After our Intro to Stan lecture I think it would be valuable to have you go through a similar exercise. Let’s test a second research question.
Research question: Is sea ice extent declining in the Southern Hemisphere over time? Is the same pattern happening in the Antarctic as in the Arctic? Fit a Stan model to find out!
Make sure you follow the steps we used in class.
What do your Stan model results indicate so far?
As we can conclude based on the stan model, the data fits very well with the predictions and it shows that the model is a good predictor for the outcome.From the comparison result, we noticed that ice extent doesn’t decline in southern hemisphere.
seaice<- read.table("seaice.csv", sep=",",header=T, fileEncoding="UTF-8-BOM")
head(seaice)
## year extent_north extent_south
## 1 1979 12.328 11.700
## 2 1980 12.337 11.230
## 3 1981 12.127 11.435
## 4 1982 12.447 11.640
## 5 1983 12.332 11.389
## 6 1984 11.910 11.454
ggplot(aes(x=year, y=extent_south), data=seaice) + geom_point() + theme_bw()
lm1 <- lm(extent_south ~ year, data = seaice)
summary(lm1)
##
## Call:
## lm(formula = extent_south ~ year, data = seaice)
##
## Residuals:
## Min 1Q Median 3Q Max
## -1.23372 -0.18142 0.01587 0.18465 0.88814
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -14.199551 10.925576 -1.300 0.2018
## year 0.012953 0.005468 2.369 0.0232 *
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.3843 on 37 degrees of freedom
## Multiple R-squared: 0.1317, Adjusted R-squared: 0.1082
## F-statistic: 5.611 on 1 and 37 DF, p-value: 0.02318
x<- I(seaice$year - 1978) #we are only interested in the sea ice change during the period specified in the dataset
y<- seaice$extent_south
N<- length(seaice$year)
lm1 <- lm(y ~ x)
summary(lm1)
##
## Call:
## lm(formula = y ~ x)
##
## Residuals:
## Min 1Q Median 3Q Max
## -1.23372 -0.18142 0.01587 0.18465 0.88814
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 11.421555 0.125490 91.015 <2e-16 ***
## x 0.012953 0.005468 2.369 0.0232 *
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.3843 on 37 degrees of freedom
## Multiple R-squared: 0.1317, Adjusted R-squared: 0.1082
## F-statistic: 5.611 on 1 and 37 DF, p-value: 0.02318
lm_alpha <- summary(lm1)$coeff[1] #intersect
lm_beta <- summary(lm1)$coeff[2] #slope
lm_sigma <- sigma(lm1) #residual error
stan_data <- list(N = N, x = x, y = y)
#write the code
write("// Stan model for simple linear regression
data {
int < lower = 1 > N; // Sample size
vector[N] x; // Predictor
vector[N] y; // Outcome
}
parameters {
real alpha; // Intercept
real beta; // Slope (regression coefficients)
real < lower = 0 > sigma; // Error SD
}
model {
y ~ normal(alpha + x * beta , sigma);
}
generated quantities {
} // The posterior predictive distribution",
"stan_model1.stan")
stan_model1 <- "stan_model1.stan"
fit <- stan(file = stan_model1, data = stan_data, warmup = 500, iter = 1000, chains = 4, cores = 4, thin = 1)
fit
## Inference for Stan model: stan_model1.
## 4 chains, each with iter=1000; warmup=500; thin=1;
## post-warmup draws per chain=500, total post-warmup draws=2000.
##
## mean se_mean sd 2.5% 25% 50% 75% 97.5% n_eff Rhat
## alpha 11.42 0.00 0.13 11.16 11.33 11.42 11.51 11.67 1045 1.00
## beta 0.01 0.00 0.01 0.00 0.01 0.01 0.02 0.02 1023 1.00
## sigma 0.40 0.00 0.05 0.32 0.37 0.39 0.42 0.50 899 1.01
## lp__ 16.36 0.04 1.23 13.02 15.80 16.68 17.25 17.74 829 1.00
##
## Samples were drawn using NUTS(diag_e) at Sun Jan 12 12:05:21 2020.
## For each parameter, n_eff is a crude measure of effective sample size,
## and Rhat is the potential scale reduction factor on split chains (at
## convergence, Rhat=1).
posterior <- extract(fit)
str(posterior)
## List of 4
## $ alpha: num [1:2000(1d)] 11.4 11.4 11.5 11.2 11.5 ...
## ..- attr(*, "dimnames")=List of 1
## .. ..$ iterations: NULL
## $ beta : num [1:2000(1d)] 0.0141 0.0128 0.0132 0.021 0.0106 ...
## ..- attr(*, "dimnames")=List of 1
## .. ..$ iterations: NULL
## $ sigma: num [1:2000(1d)] 0.441 0.343 0.357 0.429 0.386 ...
## ..- attr(*, "dimnames")=List of 1
## .. ..$ iterations: NULL
## $ lp__ : num [1:2000(1d)] 16.9 16.7 16.6 15.5 17.7 ...
## ..- attr(*, "dimnames")=List of 1
## .. ..$ iterations: NULL
plot(y ~ x, pch = 20)
abline(lm1, col = 2, lty = 2, lw = 3)
abline( mean(posterior$alpha), mean(posterior$beta), col = 5, lw = 2)
plot(y ~ x, pch = 20)
for (i in 1:1000) {
abline(posterior$alpha[i], posterior$beta[i], col = "gray", lty = 1)
}
abline(mean(posterior$alpha), mean(posterior$beta), col = 5, lw = 2)