• 1 Original data source
  • 2 Definitions of variables
  • 3 Interactive Table
  • 4 Animated exploration
    • 4.1 Motivation
    • 4.2 Potential solution
  • 5 Interactive exploration (Web app)
  • 6 References

Suggested Citation:

Aginta, Harry and Mendez, Carlos (2020). Provincial GDP per capita and Unemployment in Indonesia 1986-2018: An Animated, Automated, and Interactive Exploration in R. R Studio/RPubs. Available at https://rpubs.com/quarcs-lab/okun-indonesia-provinces-1986-2018

This work is licensed under the Creative Commons Attribution-Share Alike 4.0 International License.

1 Original data source

Following the standard variables used in analyzing Okun’s law, we use annual data of Income per Capita and Unemployment Rate of 34 Indonesian provinces from 1986 to 2018. The Income per Capita data is calculated by dividing Gross Regional Domestic Product with total population of each province collected from Badan Pusat Statistik (Statistics Indonesia). There are some missing values in our original dataset that resulted from province splitting up process. Therefore, we use interpolation technique to calculate the data for some proliferated provinces. We use linear regression method for interpolation with reference provinces as regressors. As for the unemployment rate, we collect the data for all provinces from Indonesian Ministry of Manpower.

2 Definitions of variables

ABCDEFGHIJ0123456789
var_name
<chr>
var_def
<chr>
type
<chr>
provinceName of the province in Englishcs_id
yearYear of datats_id
gap_ln_gpdGap of log of GDPpcnumeric
gap_unempGap of unemploymentnumeric
gdpReal Gross Domestic Product per capitanumeric
unempUnemployment ratenumeric
ln_gdpNatural log of GDP per capitanumeric
trend_unempTrend of unemployment (HP=100)numeric
trend_ln_gpdTrend of log of GDPpc (HP=100)numeric
c_unempAnnual change in the unemployment ratenumeric

3 Interactive Table

4 Animated exploration

4.2 Potential solution

An animated figure convering each year (with smooth interpolations with each year) could be more informative.

QUIZ: What seems to be the predominant relationship?

  1. Positive
  2. Negative
  3. None

6 References

END

LS0tCnRpdGxlOiAiUHJvdmluY2lhbCBHRFAgcGVyIGNhcGl0YSBhbmQgVW5lbXBsb3ltZW50IGluIEluZG9uZXNpYSAxOTg2LTIwMTgiCnN1YnRpdGxlOiAiQW4gQW5pbWF0ZWQsIEF1dG9tYXRlZCwgYW5kIEludGVyYWN0aXZlIEV4cGxvcmF0aW9uIGluIFIiCmF1dGhvcjogIkFnaW50YSBIYXJyeSBhbmQgTWVuZGV6IENhcmxvcyIKb3V0cHV0OiAKICBodG1sX25vdGVib29rOgogICAgdG9jOiB0cnVlCiAgICB0b2NfZmxvYXQ6CiAgICAgIGNvbGxhcHNlZDogZmFsc2UKICAgICAgc21vb3RoX3Njcm9sbDogZmFsc2UKICAgIHRvY19kZXB0aDogNAogICAgbnVtYmVyX3NlY3Rpb25zOiB0cnVlCiAgICBjb2RlX2ZvbGRpbmc6ICJoaWRlIgogICAgdGhlbWU6ICJjb3NtbyIKICAgIGhpZ2hsaWdodDogIm1vbm9jaHJvbWUiCiAgICBkZl9wcmludDogImthYmxlIgogIGdpdGh1Yl9kb2N1bWVudDogZGVmYXVsdAotLS0KCjxzdHlsZT4KaDEudGl0bGUge2ZvbnQtc2l6ZTogMThwdDsgY29sb3I6IERhcmtCbHVlO30gCmJvZHksIGgxLCBoMiwgaDMsIGg0IHtmb250LWZhbWlseTogIlBhbGF0aW5vIiwgc2VyaWY7fQpib2R5IHtmb250LXNpemU6IDEycHQ7fQovKiBIZWFkZXJzICovCmgxLGgyLGgzLGg0LGg1LGg2e2ZvbnQtc2l6ZTogMTRwdDsgY29sb3I6ICMwMDAwOEI7fQpib2R5IHtjb2xvcjogIzMzMzMzMzt9CmEsIGE6aG92ZXIge2NvbG9yOiAjOEIzQTYyO30KcHJlIHtmb250LXNpemU6IDEycHg7fQo8L3N0eWxlPgoKCmBgYHtyIHNldHVwLCBpbmNsdWRlPVRSVUV9CmtuaXRyOjpvcHRzX2NodW5rJHNldCgKICBlY2hvID0gVFJVRSwKICBtZXNzYWdlID0gRkFMU0UsCiAgd2FybmluZyA9IEZBTFNFCikKbGlicmFyeSh0aWR5dmVyc2UpCmxpYnJhcnkoRXhQYW5EYVIpICAgICAgIyBleHBsb3JlIHBhbmVsIGRhdGEgaW50ZXJhY3RpdmVseSAgCmxpYnJhcnkoRFQpICAgICAgICAgICAgIyBpbnRlcmFjdGl2ZSB0YWJsZXMKbGlicmFyeShwbWRwbHlyKSAgICAgICAjIG1hbmFnaW5nIHBhbmVsIGFuZCBoaWVyYXJjaGljYWwgZGF0YQpsaWJyYXJ5KGdnYW5pbWF0ZSkgICAgICMgYW5pbWF0ZWQKdGhlbWVfc2V0KHRoZW1lX21pbmltYWwoKSkKCiMgQ2hhbmdlIHRoZSBwcmVzZW50YXRpb24gb2YgZGVjaW1hbCBudW1iZXJzIHRvIDQgYW5kIGF2b2lkIHNjaWVudGlmaWMgbm90YXRpb24Kb3B0aW9ucyhwcm9tcHQ9IlI+ICIsIGRpZ2l0cz0zLCBzY2lwZW49OTk5KQpgYGAKCgpTdWdnZXN0ZWQgQ2l0YXRpb246IAoKPiBBZ2ludGEsIEhhcnJ5IGFuZCBNZW5kZXosIENhcmxvcyAoMjAyMCkuIFByb3ZpbmNpYWwgR0RQIHBlciBjYXBpdGEgYW5kIFVuZW1wbG95bWVudCBpbiBJbmRvbmVzaWEgMTk4Ni0yMDE4OiBBbiBBbmltYXRlZCwgQXV0b21hdGVkLCBhbmQgSW50ZXJhY3RpdmUgRXhwbG9yYXRpb24gaW4gUi4gUiBTdHVkaW8vUlB1YnMuIEF2YWlsYWJsZSBhdCA8aHR0cHM6Ly9ycHVicy5jb20vcXVhcmNzLWxhYi9va3VuLWluZG9uZXNpYS1wcm92aW5jZXMtMTk4Ni0yMDE4PgoKVGhpcyB3b3JrIGlzIGxpY2Vuc2VkIHVuZGVyIHRoZSBDcmVhdGl2ZSBDb21tb25zIEF0dHJpYnV0aW9uLVNoYXJlIEFsaWtlIDQuMCBJbnRlcm5hdGlvbmFsIExpY2Vuc2UuIAohW10oTGljZW5zZS5wbmcpCgoKIyBPcmlnaW5hbCBkYXRhIHNvdXJjZQoKRm9sbG93aW5nIHRoZSBzdGFuZGFyZCB2YXJpYWJsZXMgdXNlZCBpbiBhbmFseXppbmcgT2t1buKAmXMgbGF3LCB3ZSB1c2UgYW5udWFsIGRhdGEgb2YgSW5jb21lIHBlciBDYXBpdGEgYW5kIFVuZW1wbG95bWVudCBSYXRlIG9mIDM0IEluZG9uZXNpYW4gcHJvdmluY2VzIGZyb20gMTk4NiB0byAyMDE4LiBUaGUgSW5jb21lIHBlciBDYXBpdGEgZGF0YSBpcyBjYWxjdWxhdGVkIGJ5IGRpdmlkaW5nIEdyb3NzIFJlZ2lvbmFsIERvbWVzdGljIFByb2R1Y3Qgd2l0aCB0b3RhbCBwb3B1bGF0aW9uIG9mIGVhY2ggcHJvdmluY2UgY29sbGVjdGVkIGZyb20gQmFkYW4gUHVzYXQgU3RhdGlzdGlrIChTdGF0aXN0aWNzIEluZG9uZXNpYSkuIFRoZXJlIGFyZSBzb21lIG1pc3NpbmcgdmFsdWVzIGluIG91ciBvcmlnaW5hbCBkYXRhc2V0IHRoYXQgcmVzdWx0ZWQgZnJvbSBwcm92aW5jZSBzcGxpdHRpbmcgdXAgcHJvY2Vzcy4gVGhlcmVmb3JlLCB3ZSB1c2UgaW50ZXJwb2xhdGlvbiB0ZWNobmlxdWUgdG8gY2FsY3VsYXRlIHRoZSBkYXRhIGZvciBzb21lIHByb2xpZmVyYXRlZCBwcm92aW5jZXMuIFdlIHVzZSBsaW5lYXIgcmVncmVzc2lvbiBtZXRob2QgZm9yIGludGVycG9sYXRpb24gd2l0aCByZWZlcmVuY2UgcHJvdmluY2VzIGFzIHJlZ3Jlc3NvcnMuIEFzIGZvciB0aGUgdW5lbXBsb3ltZW50IHJhdGUsIHdlIGNvbGxlY3QgdGhlIGRhdGEgZm9yIGFsbCBwcm92aW5jZXMgZnJvbSBJbmRvbmVzaWFuIE1pbmlzdHJ5IG9mIE1hbnBvd2VyLgoKCmBgYHtyfQpJbmRvbmVzaWFfcHJvdmluY2VfZ2RwcGNfdW5lbXBfMTk4Nl8yMDE4IDwtIHJlYWRfY3N2KCI5OS1kYXRhLzA1LWZpbHRlci10aGUtZGF0YS5jc3YiKSAKYGBgCgpgYGB7cn0KIyBSZW5hbWUgdmFyaWFibGVzCkluZG9uZXNpYV9wcm92aW5jZV9nZHBwY191bmVtcF8xOTg2XzIwMTggIDwtIEluZG9uZXNpYV9wcm92aW5jZV9nZHBwY191bmVtcF8xOTg2XzIwMTggJT4lIAogIHJlbmFtZSgKICAgIHVuZW1wID0gdW4sCiAgICBsbl9nZHAgPSBsZ2RwLAogICAgdHJlbmRfbG5fZ3BkID0gdGxnZHAsCiAgICB0cmVuZF91bmVtcCA9IHR1LAogICAgZ19nZHAgPSBnZ2RwLAogICAgY191bmVtcCA9IGN1biwKICAgIGdhcF9sbl9ncGQgPSBnYXBsZ2RwLAogICAgZ2FwX3VuZW1wID0gZ2FwdQogICkgCgpgYGAKCgpgYGB7cn0KIyBTZWxlY3QgYW5kIG9yZGVyIHZhcmlhYmxlcwpJbmRvbmVzaWFfcHJvdmluY2VfZ2RwcGNfdW5lbXBfMTk4Nl8yMDE4ICA8LSBJbmRvbmVzaWFfcHJvdmluY2VfZ2RwcGNfdW5lbXBfMTk4Nl8yMDE4ICU+JSAKICBzZWxlY3QoCiAgICBwcm92aW5jZSwKICAgIHllYXIsCiAgICBnYXBfbG5fZ3BkLAogICAgZ2FwX3VuZW1wLAogICAgZ2RwLAogICAgdW5lbXAsCiAgICBsbl9nZHAsCiAgICB0cmVuZF91bmVtcCwKICAgIHRyZW5kX2xuX2dwZCwgCiAgICBjX3VuZW1wLAogICAgZ19nZHAsCiAgKQpgYGAKCgoKCgoKCmBgYHtyfQojIFNvcnQgdGhlIGRhdGEgYnkgcHJvdmluY2UgYW5kIHllYXIKSW5kb25lc2lhX3Byb3ZpbmNlX2dkcHBjX3VuZW1wXzE5ODZfMjAxOCAgPC0gSW5kb25lc2lhX3Byb3ZpbmNlX2dkcHBjX3VuZW1wXzE5ODZfMjAxOCAlPiUgCiAgYXJyYW5nZSgKICAgIHByb3ZpbmNlLCB5ZWFyCiAgKQpgYGAKCgojIERlZmluaXRpb25zIG9mIHZhcmlhYmxlcwoKCmBgYHtyfQpkZl9kZWZpbml0aW9ucyA8LSByZWFkX2NzdigiMDAtcmF3LWRhdGEvZGZfZGVmLmNzdiIpIApkZl9kZWZpbml0aW9ucwpgYGAKCgojIEludGVyYWN0aXZlIFRhYmxlCgoKYGBge3J9CiMgRGVmaW5lIGZ1bmN0aW9uIGZvciAgaW50ZXJhY3RpdmUgdGFibGUKY3JlYXRlX2R0IDwtIGZ1bmN0aW9uKHgpewogIERUOjpkYXRhdGFibGUoeCwKICAgICAgICAgICAgICAgIGV4dGVuc2lvbnMgPSAnQnV0dG9ucycsCiAgICAgICAgICAgICAgICBvcHRpb25zID0gbGlzdChkb20gPSAnQmxmcnRpcCcsCiAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICBidXR0b25zID0gYygnY29weScsICdjc3YnLCAnZXhjZWwnLCAncGRmJywgJ3ByaW50JyksCiAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICBsZW5ndGhNZW51ID0gbGlzdChjKDEwLDI1LDUwLC0xKSwKICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgIGMoMTAsMjUsNTAsIkFsbCIpKSkpCn0KYGBgCgoKCmBgYHtyfQpjcmVhdGVfZHQoSW5kb25lc2lhX3Byb3ZpbmNlX2dkcHBjX3VuZW1wXzE5ODZfMjAxOCkgJT4lIAogIGZvcm1hdFJvdW5kKGNvbHVtbnMgPWMoCiJnZHAiLAoidW5lbXAiLAoibG5fZ2RwIiwKInRyZW5kX3VuZW1wIiwKInRyZW5kX2xuX2dwZCIsIAoiZ2FwX3VuZW1wIiwKImdhcF9sbl9ncGQiLAoiY191bmVtcCIsCiJnX2dkcCIKICApLAogIGRpZ2l0cyA9IDIpCmBgYAoKIyBBbmltYXRlZCBleHBsb3JhdGlvbgoKCiMjIE1vdGl2YXRpb24gCgpDb25zaWRlcmluZyB0aGUgZW50aXJlIDE5ODYtMjAxOCBwZXJpb2QsIGEgc3RhdGljIGZpZ3VyZSBpcyBkaWZmaWN1bHQgdG8gaW50ZXJwcmV0CgpgYGB7cn0KcCA8LSBnZ3Bsb3QoCiAgSW5kb25lc2lhX3Byb3ZpbmNlX2dkcHBjX3VuZW1wXzE5ODZfMjAxOCwgCiAgYWVzKHggPSBnYXBfbG5fZ3BkLCB5PWdhcF91bmVtcCwgc2l6ZSA9IGdkcCwgY29sb3VyID0gcHJvdmluY2UpCiAgKSArCiAgZ2VvbV9wb2ludChzaG93LmxlZ2VuZCA9IEZBTFNFLCBhbHBoYSA9IDAuNikgKwogIHNjYWxlX2NvbG9yX3ZpcmlkaXNfZCgpICsKICBsYWJzKHggPSAiR2FwIG9mIChsb2cpIEdQRHBjIiwgeSA9ICJHYXAgb2YgVW5lbXBsb3ltZW50IikKcApgYGAKCgojIyBQb3RlbnRpYWwgc29sdXRpb24KCkFuIGFuaW1hdGVkIGZpZ3VyZSBjb252ZXJpbmcgZWFjaCB5ZWFyICh3aXRoIHNtb290aCBpbnRlcnBvbGF0aW9ucyB3aXRoIGVhY2ggeWVhcikgY291bGQgYmUgbW9yZSBpbmZvcm1hdGl2ZS4KCj4gUVVJWjogV2hhdCBzZWVtcyB0byBiZSB0aGUgcHJlZG9taW5hbnQgcmVsYXRpb25zaGlwPwoKKEEpIFBvc2l0aXZlCihCKSBOZWdhdGl2ZQooQykgTm9uZQoKCgpgYGB7ciBpbmNsdWRlPUZBTFNFfQphbmlfc2MgPC0gZ2dwbG90KAogIEluZG9uZXNpYV9wcm92aW5jZV9nZHBwY191bmVtcF8xOTg2XzIwMTgsIAogIGFlcyh4ID0gZ2FwX2xuX2dwZCwgeT1nYXBfdW5lbXAsIHNpemUgPSBnZHAsIGNvbG91ciA9IHByb3ZpbmNlKQogICkgKwogIGdlb21fcG9pbnQoc2hvdy5sZWdlbmQgPSBGQUxTRSwgYWxwaGEgPSAwLjYpICsKICBzY2FsZV9jb2xvcl92aXJpZGlzX2QoKSArCiAgbGFicyh4ID0gIkdhcCBvZiAobG9nKSBHUERwYyIsIHkgPSAiR2FwIG9mIFVuZW1wbG95bWVudCIpICsKICB0cmFuc2l0aW9uX3RpbWUoeWVhcikgKwogIGxhYnModGl0bGUgPSAiWWVhcjoge2ZyYW1lX3RpbWV9IikgKwogIHZpZXdfZm9sbG93KCkKICAjdmlld19mb2xsb3coZml4ZWRfeSA9IFRSVUUpCgphbmltX3NhdmUoIkZpZ3NUYWJzL2FuaV9zYy5naWYiLCBhbmlfc2MsIGZwcz0xKQpgYGAKCiFbXShGaWdzVGFicy9hbmlfc2MuZ2lmKQoKCiMgSW50ZXJhY3RpdmUgZXhwbG9yYXRpb24gKFdlYiBhcHApCgpMZXQgdXMgZXZhbHVhdGUgdGhlIHByZXZpb3VzIHJlbGF0aW9uc2hpcCBtb3JlIGNhcmVmdWxseSB1c2luZyB0aGUgZm9sbG93aW5nIHdlYiBhcHBsaWNhdGlvbi4KCj4gPGh0dHBzOi8vY2FybG9zbWVuZGV6Nzc3LnNoaW55YXBwcy5pby9va3VuLWluZG9uZXNpYS1wcm92aW5jZXM+CgpgYGB7ciBldmFsPUZBTFNFLCBpbmNsdWRlPVR9CiMgUnVuIGl0IGluIHRoZSBjb25zb2xlCkV4UGFuRCgKICBkZiA9IEluZG9uZXNpYV9wcm92aW5jZV9nZHBwY191bmVtcF8xOTg2XzIwMTgsCiAgZGZfZGVmID0gZGZfZGVmaW5pdGlvbnMsCiAgZXhwb3J0X25iX29wdGlvbiA9IFRSVUUsCiAgdGl0bGUgPSAiUGFuZWwgZXhwbG9yYXRpb24iLAogIGFic3RyYWN0ID0gcGFzdGUoIlRoZSByZWxhdGlvbnNoaXAgYmV0d2VlbiBHRFAgcGVyIGNhcGl0YSBhbmQgdW5lbXBsb3ltZW50IikKICAgICkKYGBgCgojIFJlZmVyZW5jZXMKCgoKCkVORAoKCgoK