Suggested Citation:

Mendez Carlos (2020). An interactive exploration of cross-sectional data: Using the package ExPanDaR to generate interactive web applications. R Studio/RPubs. Available at https://rpubs.com/econdata777/short-project-explore-cross-section-interactively

This work is licensed under the Creative Commons Attribution-Share Alike 4.0 International License.

1 Load the data

Let us use the gapminder data set:

Gapminder Data: Life Expectancy and GDP per capita for 184 countries from 1952 to 2007

Documentation of the gapminder dataset

2 Transform the data

  • Take the log of GDP

  • Re-scale the population variable

3 Select cross-sectional sample:

  • Only use the year 2007

  • The order of the variables is important

6 Research Tasks

  • Evaluate the relationship between life expectancy and log of GDP per capita for each continent. How does this relatioship change across continents?

  • Evaluate the relationship between life expectancy and log of GDP per capita in the years 1952, 1972, and 1992. How does this relationship change over time?

  • Create an interactive web application of your analysis.

LS0tCnRpdGxlOiAiQW4gaW50ZXJhY3RpdmUgZXhwbG9yYXRpb24gb2YgY3Jvc3Mtc2VjdGlvbmFsIGRhdGEiCnN1YnRpdGxlOiAiVXNpbmcgdGhlIHBhY2thZ2UgRXhQYW5EYVIgdG8gZ2VuZXJhdGUgaW50ZXJhY3RpdmUgd2ViIGFwcGxpY2F0aW9ucyIKYXV0aG9yOiAiQ2FybG9zIE1lbmRleiIKb3V0cHV0OiAKICBodG1sX25vdGVib29rOgogICAgdG9jOiB0cnVlCiAgICB0b2NfZmxvYXQ6CiAgICAgIGNvbGxhcHNlZDogZmFsc2UKICAgICAgc21vb3RoX3Njcm9sbDogZmFsc2UKICAgIHRvY19kZXB0aDogNAogICAgbnVtYmVyX3NlY3Rpb25zOiB0cnVlCiAgICBjb2RlX2ZvbGRpbmc6ICJoaWRlIgogICAgdGhlbWU6ICJjb3NtbyIKICAgIGhpZ2hsaWdodDogIm1vbm9jaHJvbWUiCiAgICBkZl9wcmludDogImthYmxlIgogIGdpdGh1Yl9kb2N1bWVudDogZGVmYXVsdAotLS0KCjxzdHlsZT4KaDEudGl0bGUge2ZvbnQtc2l6ZTogMThwdDsgY29sb3I6IERhcmtCbHVlO30gCmJvZHksIGgxLCBoMiwgaDMsIGg0IHtmb250LWZhbWlseTogIlBhbGF0aW5vIiwgc2VyaWY7fQpib2R5IHtmb250LXNpemU6IDEycHQ7fQovKiBIZWFkZXJzICovCmgxLGgyLGgzLGg0LGg1LGg2e2ZvbnQtc2l6ZTogMTRwdDsgY29sb3I6ICMwMDAwOEI7fQpib2R5IHtjb2xvcjogIzMzMzMzMzt9CmEsIGE6aG92ZXIge2NvbG9yOiAjOEIzQTYyO30KcHJlIHtmb250LXNpemU6IDEycHg7fQo8L3N0eWxlPgoKCmBgYHtyIHNldHVwLCBpbmNsdWRlPVRSVUV9CmtuaXRyOjpvcHRzX2NodW5rJHNldCgKICBlY2hvID0gVFJVRSwKICBtZXNzYWdlID0gRkFMU0UsCiAgd2FybmluZyA9IEZBTFNFCikKbGlicmFyeSh0aWR5dmVyc2UpCmxpYnJhcnkoRXhQYW5EYVIpICAgICAgIyBleHBsb3JlIHBhbmVsIGRhdGEgaW50ZXJhY3RpdmVseSAgIApsaWJyYXJ5KGdhcG1pbmRlcikgICAgICMgcGFuZWwgZGF0YSBmb3IgR0RQIGFuZCBIZWFsdGggCgojIENoYW5nZSB0aGUgcHJlc2VudGF0aW9uIG9mIGRlY2ltYWwgbnVtYmVycyB0byA0IGFuZCBhdm9pZCBzY2llbnRpZmljIG5vdGF0aW9uCm9wdGlvbnMocHJvbXB0PSJSPiAiLCBkaWdpdHM9Mywgc2NpcGVuPTk5OSkKYGBgCgoKU3VnZ2VzdGVkIENpdGF0aW9uOiAKCj4gTWVuZGV6IENhcmxvcyAoMjAyMCkuIEFuIGludGVyYWN0aXZlIGV4cGxvcmF0aW9uIG9mIGNyb3NzLXNlY3Rpb25hbCBkYXRhOiBVc2luZyB0aGUgcGFja2FnZSBFeFBhbkRhUiB0byBnZW5lcmF0ZSBpbnRlcmFjdGl2ZSB3ZWIgYXBwbGljYXRpb25zLiBSIFN0dWRpby9SUHVicy4gQXZhaWxhYmxlIGF0IDxodHRwczovL3JwdWJzLmNvbS9lY29uZGF0YTc3Ny9zaG9ydC1wcm9qZWN0LWV4cGxvcmUtY3Jvc3Mtc2VjdGlvbi1pbnRlcmFjdGl2ZWx5PgoKVGhpcyB3b3JrIGlzIGxpY2Vuc2VkIHVuZGVyIHRoZSBDcmVhdGl2ZSBDb21tb25zIEF0dHJpYnV0aW9uLVNoYXJlIEFsaWtlIDQuMCBJbnRlcm5hdGlvbmFsIExpY2Vuc2UuIAohW10oTGljZW5zZS5wbmcpCgoKCiMgTG9hZCB0aGUgZGF0YQoKTGV0IHVzIHVzZSB0aGUgYGdhcG1pbmRlcmAgZGF0YSBzZXQ6IAoKPiBHYXBtaW5kZXIgRGF0YTogTGlmZSBFeHBlY3RhbmN5IGFuZCBHRFAgcGVyIGNhcGl0YSBmb3IgMTg0IGNvdW50cmllcyBmcm9tIDE5NTIgdG8gMjAwNyAKCkRvY3VtZW50YXRpb24gb2YgdGhlIFtnYXBtaW5kZXIgZGF0YXNldF0oaHR0cHM6Ly93d3cucmRvY3VtZW50YXRpb24ub3JnL3BhY2thZ2VzL2RzbGFicy92ZXJzaW9ucy8wLjcuMy90b3BpY3MvZ2FwbWluZGVyKQoKCgpgYGB7cn0KZ2FwbWluZGVyCmBgYAoKIyBUcmFuc2Zvcm0gdGhlIGRhdGEKCi0gVGFrZSB0aGUgbG9nIG9mIEdEUAoKLSBSZS1zY2FsZSB0aGUgcG9wdWxhdGlvbiB2YXJpYWJsZQoKYGBge3J9CmdhcG1pbmRlciA8LSBnYXBtaW5kZXIgJT4lIAogIG11dGF0ZSgKICAgIGxvZ0dEUHBjID0gbG9nKGdkcFBlcmNhcCksCiAgICBwb3AgPSBwb3AgLyAxZTYKICApCmBgYAoKCiMgU2VsZWN0IGNyb3NzLXNlY3Rpb25hbCBzYW1wbGU6IAoKLSBPbmx5IHVzZSB0aGUgeWVhciAyMDA3CgotIFRoZSBvcmRlciBvZiB0aGUgdmFyaWFibGVzIGlzIGltcG9ydGFudAoKYGBge3J9CmdhcG1haW5kZXIyMDA3IDwtIGdhcG1pbmRlciAlPiUgCiAgZmlsdGVyKHllYXIgPT0gMjAwNykgJT4lIAogIHNlbGVjdChjb3VudHJ5LCBsb2dHRFBwYywgbGlmZUV4cCwgcG9wLCBnZHBQZXJjYXAsIGNvbnRpbmVudCkKCmdhcG1haW5kZXIyMDA3CmBgYAoKCiMgSW50ZXJhY3RpdmUgZXhwbG9yYXRpb24KCmBgYHtyIGV2YWw9RkFMU0UsIGluY2x1ZGU9VH0KIyBSdW4gaXQgaW4gdGhlIGNvbnNvbGUKRXhQYW5EKAogIGdhcG1haW5kZXIyMDA3LAogIGV4cG9ydF9uYl9vcHRpb24gPSBUUlVFLAogIHRpdGxlID0gIkNyb3NzLXNlY3Rpb25hbCBleHBsb3JhdGlvbiIsCiAgYWJzdHJhY3QgPSBwYXN0ZSgiVGhlIHJlbGF0aW9uc2hpcCBiZXR3ZWVuIGxpZmUgZXhwZWN0YW5jeSBhbmQgR0RQIHBlciBjYXBpdGEiKQogICkKYGBgCgojIFNoaW55IGFwcAoKPiA8aHR0cHM6Ly9jYXJsb3NtZW5kZXo3Nzcuc2hpbnlhcHBzLmlvL3Nob3J0LXByb2plY3QtZXhwbG9yZS1jcm9zcy1zZWN0aW9uLWludGVyYWN0aXZlbHk+CgoKIyBSZXNlYXJjaCBUYXNrcwoKLSBFdmFsdWF0ZSB0aGUgcmVsYXRpb25zaGlwIGJldHdlZW4gbGlmZSBleHBlY3RhbmN5IGFuZCBsb2cgb2YgR0RQIHBlciBjYXBpdGEgZm9yIGVhY2ggY29udGluZW50LiBIb3cgZG9lcyB0aGlzIHJlbGF0aW9zaGlwIGNoYW5nZSBhY3Jvc3MgY29udGluZW50cz8KCi0gRXZhbHVhdGUgdGhlIHJlbGF0aW9uc2hpcCBiZXR3ZWVuIGxpZmUgZXhwZWN0YW5jeSBhbmQgbG9nIG9mIEdEUCBwZXIgY2FwaXRhIGluIHRoZSB5ZWFycyAxOTUyLCAxOTcyLCBhbmQgMTk5Mi4gSG93IGRvZXMgdGhpcyByZWxhdGlvbnNoaXAgY2hhbmdlIG92ZXIgdGltZT8KCi0gQ3JlYXRlIGFuIGludGVyYWN0aXZlIHdlYiBhcHBsaWNhdGlvbiBvZiB5b3VyIGFuYWx5c2lzLgoKIyBSZWZlcmVuY2VzCgotIDxodHRwczovL2pvYWNoaW0tZ2Fzc2VuLmdpdGh1Yi5pby9FeFBhbkRhUi8+Ci0gPGh0dHBzOi8vY3Jhbi5yLXByb2plY3Qub3JnL3dlYi9wYWNrYWdlcy9FeFBhbkRhUi9pbmRleC5odG1sPgoKCgpFTkQ=