (Intercept)     -0.8169     0.4538  -1.800  0.07186 . 
## Dist_trail_std  -1.1691     0.4214  -2.775  0.00553 **
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## Warning: mu of 0.4 is too close to zero, estimate of random effect variances may be unreliable.
## # R2 for Mixed Models
## 
##   Conditional R2: 0.832
##      Marginal R2: 0.542
##      chisq      ratio        rdf          p 
##  3.0771443  0.1810085 17.0000000  0.9999166
## Formula:          
## all.func.btotal ~ Dist_edge_std + Dist_trail_std + (1 | ForestID)
## Data: Results2
##       AIC       BIC    logLik  df.resid 
## -34.91468 -29.69207  22.45734        16 
## Random-effects (co)variances:
## 
## Conditional model:
##  Groups   Name        Std.Dev.
##  ForestID (Intercept) 0.7072  
## 
## Number of obs: 21 / Conditional model: ForestID, 5
## 
## Overdispersion parameter for beta family (): 3.03 
## 
## Fixed Effects:
## 
## Conditional model:
##    (Intercept)   Dist_edge_std  Dist_trail_std  
##         -1.204           1.058          -1.596  
##  Family: beta  ( logit )
## Formula:          
## all.func.btotal ~ Dist_edge_std + Dist_trail_std + (1 | ForestID)
## Data: Results2
## 
##      AIC      BIC   logLik deviance df.resid 
##    -34.9    -29.7     22.5    -44.9       16 
## 
## Random effects:
## 
## Conditional model:
##  Groups   Name        Variance Std.Dev.
##  ForestID (Intercept) 0.5002   0.7072  
## Number of obs: 21, groups:  ForestID, 5
## 
## Overdispersion parameter for beta family (): 3.03 
## 
## Conditional model:
##                Estimate Std. Error z value Pr(>|z|)    
## (Intercept)     -1.2038     0.4923  -2.445  0.01448 *  
## Dist_edge_std    1.0580     0.6150   1.720  0.08536 .  
## Dist_trail_std  -1.5955     0.4718  -3.382  0.00072 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## Warning: mu of 0.4 is too close to zero, estimate of random effect variances may be unreliable.
## # R2 for Mixed Models
## 
##   Conditional R2: 0.865
##      Marginal R2: 0.660
##      chisq      ratio        rdf          p 
##  3.1770939  0.1985684 16.0000000  0.9997516
## Formula:          all.func.brich ~ Dist_trail_std + (1 | ForestID)
## Data: Results2
##       AIC       BIC    logLik  df.resid 
## -53.78730 -49.60921  30.89365        17 
## Random-effects (co)variances:
## 
## Conditional model:
##  Groups   Name        Std.Dev. 
##  ForestID (Intercept) 5.226e-05
## 
## Number of obs: 21 / Conditional model: ForestID, 5
## 
## Overdispersion parameter for beta family ():    3 
## 
## Fixed Effects:
## 
## Conditional model:
##    (Intercept)  Dist_trail_std  
##         -1.464          -0.647  
##  Family: beta  ( logit )
## Formula:          all.func.brich ~ Dist_trail_std + (1 | ForestID)
## Data: Results2
## 
##      AIC      BIC   logLik deviance df.resid 
##    -53.8    -49.6     30.9    -61.8       17 
## 
## Random effects:
## 
## Conditional model:
##  Groups   Name        Variance  Std.Dev. 
##  ForestID (Intercept) 2.731e-09 5.226e-05
## Number of obs: 21, groups:  ForestID, 5
## 
## Overdispersion parameter for beta family ():    3 
## 
## Conditional model:
##                Estimate Std. Error z value Pr(>|z|)    
## (Intercept)     -1.4636     0.2954  -4.955 7.22e-07 ***
## Dist_trail_std  -0.6470     0.2886  -2.242    0.025 *  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## Warning: Can't compute random effect variances. Some variance components equal zero.
##   Solution: Respecify random structure!

## Warning: mu of 0.2 is too close to zero, estimate of random effect variances may be unreliable.
## Random effect variances not available. Returned R2 does not account for random effects.
## # R2 for Mixed Models
## 
##   Conditional R2: NA
##      Marginal R2: 0.326
##      chisq      ratio        rdf          p 
##  3.0800536  0.1811796 17.0000000  0.9999161
## Formula:          
## all.func.brich ~ Dist_edge_std + Dist_trail_std + (1 | ForestID)
## Data: Results2
##       AIC       BIC    logLik  df.resid 
## -54.39010 -49.16749  32.19505        16 
## Random-effects (co)variances:
## 
## Conditional model:
##  Groups   Name        Std.Dev. 
##  ForestID (Intercept) 3.542e-05
## 
## Number of obs: 21 / Conditional model: ForestID, 5
## 
## Overdispersion parameter for beta family (): 3.48 
## 
## Fixed Effects:
## 
## Conditional model:
##    (Intercept)   Dist_edge_std  Dist_trail_std  
##        -1.7317          0.5463         -0.9422  
##  Family: beta  ( logit )
## Formula:          
## all.func.brich ~ Dist_edge_std + Dist_trail_std + (1 | ForestID)
## Data: Results2
## 
##      AIC      BIC   logLik deviance df.resid 
##    -54.4    -49.2     32.2    -64.4       16 
## 
## Random effects:
## 
## Conditional model:
##  Groups   Name        Variance  Std.Dev. 
##  ForestID (Intercept) 1.254e-09 3.542e-05
## Number of obs: 21, groups:  ForestID, 5
## 
## Overdispersion parameter for beta family (): 3.48 
## 
## Conditional model:
##                Estimate Std. Error z value Pr(>|z|)    
## (Intercept)     -1.7317     0.3294  -5.257 1.46e-07 ***
## Dist_edge_std    0.5463     0.3226   1.694  0.09035 .  
## Dist_trail_std  -0.9422     0.3389  -2.780  0.00543 ** 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## Warning: Can't compute random effect variances. Some variance components equal zero.
##   Solution: Respecify random structure!

## Warning: mu of 0.2 is too close to zero, estimate of random effect variances may be unreliable.
## Random effect variances not available. Returned R2 does not account for random effects.
## # R2 for Mixed Models
## 
##   Conditional R2: NA
##      Marginal R2: 0.453
##      chisq      ratio        rdf          p 
##  3.1695803  0.1980988 16.0000000  0.9997555
## Formula:          all.func.brepl ~ Dist_trail_std + (1 | ForestID)
## Data: Results2
##       AIC       BIC    logLik  df.resid 
## -55.25373 -51.07564  31.62687        17 
## Random-effects (co)variances:
## 
## Conditional model:
##  Groups   Name        Std.Dev.
##  ForestID (Intercept) 1.034   
## 
## Number of obs: 21 / Conditional model: ForestID, 5
## 
## Overdispersion parameter for beta family (): 7.85 
## 
## Fixed Effects:
## 
## Conditional model:
##    (Intercept)  Dist_trail_std  
##         -1.745          -1.335  
##  Family: beta  ( logit )
## Formula:          all.func.brepl ~ Dist_trail_std + (1 | ForestID)
## Data: Results2
## 
##      AIC      BIC   logLik deviance df.resid 
##    -55.3    -51.1     31.6    -63.3       17 
## 
## Random effects:
## 
## Conditional model:
##  Groups   Name        Variance Std.Dev.
##  ForestID (Intercept) 1.069    1.034   
## Number of obs: 21, groups:  ForestID, 5
## 
## Overdispersion parameter for beta family (): 7.85 
## 
## Conditional model:
##                Estimate Std. Error z value Pr(>|z|)    
## (Intercept)     -1.7452     0.5325  -3.277 0.001048 ** 
## Dist_trail_std  -1.3352     0.3762  -3.549 0.000387 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## Warning: mu of 0.2 is too close to zero, estimate of random effect variances may be unreliable.
## # R2 for Mixed Models
## 
##   Conditional R2: 0.872
##      Marginal R2: 0.510
##       chisq       ratio         rdf           p 
##  1.15079724  0.06769396 17.00000000  0.99999995
## Formula:          
## all.func.brepl ~ Dist_edge_std + Dist_trail_std + (1 | ForestID)
## Data: Results2
##       AIC       BIC    logLik  df.resid 
## -55.08074 -49.85812  32.54037        16 
## Random-effects (co)variances:
## 
## Conditional model:
##  Groups   Name        Std.Dev.
##  ForestID (Intercept) 0.8205  
## 
## Number of obs: 21 / Conditional model: ForestID, 5
## 
## Overdispersion parameter for beta family (): 7.36 
## 
## Fixed Effects:
## 
## Conditional model:
##    (Intercept)   Dist_edge_std  Dist_trail_std  
##        -1.9694          0.7494         -1.5033  
##  Family: beta  ( logit )
## Formula:          
## all.func.brepl ~ Dist_edge_std + Dist_trail_std + (1 | ForestID)
## Data: Results2
## 
##      AIC      BIC   logLik deviance df.resid 
##    -55.1    -49.9     32.5    -65.1       16 
## 
## Random effects:
## 
## Conditional model:
##  Groups   Name        Variance Std.Dev.
##  ForestID (Intercept) 0.6732   0.8205  
## Number of obs: 21, groups:  ForestID, 5
## 
## Overdispersion parameter for beta family (): 7.36 
## 
## Conditional model:
##                Estimate Std. Error z value Pr(>|z|)    
## (Intercept)     -1.9694     0.4866  -4.047 5.18e-05 ***
## Dist_edge_std    0.7494     0.5172   1.449    0.147    
## Dist_trail_std  -1.5033     0.3766  -3.992 6.55e-05 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## Warning: mu of 0.2 is too close to zero, estimate of random effect variances may be unreliable.
## # R2 for Mixed Models
## 
##   Conditional R2: 0.842
##      Marginal R2: 0.573
##       chisq       ratio         rdf           p 
##  1.25871265  0.07866954 16.00000000  0.99999965
## Formula:          nat.func.btotal ~ Dist_trail_std + (1 | ForestID)
## Data: Results2
##       AIC       BIC    logLik  df.resid 
## -32.44195 -28.26386  20.22098        17 
## Random-effects (co)variances:
## 
## Conditional model:
##  Groups   Name        Std.Dev.
##  ForestID (Intercept) 0.7555  
## 
## Number of obs: 21 / Conditional model: ForestID, 5
## 
## Overdispersion parameter for beta family (): 2.48 
## 
## Fixed Effects:
## 
## Conditional model:
##    (Intercept)  Dist_trail_std  
##        -0.7555         -1.1455  
##  Family: beta  ( logit )
## Formula:          nat.func.btotal ~ Dist_trail_std + (1 | ForestID)
## Data: Results2
## 
##      AIC      BIC   logLik deviance df.resid 
##    -32.4    -28.3     20.2    -40.4       17 
## 
## Random effects:
## 
## Conditional model:
##  Groups   Name        Variance Std.Dev.
##  ForestID (Intercept) 0.5708   0.7555  
## Number of obs: 21, groups:  ForestID, 5
## 
## Overdispersion parameter for beta family (): 2.48 
## 
## Conditional model:
##                Estimate Std. Error z value Pr(>|z|)   
## (Intercept)     -0.7555     0.4443  -1.701  0.08903 . 
## Dist_trail_std  -1.1455     0.4259  -2.690  0.00715 **
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## Warning: mu of 0.4 is too close to zero, estimate of random effect variances may be unreliable.
## # R2 for Mixed Models
## 
##   Conditional R2: 0.826
##      Marginal R2: 0.546
##      chisq      ratio        rdf          p 
##  3.2690116  0.1922948 17.0000000  0.9998719
## Formula:          
## nat.func.btotal ~ Dist_edge_std + Dist_trail_std + (1 | ForestID)
## Data: Results2
##       AIC       BIC    logLik  df.resid 
## -33.29778 -28.07517  21.64889        16 
## Random-effects (co)variances:
## 
## Conditional model:
##  Groups   Name        Std.Dev.
##  ForestID (Intercept) 0.6878  
## 
## Number of obs: 21 / Conditional model: ForestID, 5
## 
## Overdispersion parameter for beta family (): 2.74 
## 
## Fixed Effects:
## 
## Conditional model:
##    (Intercept)   Dist_edge_std  Dist_trail_std  
##        -1.0996          0.9476         -1.5235  
##  Family: beta  ( logit )
## Formula:          
## nat.func.btotal ~ Dist_edge_std + Dist_trail_std + (1 | ForestID)
## Data: Results2
## 
##      AIC      BIC   logLik deviance df.resid 
##    -33.3    -28.1     21.6    -43.3       16 
## 
## Random effects:
## 
## Conditional model:
##  Groups   Name        Variance Std.Dev.
##  ForestID (Intercept) 0.4731   0.6878  
## Number of obs: 21, groups:  ForestID, 5
## 
## Overdispersion parameter for beta family (): 2.74 
## 
## Conditional model:
##                Estimate Std. Error z value Pr(>|z|)   
## (Intercept)     -1.0996     0.4853  -2.266  0.02345 * 
## Dist_edge_std    0.9476     0.6052   1.566  0.11739   
## Dist_trail_std  -1.5235     0.4747  -3.209  0.00133 **
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## Warning: mu of 0.4 is too close to zero, estimate of random effect variances may be unreliable.
## # R2 for Mixed Models
## 
##   Conditional R2: 0.853
##      Marginal R2: 0.645
##      chisq      ratio        rdf          p 
##  3.4625313  0.2164082 16.0000000  0.9995634
## Formula:          nat.func.brich ~ Dist_trail_std + (1 | ForestID)
## Data: Results2
##       AIC       BIC    logLik  df.resid 
## -56.61263 -52.43454  32.30631        17 
## Random-effects (co)variances:
## 
## Conditional model:
##  Groups   Name        Std.Dev. 
##  ForestID (Intercept) 2.701e-05
## 
## Number of obs: 21 / Conditional model: ForestID, 5
## 
## Overdispersion parameter for beta family (): 2.75 
## 
## Fixed Effects:
## 
## Conditional model:
##    (Intercept)  Dist_trail_std  
##        -1.5156         -0.5725  
##  Family: beta  ( logit )
## Formula:          nat.func.brich ~ Dist_trail_std + (1 | ForestID)
## Data: Results2
## 
##      AIC      BIC   logLik deviance df.resid 
##    -56.6    -52.4     32.3    -64.6       17 
## 
## Random effects:
## 
## Conditional model:
##  Groups   Name        Variance  Std.Dev. 
##  ForestID (Intercept) 7.296e-10 2.701e-05
## Number of obs: 21, groups:  ForestID, 5
## 
## Overdispersion parameter for beta family (): 2.75 
## 
## Conditional model:
##                Estimate Std. Error z value Pr(>|z|)    
## (Intercept)     -1.5156     0.3081  -4.919 8.72e-07 ***
## Dist_trail_std  -0.5725     0.2789  -2.053   0.0401 *  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## Warning: Can't compute random effect variances. Some variance components equal zero.
##   Solution: Respecify random structure!

## Warning: mu of 0.2 is too close to zero, estimate of random effect variances may be unreliable.
## Random effect variances not available. Returned R2 does not account for random effects.
## # R2 for Mixed Models
## 
##   Conditional R2: NA
##      Marginal R2: 0.260
##      chisq      ratio        rdf          p 
##  3.9103731  0.2300219 17.0000000  0.9995565
## Formula:          
## nat.func.brich ~ Dist_edge_std + Dist_trail_std + (1 | ForestID)
## Data: Results2
##       AIC       BIC    logLik  df.resid 
## -57.11194 -51.88933  33.55597        16 
## Random-effects (co)variances:
## 
## Conditional model:
##  Groups   Name        Std.Dev. 
##  ForestID (Intercept) 2.999e-05
## 
## Number of obs: 21 / Conditional model: ForestID, 5
## 
## Overdispersion parameter for beta family (): 3.18 
## 
## Fixed Effects:
## 
## Conditional model:
##    (Intercept)   Dist_edge_std  Dist_trail_std  
##        -1.7868          0.5497         -0.8650  
##  Family: beta  ( logit )
## Formula:          
## nat.func.brich ~ Dist_edge_std + Dist_trail_std + (1 | ForestID)
## Data: Results2
## 
##      AIC      BIC   logLik deviance df.resid 
##    -57.1    -51.9     33.6    -67.1       16 
## 
## Random effects:
## 
## Conditional model:
##  Groups   Name        Variance  Std.Dev. 
##  ForestID (Intercept) 8.997e-10 2.999e-05
## Number of obs: 21, groups:  ForestID, 5
## 
## Overdispersion parameter for beta family (): 3.18 
## 
## Conditional model:
##                Estimate Std. Error z value Pr(>|z|)    
## (Intercept)     -1.7868     0.3435  -5.202 1.98e-07 ***
## Dist_edge_std    0.5497     0.3319   1.656  0.09767 .  
## Dist_trail_std  -0.8650     0.3327  -2.600  0.00933 ** 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## Warning: Can't compute random effect variances. Some variance components equal zero.
##   Solution: Respecify random structure!

## Warning: mu of 0.2 is too close to zero, estimate of random effect variances may be unreliable.
## Random effect variances not available. Returned R2 does not account for random effects.
## # R2 for Mixed Models
## 
##   Conditional R2: NA
##      Marginal R2: 0.393
##      chisq      ratio        rdf          p 
##  4.0314491  0.2519656 16.0000000  0.9988482
## Formula:          nat.func.brepl ~ Dist_trail_std + (1 | ForestID)
## Data: Results2
##       AIC       BIC    logLik  df.resid 
## -52.86565 -48.68756  30.43283        17 
## Random-effects (co)variances:
## 
## Conditional model:
##  Groups   Name        Std.Dev.
##  ForestID (Intercept) 1.054   
## 
## Number of obs: 21 / Conditional model: ForestID, 5
## 
## Overdispersion parameter for beta family (): 6.22 
## 
## Fixed Effects:
## 
## Conditional model:
##    (Intercept)  Dist_trail_std  
##         -1.599          -1.308  
##  Family: beta  ( logit )
## Formula:          nat.func.brepl ~ Dist_trail_std + (1 | ForestID)
## Data: Results2
## 
##      AIC      BIC   logLik deviance df.resid 
##    -52.9    -48.7     30.4    -60.9       17 
## 
## Random effects:
## 
## Conditional model:
##  Groups   Name        Variance Std.Dev.
##  ForestID (Intercept) 1.112    1.054   
## Number of obs: 21, groups:  ForestID, 5
## 
## Overdispersion parameter for beta family (): 6.22 
## 
## Conditional model:
##                Estimate Std. Error z value Pr(>|z|)    
## (Intercept)     -1.5986     0.5436  -2.941 0.003276 ** 
## Dist_trail_std  -1.3075     0.3824  -3.419 0.000628 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## Warning: mu of 0.2 is too close to zero, estimate of random effect variances may be unreliable.
## # R2 for Mixed Models
## 
##   Conditional R2: 0.866
##      Marginal R2: 0.490
##       chisq       ratio         rdf           p 
##  1.64497455  0.09676321 17.00000000  0.99999923
## Formula:          
## nind.func.btotal ~ Dist_edge_std + Dist_trail_std + (1 | ForestID)
## Data: Results2
##        AIC        BIC     logLik   df.resid 
## -136.37470 -131.15209   73.18735         16 
## Random-effects (co)variances:
## 
## Conditional model:
##  Groups   Name        Std.Dev. 
##  ForestID (Intercept) 3.541e-05
## 
## Number of obs: 21 / Conditional model: ForestID, 5
## 
## Overdispersion parameter for beta family (): 0.468 
## 
## Fixed Effects:
## 
## Conditional model:
##    (Intercept)   Dist_edge_std  Dist_trail_std  
##        -0.2244          1.1157         -1.0829  
##  Family: beta  ( logit )
## Formula:          
## nind.func.btotal ~ Dist_edge_std + Dist_trail_std + (1 | ForestID)
## Data: Results2
## 
##      AIC      BIC   logLik deviance df.resid 
##   -136.4   -131.2     73.2   -146.4       16 
## 
## Random effects:
## 
## Conditional model:
##  Groups   Name        Variance  Std.Dev. 
##  ForestID (Intercept) 1.254e-09 3.541e-05
## Number of obs: 21, groups:  ForestID, 5
## 
## Overdispersion parameter for beta family (): 0.468 
## 
## Conditional model:
##                Estimate Std. Error z value Pr(>|z|)   
## (Intercept)     -0.2244     0.3775  -0.594  0.55231   
## Dist_edge_std    1.1157     0.4471   2.496  0.01258 * 
## Dist_trail_std  -1.0829     0.4067  -2.663  0.00775 **
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## Warning: Can't compute random effect variances. Some variance components equal zero.
##   Solution: Respecify random structure!
## Warning: mu of 1.1 is too close to zero, estimate of random effect variances may be unreliable.
## Random effect variances not available. Returned R2 does not account for random effects.
## # R2 for Mixed Models
## 
##   Conditional R2: NA
##      Marginal R2: 1.058
##      chisq      ratio        rdf          p 
## 11.2042651  0.7002666 16.0000000  0.7967050
## Formula:          
## nind.func.brich ~ Dist_edge_std + Dist_trail_std + (1 | ForestID)
## Data: Results2
##        AIC        BIC     logLik   df.resid 
## -133.27324 -128.05063   71.63662         16 
## Random-effects (co)variances:
## 
## Conditional model:
##  Groups   Name        Std.Dev. 
##  ForestID (Intercept) 3.693e-05
## 
## Number of obs: 21 / Conditional model: ForestID, 5
## 
## Overdispersion parameter for beta family (): 0.496 
## 
## Fixed Effects:
## 
## Conditional model:
##    (Intercept)   Dist_edge_std  Dist_trail_std  
##        -0.3288          1.2141         -1.1193  
##  Family: beta  ( logit )
## Formula:          
## nind.func.brich ~ Dist_edge_std + Dist_trail_std + (1 | ForestID)
## Data: Results2
## 
##      AIC      BIC   logLik deviance df.resid 
##   -133.3   -128.1     71.6   -143.3       16 
## 
## Random effects:
## 
## Conditional model:
##  Groups   Name        Variance  Std.Dev. 
##  ForestID (Intercept) 1.364e-09 3.693e-05
## Number of obs: 21, groups:  ForestID, 5
## 
## Overdispersion parameter for beta family (): 0.496 
## 
## Conditional model:
##                Estimate Std. Error z value Pr(>|z|)   
## (Intercept)     -0.3288     0.3773  -0.872  0.38343   
## Dist_edge_std    1.2141     0.4522   2.685  0.00726 **
## Dist_trail_std  -1.1193     0.4092  -2.735  0.00624 **
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## Warning: Can't compute random effect variances. Some variance components equal zero.
##   Solution: Respecify random structure!
## Warning: mu of 1.0 is too close to zero, estimate of random effect variances may be unreliable.
## Random effect variances not available. Returned R2 does not account for random effects.
## # R2 for Mixed Models
## 
##   Conditional R2: NA
##      Marginal R2: 1.022
##      chisq      ratio        rdf          p 
##  9.9632102  0.6227006 16.0000000  0.8685425
## Formula:          nind.func.brepl ~ (1 | ForestID)
## Data: Results2
##        AIC        BIC     logLik   df.resid 
## -172.68248 -169.54892   89.34124         18 
## Random-effects (co)variances:
## 
## Conditional model:
##  Groups   Name        Std.Dev. 
##  ForestID (Intercept) 0.0001045
## 
## Number of obs: 21 / Conditional model: ForestID, 5
## 
## Overdispersion parameter for beta family (): 3.76 
## 
## Fixed Effects:
## 
## Conditional model:
## (Intercept)  
##          -3  
##  Family: beta  ( logit )
## Formula:          nind.func.brepl ~ (1 | ForestID)
## Data: Results2
## 
##      AIC      BIC   logLik deviance df.resid 
##   -172.7   -169.5     89.3   -178.7       18 
## 
## Random effects:
## 
## Conditional model:
##  Groups   Name        Variance  Std.Dev. 
##  ForestID (Intercept) 1.093e-08 0.0001045
## Number of obs: 21, groups:  ForestID, 5
## 
## Overdispersion parameter for beta family (): 3.76 
## 
## Conditional model:
##             Estimate Std. Error z value Pr(>|z|)    
## (Intercept)  -2.9995     0.4635  -6.471 9.71e-11 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## Warning: Can't compute random effect variances. Some variance components equal zero.
##   Solution: Respecify random structure!
## Warning: mu of 0.0 is too close to zero, estimate of random effect variances may be unreliable.
## Random effect variances not available. Returned R2 does not account for random effects.
## # R2 for Mixed Models
## 
##   Conditional R2: NA
##      Marginal R2: 0.000
##      chisq      ratio        rdf          p 
##  6.3657915  0.3536551 18.0000000  0.9944736
## Formula:          nind.func.brepl ~ Dist_edge_std + (1 | ForestID)
## Data: Results2
##        AIC        BIC     logLik   df.resid 
## -172.36359 -168.18550   90.18179         17 
## Random-effects (co)variances:
## 
## Conditional model:
##  Groups   Name        Std.Dev. 
##  ForestID (Intercept) 0.0001402
## 
## Number of obs: 21 / Conditional model: ForestID, 5
## 
## Overdispersion parameter for beta family (): 4.07 
## 
## Fixed Effects:
## 
## Conditional model:
##   (Intercept)  Dist_edge_std  
##       -2.7956        -0.3791  
##  Family: beta  ( logit )
## Formula:          nind.func.brepl ~ Dist_edge_std + (1 | ForestID)
## Data: Results2
## 
##      AIC      BIC   logLik deviance df.resid 
##   -172.4   -168.2     90.2   -180.4       17 
## 
## Random effects:
## 
## Conditional model:
##  Groups   Name        Variance  Std.Dev. 
##  ForestID (Intercept) 1.965e-08 0.0001402
## Number of obs: 21, groups:  ForestID, 5
## 
## Overdispersion parameter for beta family (): 4.07 
## 
## Conditional model:
##               Estimate Std. Error z value Pr(>|z|)    
## (Intercept)    -2.7956     0.4708  -5.939 2.87e-09 ***
## Dist_edge_std  -0.3791     0.2983  -1.271    0.204    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## Warning: Can't compute random effect variances. Some variance components equal zero.
##   Solution: Respecify random structure!

## Warning: mu of 0.0 is too close to zero, estimate of random effect variances may be unreliable.
## Random effect variances not available. Returned R2 does not account for random effects.
## # R2 for Mixed Models
## 
##   Conditional R2: NA
##      Marginal R2: 0.053
##      chisq      ratio        rdf          p 
##  5.1487467  0.3028675 17.0000000  0.9973187