How can Tracking leverage data visualization tools to communicate key messages to drive public health actions?
- RStudio - ggplot, plotly
- RMarkdown - flexdashboard
- RShiny - shinydashboard
- ArcGIS StoryMaps
1/16/2020
How can Tracking leverage data visualization tools to communicate key messages to drive public health actions?
# workspace library(tidyverse) library(tidycensus) library(viridis) library(tigris) library(gganimate) options(tigris_use_cache = TRUE) # import data <- read_csv("./Static Maps and GIFs_EP/ExtremeHeatProjections_A2_90__Full.csv")
# wrangle EH <- data %>% mutate(GEOID = as.character(countyFIPS)) %>% select(everything(), -c(stateFIPS, countyFIPS)) EH$GEOID <- ifelse(nchar(EH$GEOID) <5, paste("0", EH$GEOID, sep=""), EH$GEOID) #glimpse(EH)
county_pop <- get_acs(geography = "county", variables = "B01003_001", # total population year = 2016, # 2010 decennial census geometry = TRUE, # load TIGER shapefiles keep_geo_vars = TRUE, shift_geo = TRUE) %>% #shifts AK and HI rename(pop = estimate) geo <- county_pop %>% select(GEOID, geometry) #remove extra variables EH_geo <- inner_join(geo, EH, by = 'GEOID')
GA <- EH_geo %>% filter(State == "Georgia" & Year == 2030) g <- ggplot(GA, aes(fill = as.integer(Value))) + geom_sf() + theme_minimal() + scale_fill_viridis() + coord_sf(datum = NA) + labs(title = "Future projections of extreme heat in Georgia. \nYear: 2030", caption = "Absolute Threshold: 90 degrees F \nEmissions Scenario: High Emissions (A2)", fill = "Extreme heat days") g
d <- c(2020, 2030, 2040, 2050, 2060, 2070, 2080) GA_d <- EH_geo %>% filter(State == "Georgia" & Year %in% d) GAmap_d <- ggplot(GA_d, aes(fill = as.integer(Value))) + geom_sf() + scale_fill_viridis_c() + scale_color_viridis_c() + theme_minimal() + coord_sf(datum = NA) + labs(title = "Title1", caption = "Caption1", fill = "Extreme heat days") + transition_states(Year, transition_length = 3, state_length = 10) + ease_aes('linear') animate(GAmap_d)
#anim_save("GAmap_decade.gif", animation = GAmap_d)
# workspace library(tidyverse) library(ggplot2) library(viridis) library(gganimate) library(gifski) library(png) # import EH <- read_csv("./Static Maps and GIFs_EP/ExtremeHeatProjections_A2_90__Full.csv")
GA <- EH %>% filter(State == "Georgia" & County %in% c("Bartow", "Cherokee", "Forsyth", "Cobb", "Fulton", "Gwinnett", "Dekalb", "Rockdale", "Clayton", "Douglas") & !is.na(Value)) #summary(GA)
g <- ggplot(GA, aes(x = as.factor(County), y = Value, fill = County)) + geom_col()+ coord_flip()+ theme(legend.position = "none") + labs(title = "Some Title", caption = "Some Caption", x = "", y = "Extreme Heat Days") + transition_states(Year, transition_length = 1, state_length = 1) + ease_aes('linear')+scale_fill_viridis_d() + geom_text(aes(y=Value, label=Value, hjust=0)) #anim_save("GA_EHdays_2020-2030.gif", animation = g)