#Get CSV Data from github repo
theData <- "https://raw.github.com/geeman1209/MSDATA2020/master/Winter Bridge - R/HW2/affairs.csv"

#Put raw data into variable and read csv file
Affairs <- read.csv(theData)
Affairs[1:10, ]
##     X naffairs kids vryunhap unhap avgmarr hapavg vryhap antirel notrel
## 1   1        0    0        0     0       0      1      0       0      0
## 2   2        0    0        0     0       0      1      0       0      0
## 3   3        3    0        0     0       0      1      0       0      0
## 4   4        0    1        0     0       0      1      0       1      0
## 5   5        3    1        0     0       0      0      1       0      0
## 6   6        0    1        0     0       0      0      1       0      0
## 7   7        0    0        0     0       1      0      0       0      1
## 8   8        0    0        0     0       0      0      1       0      1
## 9   9        7    1        0     1       0      0      0       0      0
## 10 10        0    0        0     0       1      0      0       0      1
##    slghtrel smerel vryrel yrsmarr1 yrsmarr2 yrsmarr3 yrsmarr4 yrsmarr5 yrsmarr6
## 1         1      0      0        0        0        0        0        1        0
## 2         0      1      0        0        0        1        0        0        0
## 3         1      0      0        0        1        0        0        0        0
## 4         0      0      0        0        0        0        0        0        1
## 5         1      0      0        0        0        1        0        0        0
## 6         0      0      1        0        0        0        0        0        1
## 7         0      0      0        1        0        0        0        0        0
## 8         0      0      0        0        1        0        0        0        0
## 9         0      0      1        0        0        0        0        0        1
## 10        0      0      0        1        0        0        0        0        0
#Summary function on data
summary(Affairs)
##        X          naffairs           kids           vryunhap      
##  Min.   :  1   Min.   : 0.000   Min.   :0.0000   Min.   :0.00000  
##  1st Qu.:151   1st Qu.: 0.000   1st Qu.:0.0000   1st Qu.:0.00000  
##  Median :301   Median : 0.000   Median :1.0000   Median :0.00000  
##  Mean   :301   Mean   : 1.456   Mean   :0.7155   Mean   :0.02662  
##  3rd Qu.:451   3rd Qu.: 0.000   3rd Qu.:1.0000   3rd Qu.:0.00000  
##  Max.   :601   Max.   :12.000   Max.   :1.0000   Max.   :1.00000  
##      unhap           avgmarr           hapavg           vryhap     
##  Min.   :0.0000   Min.   :0.0000   Min.   :0.0000   Min.   :0.000  
##  1st Qu.:0.0000   1st Qu.:0.0000   1st Qu.:0.0000   1st Qu.:0.000  
##  Median :0.0000   Median :0.0000   Median :0.0000   Median :0.000  
##  Mean   :0.1098   Mean   :0.1547   Mean   :0.3228   Mean   :0.386  
##  3rd Qu.:0.0000   3rd Qu.:0.0000   3rd Qu.:1.0000   3rd Qu.:1.000  
##  Max.   :1.0000   Max.   :1.0000   Max.   :1.0000   Max.   :1.000  
##     antirel            notrel          slghtrel          smerel      
##  Min.   :0.00000   Min.   :0.0000   Min.   :0.0000   Min.   :0.0000  
##  1st Qu.:0.00000   1st Qu.:0.0000   1st Qu.:0.0000   1st Qu.:0.0000  
##  Median :0.00000   Median :0.0000   Median :0.0000   Median :0.0000  
##  Mean   :0.07987   Mean   :0.2729   Mean   :0.2146   Mean   :0.3161  
##  3rd Qu.:0.00000   3rd Qu.:1.0000   3rd Qu.:0.0000   3rd Qu.:1.0000  
##  Max.   :1.00000   Max.   :1.0000   Max.   :1.0000   Max.   :1.0000  
##      vryrel          yrsmarr1          yrsmarr2         yrsmarr3     
##  Min.   :0.0000   Min.   :0.00000   Min.   :0.0000   Min.   :0.0000  
##  1st Qu.:0.0000   1st Qu.:0.00000   1st Qu.:0.0000   1st Qu.:0.0000  
##  Median :0.0000   Median :0.00000   Median :0.0000   Median :0.0000  
##  Mean   :0.1165   Mean   :0.08652   Mean   :0.1464   Mean   :0.1747  
##  3rd Qu.:0.0000   3rd Qu.:0.00000   3rd Qu.:0.0000   3rd Qu.:0.0000  
##  Max.   :1.0000   Max.   :1.00000   Max.   :1.0000   Max.   :1.0000  
##     yrsmarr4         yrsmarr5         yrsmarr6     
##  Min.   :0.0000   Min.   :0.0000   Min.   :0.0000  
##  1st Qu.:0.0000   1st Qu.:0.0000   1st Qu.:0.0000  
##  Median :0.0000   Median :0.0000   Median :0.0000  
##  Mean   :0.1364   Mean   :0.1165   Mean   :0.3394  
##  3rd Qu.:0.0000   3rd Qu.:0.0000   3rd Qu.:1.0000  
##  Max.   :1.0000   Max.   :1.0000   Max.   :1.0000
#Mean and median of two attributes. Amount of affairs and whether they have children. 
AvgAffairs <- mean(Affairs$naffairs)
Median.Affairs <- median(Affairs$naffairs)
Kids <- mean(Affairs$kids)
median.kids <- median(Affairs$kids)


q <- c("Average Affairs", "Median", "Average Kids", "Median Kids")

a <- c(AvgAffairs, Median.Affairs, Kids, median.kids)

originalData <- data.frame("Column Names" = q, "Original" = a)

#Create subset of data. Wanted data of individuals who committed affair
CommitAffair <- filter(Affairs, naffairs != 0)

setnames(CommitAffair, old=c("X","naffairs", "vryunhap", "unhap", "hapavg", "vryhap", "antirel", "notrel", "slghtrel", "smerel", "vryrel", "yrsmarr1", "yrsmarr2", "yrsmarr3", "yrsmarr4", "yrsmarr5", "yrsmarr6"), new=c("Row_Number", "Total_affairs", "Very_Unhappy", "Unhappy", "Happy", "Very_Happy", "Anti_Religious", "Not_Religious", "Slightly_Religious", "Somewhat_Religious", "Very_Religious", "Married_Under_1yr", "Married_more_1yr", "Married_more_4yrs", "Married_more_7yrs", "Married_more_10yrs", "Married_more_15yrs"))


AvgAffairs2 <- mean(CommitAffair$Total_affairs)
Median.Affairs2 <- median(CommitAffair$Total_affairs)
Kids2 <- mean(CommitAffair$kids)
median.kids2 <- median(CommitAffair$kids)

summary(CommitAffair)
##    Row_Number    Total_affairs         kids       Very_Unhappy    
##  Min.   :  3.0   Min.   : 1.000   Min.   :0.00   Min.   :0.00000  
##  1st Qu.:123.2   1st Qu.: 2.000   1st Qu.:1.00   1st Qu.:0.00000  
##  Median :291.5   Median : 7.000   Median :1.00   Median :0.00000  
##  Mean   :294.6   Mean   : 5.833   Mean   :0.82   Mean   :0.05333  
##  3rd Qu.:476.8   3rd Qu.:10.750   3rd Qu.:1.00   3rd Qu.:0.00000  
##  Max.   :598.0   Max.   :12.000   Max.   :1.00   Max.   :1.00000  
##     Unhappy        avgmarr         Happy        Very_Happy     Anti_Religious  
##  Min.   :0.00   Min.   :0.00   Min.   :0.00   Min.   :0.0000   Min.   :0.0000  
##  1st Qu.:0.00   1st Qu.:0.00   1st Qu.:0.00   1st Qu.:0.0000   1st Qu.:0.0000  
##  Median :0.00   Median :0.00   Median :0.00   Median :0.0000   Median :0.0000  
##  Mean   :0.22   Mean   :0.18   Mean   :0.32   Mean   :0.2267   Mean   :0.1333  
##  3rd Qu.:0.00   3rd Qu.:0.00   3rd Qu.:1.00   3rd Qu.:0.0000   3rd Qu.:0.0000  
##  Max.   :1.00   Max.   :1.00   Max.   :1.00   Max.   :1.0000   Max.   :1.0000  
##  Not_Religious    Slightly_Religious Somewhat_Religious Very_Religious   
##  Min.   :0.0000   Min.   :0.0000     Min.   :0.00       Min.   :0.00000  
##  1st Qu.:0.0000   1st Qu.:0.0000     1st Qu.:0.00       1st Qu.:0.00000  
##  Median :0.0000   Median :0.0000     Median :0.00       Median :0.00000  
##  Mean   :0.2733   Mean   :0.2867     Mean   :0.22       Mean   :0.08667  
##  3rd Qu.:1.0000   3rd Qu.:1.0000     3rd Qu.:0.00       3rd Qu.:0.00000  
##  Max.   :1.0000   Max.   :1.0000     Max.   :1.00       Max.   :1.00000  
##  Married_Under_1yr Married_more_1yr Married_more_4yrs Married_more_7yrs
##  Min.   :0.00000   Min.   :0.00     Min.   :0.00      Min.   :0.0000   
##  1st Qu.:0.00000   1st Qu.:0.00     1st Qu.:0.00      1st Qu.:0.0000   
##  Median :0.00000   Median :0.00     Median :0.00      Median :0.0000   
##  Mean   :0.03333   Mean   :0.08     Mean   :0.18      Mean   :0.1533   
##  3rd Qu.:0.00000   3rd Qu.:0.00     3rd Qu.:0.00      3rd Qu.:0.0000   
##  Max.   :1.00000   Max.   :1.00     Max.   :1.00      Max.   :1.0000   
##  Married_more_10yrs Married_more_15yrs
##  Min.   :0.00       Min.   :0.0000    
##  1st Qu.:0.00       1st Qu.:0.0000    
##  Median :0.00       Median :0.0000    
##  Mean   :0.14       Mean   :0.4133    
##  3rd Qu.:0.00       3rd Qu.:1.0000    
##  Max.   :1.00       Max.   :1.0000
# Create Data Frame to compare the 2 attributes

y <- c(AvgAffairs2, Median.Affairs2, Kids2, median.kids2)

comparison <- data.frame("Column Names" = q ,"Original" = a, "Only Adulterer" = y)

comparison
##      Column.Names  Original Only.Adulterer
## 1 Average Affairs 1.4559068       5.833333
## 2          Median 0.0000000       7.000000
## 3    Average Kids 0.7154742       0.820000
## 4     Median Kids 1.0000000       1.000000
#Rename values
CommitAffair$kids[CommitAffair$kids == 0] <- "no"
CommitAffair$kids[CommitAffair$kids == 1] <- "yes"

CommitAffair$Very_Unhappy[CommitAffair$Very_Unhappy == 1] <- "yes"
CommitAffair$Very_Unhappy[CommitAffair$Very_Unhappy == 0] <- "no"

CommitAffair[1:10, ]
##    Row_Number Total_affairs kids Very_Unhappy Unhappy avgmarr Happy Very_Happy
## 1           3             3   no           no       0       0     1          0
## 2           5             3  yes           no       0       0     0          1
## 3           9             7  yes           no       1       0     0          0
## 4          15            12  yes           no       1       0     0          0
## 5          18             1   no           no       0       0     0          1
## 6          19             1  yes           no       0       0     0          1
## 7          27            12  yes           no       1       0     0          0
## 8          29             7   no           no       0       0     1          0
## 9          32             2  yes           no       0       0     1          0
## 10         35             3  yes           no       1       0     0          0
##    Anti_Religious Not_Religious Slightly_Religious Somewhat_Religious
## 1               0             0                  1                  0
## 2               0             0                  1                  0
## 3               0             0                  0                  0
## 4               0             0                  1                  0
## 5               0             0                  0                  1
## 6               0             1                  0                  0
## 7               0             0                  0                  1
## 8               0             1                  0                  0
## 9               0             1                  0                  0
## 10              0             0                  0                  1
##    Very_Religious Married_Under_1yr Married_more_1yr Married_more_4yrs
## 1               0                 0                1                 0
## 2               0                 0                0                 1
## 3               1                 0                0                 0
## 4               0                 0                0                 0
## 5               0                 1                0                 0
## 6               0                 0                1                 0
## 7               0                 0                0                 0
## 8               0                 0                1                 0
## 9               0                 0                0                 0
## 10              0                 0                0                 0
##    Married_more_7yrs Married_more_10yrs Married_more_15yrs
## 1                  0                  0                  0
## 2                  0                  0                  0
## 3                  0                  0                  1
## 4                  0                  1                  0
## 5                  0                  0                  0
## 6                  0                  0                  0
## 7                  0                  0                  1
## 8                  0                  0                  0
## 9                  0                  0                  1
## 10                 0                  0                  1