After our Intro to Stan lecture I think it would be valuable to have you go through a similar exercise. Let’s test a second research question.
Research question: Is sea ice extent declining in the Southern Hemisphere over time? Is the same pattern happening in the Antarctic as in the Arctic? Fit a Stan model to find out!
Make sure you follow the steps we used in class.
What do your Stan model results indicate so far?
#place the code here
seaice <- read.csv("/Users/XiaoZhou/Downloads/seaice.csv", stringsAsFactors=F)
colnames(seaice) <- c("year", "extent_north", "extent_south")
head(seaice)
## year extent_north extent_south
## 1 1979 12.328 11.700
## 2 1980 12.337 11.230
## 3 1981 12.127 11.435
## 4 1982 12.447 11.640
## 5 1983 12.332 11.389
## 6 1984 11.910 11.454
#plot data
plot(extent_north ~ year, pch = 20, data = seaice)
#write the code
lm1 <- lm(extent_north ~ year, data = seaice)
summary(lm1)
##
## Call:
## lm(formula = extent_north ~ year, data = seaice)
##
## Residuals:
## Min 1Q Median 3Q Max
## -0.49925 -0.17713 0.04898 0.16923 0.32829
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 120.503036 6.267203 19.23 <2e-16 ***
## year -0.054574 0.003137 -17.40 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.2205 on 37 degrees of freedom
## Multiple R-squared: 0.8911, Adjusted R-squared: 0.8881
## F-statistic: 302.7 on 1 and 37 DF, p-value: < 2.2e-16
#write the code here
x <- I(seaice$year - 1978)
y <- seaice$extent_north
N <- length(seaice$year)
lm1 <- lm(y ~ x)
summary(lm1)
##
## Call:
## lm(formula = y ~ x)
##
## Residuals:
## Min 1Q Median 3Q Max
## -0.49925 -0.17713 0.04898 0.16923 0.32829
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 12.555888 0.071985 174.4 <2e-16 ***
## x -0.054574 0.003137 -17.4 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.2205 on 37 degrees of freedom
## Multiple R-squared: 0.8911, Adjusted R-squared: 0.8881
## F-statistic: 302.7 on 1 and 37 DF, p-value: < 2.2e-16
lm_alpha <- summary(lm1)$coeff[1]
lm_beta <- summary(lm1)$coeff[2]
lm_sigma <- summary(lm1)$sigma
stan_data <- list(N = N, x = x, y = y)
#write the code
write("// Stan model for simple linear regression
data {
int < lower = 1 > N; // Sample size
vector[N] x; // Predictor
vector[N] y; // Outcome
}
parameters {
real alpha; // Intercept
real beta; // Slope (regression coefficients)
real < lower = 0 > sigma; // Error SD
}
model {
y ~ normal(alpha + x * beta , sigma);
}
generated quantities {
} // The posterior predictive distribution",
"stan_model1.stan")
stan_model1 <- "stan_model1.stan"
#code here
detectCores(all.tests = FALSE, logical = TRUE)
## [1] 4
options(mc.cores = parallel::detectCores())
fit <- stan(file = stan_model1, data = stan_data, warmup = 500, iter = 1000, chains = 4, cores = 4, thin = 1)
fit
## Inference for Stan model: stan_model1.
## 4 chains, each with iter=1000; warmup=500; thin=1;
## post-warmup draws per chain=500, total post-warmup draws=2000.
##
## mean se_mean sd 2.5% 25% 50% 75% 97.5% n_eff Rhat
## alpha 12.56 0.00 0.07 12.41 12.51 12.56 12.61 12.70 941 1.00
## beta -0.05 0.00 0.00 -0.06 -0.06 -0.05 -0.05 -0.05 1000 1.00
## sigma 0.23 0.00 0.03 0.18 0.21 0.23 0.25 0.29 990 1.01
## lp__ 37.41 0.05 1.22 34.41 36.85 37.69 38.31 38.83 707 1.01
##
## Samples were drawn using NUTS(diag_e) at Wed Jan 15 13:08:43 2020.
## For each parameter, n_eff is a crude measure of effective sample size,
## and Rhat is the potential scale reduction factor on split chains (at
## convergence, Rhat=1).
#code here
posterior <- rstan::extract(fit)
str(posterior)
## List of 4
## $ alpha: num [1:2000(1d)] 12.5 12.6 12.6 12.6 12.5 ...
## ..- attr(*, "dimnames")=List of 1
## .. ..$ iterations: NULL
## $ beta : num [1:2000(1d)] -0.0498 -0.0585 -0.0579 -0.0536 -0.0533 ...
## ..- attr(*, "dimnames")=List of 1
## .. ..$ iterations: NULL
## $ sigma: num [1:2000(1d)] 0.193 0.199 0.256 0.179 0.313 ...
## ..- attr(*, "dimnames")=List of 1
## .. ..$ iterations: NULL
## $ lp__ : num [1:2000(1d)] 36.2 37.7 37.6 36.3 34.6 ...
## ..- attr(*, "dimnames")=List of 1
## .. ..$ iterations: NULL
plot(y ~ x, pch = 20)
abline(lm1, col = 2, lty = 2, lw = 3)
abline( mean(posterior$alpha), mean(posterior$beta), col = 5, lw = 2)
plot(y ~ x, pch = 20)
for (i in 1:500) {
abline(posterior$alpha[i], posterior$beta[i], col = "gray", lty =1)
}
abline(mean(posterior$alpha), mean(posterior$beta), col = 6, lw = 2)