code written: 2020-01-07
last ran: 2020-01-12
website: http://rpubs.com/navona/SPINS_medications
Notes: This script parses the psychotropic medication data for the n=250 SPINS SSD participants eligible for my thesis project. The values in the tables and visualizations show \(mg\)/QD, even if the medication was not administered QD (i.e., all values have been converted to a “daily-dose” time scale). PRN medications are not presented here. Missing values have been estimated. All drugs are presented by their generic name. We have retained information about method of administation (oral, depot) required for CPZE calculation, but that information is not presented here.
#make all lower case
df$pmed_drug_name <- tolower(df$pmed_drug_name)
#correct misspellings
df <- df %>% mutate(pmed_drug_name = dplyr::recode(pmed_drug_name,
`aripiprazole `='aripiprazole',
`aripiprazole` ='aripiprazole',
`aripiprizole`='aripiprazole',
`aripiprozole`='aripiprazole',
`aripirazole`='aripiprazole',
`aripiprazole`='aripiprazole',
`benzotropine`='benztropine',
`celetron`='celestone',
`clonazepam `='clonazepam',
`escitalipram`='escitalopram',
`geodan`='geodon',
`haloperidol dec`='haloperidol decanoate',
`haldol`='haloperidol decanoate',
`haloperidol`='haloperidol decanoate',
`hydoxyzine pamoate`='hydroxyzine',
`hydroxizine`='hydroxyzine',
`lorezepam`='lorazepam',
`lurasidone `='lurasidone',
`olanzepine`='olanzapine',
`paliperidone`='paliperidone',
`palliperidone`='paliperidone',
`paliperidone `='paliperidone',
`setraline`='sertraline',
`thiothizene`='thiothixene',
`trazadone`='trazodone',
`trazedone`='trazodone',
`venlafaxine `='venlafaxine',
`vortoxitine`='vortioxetine',
`ziprazadone`='ziprasidone',
`ziprazidone`='ziprasidone',
`zoplicone`='zopiclone'
))
#fix inconsistent annotation
df <- df %>% mutate(pmed_drug_name = dplyr::recode(pmed_drug_name,
`(abilify) aripiprazole` = 'aripiprazole',
`bupropion hcl` = 'bupropion',
`bupropion hcl xl` = 'bupropion',
`bupropion xl` = 'bupropion',
`buproprion` = 'bupropion',
`citalopram hydrobromide` = "citalopram",
`(cogentin) benztropine` = 'benztropine',
`(depacote) valpronic acid` = 'valproate',
`depakote (valproate)` = 'valproate',
`divalproex` = 'valproate',
`divalproex sod dr` = 'valproate',
`divalproex sodium` = 'valproate',
`divalproex sodium er` = 'valproate',
`effexor xr` = 'effexor',
`escitalopram lexapro` = 'escitalopram',
`haldol dec` = 'haloperidol',
`haloperidol (injection)` = 'haloperidol',
`haloperidol decanoate` = 'haloperidol',
`fluanxol capsule` = 'fluanxol',
`fluanxol injection` = 'fluanxol',
`fluphenazine decanoate` = 'fluphenazine',
`invega sustenna (im)` = 'invega sustenna',
`novo-fluoxetine` = 'fluoxetine',
`paliperidone invega sustenna`='paliperidone',
`paliperidone palmitate`='paliperidone',
`seroquel ir` = 'quetiapine',
`seroquel xr` = 'quetiapine',
`quetiapine (seroquel)` = 'quetiapine',
`quetiapine seroquel` = 'quetiapine',
`leuprolide (lupron)` = 'leuprolide acetate', #hormone
`lithium carbonate` = 'lithium',
`valproic acid` = 'valproate'
))
#brand to generic
df <- df %>% mutate(pmed_drug_name = dplyr::recode(pmed_drug_name,
`abilify` = 'aripiprazole',
`abilify maintena` = 'aripiprazole',
`adderall` = 'dextroamphetamine',
`ativan` = 'lorazepam',
`benadryl` = 'diphenhydramine',
`celexa`='citalopram',
`cipralex` = 'escitalopram',
`celestone` = 'betamethasone',
`cogentin` = 'benztropine',
`concerta` = 'methylphenidate',
`cymbalta` = 'duloxetine',
`depakote` = 'valproate',
`effexor` = 'venlafaxine',
`epival` = 'valproate',
`fanapt` = 'iloperidone',
`fluanxol` = 'flupenthixol',
`geodon` = 'ziprasidone',
`inderal` = 'propranolol',
`invega` = 'paliperidone',
`invega sustenna` = 'paliperidone',
`klonopin` = 'clonazepam',
`latuda` = 'lurasidone',
`lexapro` = 'escitalopram',
`neuleptil` = 'periciazine',
`paliperidone` = 'paliperidone',
`parsitan` = 'ethopropazine',
`paxil` = 'paroxetine',
`prozac` = 'fluoxetine',
`risperdal` = 'risperidone',
`risperdal consta` = 'risperidone',
`seroquel` = 'quetiapine',
`stelazine` = 'trifluoperazine',
`topamax` = 'topiramate',
`vyvanse` = 'lisdexamfetamine',
`wellbutrin` = 'bupropion',
`zoloft` = 'sertraline',
`zyprexa` = 'olanzapine'
))
Data overview: Data from a potential n=250 SSD participants were available for this analysis. However, n=15 SSD participants were not taking any psychotropic medications at time of study. Before any data cleaning, the sample of n=234 SSD participants taking medication were together taking 532 medications (47 unique).
Data cleaning: N=10 medication observations (n=7 unique: betamethasone, diphenhydramine, hydroxyzine, leuprolide acetate, minocycline, oxybutynin, propranolol) were found to be non-psychotropic, and thus removed from the analysis. We found that a total of n=60 medication observations were missing dosage information and n=2 were missing frequency information. Missing data was replaced in an interative process: (i) If dosage information was missing but frequency information was available, dosage information was replaced with the median value for the given frequency, if possible; (ii) If dosage information was missing and no other observation reported the same frequency, the median value with QD frequency was taken, if available; (iii) If dosage and/or frequency information was missing, the ‘prototypical’ profile across other participants was taken. In total, this method was unable to replace missing data for n=4 unique medication observations (ethopropazine, iloperidone, topiramate, trifluoperazine). These observations/medications were removed from subsequent analyses.
Data included: After data cleaning, data from n=234 participants were included, who cumulatively took n=532 medications (47 unique).
Note: PRN medications are included here.
The following table displays a cumulative count of medications taken by these included participants (e.g., 80 participants took 1 psychotropic medication, etc.):
total psychotropic medications | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 |
participant count | 79 | 66 | 43 | 27 | 10 | 6 | 2 | 1 |
The table below shows descriptive statistics for average \(mg\) per day. Note: PRN medications are not included here (n=33).
medication name | participant count | mean | minimum | maximum | standard deviation |
---|---|---|---|---|---|
Atypical Antipsychotic | |||||
aripiprazole | 45 | 14.748 | 5.000 | 40.000 | 8.132 |
clozapine | 61 | 338.934 | 50.000 | 800.000 | 182.376 |
lurasidone | 10 | 54.000 | 20.000 | 100.000 | 25.033 |
olanzapine | 36 | 15.000 | 2.500 | 30.000 | 7.440 |
paliperidone | 20 | 4.704 | 2.679 | 7.143 | 1.362 |
quetiapine | 24 | 263.472 | 8.333 | 1000.000 | 221.042 |
risperidone | 43 | 3.568 | 0.286 | 8.000 | 1.864 |
ziprasidone | 6 | 70.000 | 20.000 | 200.000 | 66.633 |
Typical Antipsychotic | |||||
fluphenazine | 10 | 11.443 | 1.786 | 40.000 | 13.028 |
haloperidol | 14 | 4.122 | 2.000 | 10.000 | 1.865 |
loxapine | 3 | 80.000 | 30.000 | 150.000 | 62.450 |
perphenazine | 5 | 14.000 | 2.000 | 20.000 | 6.928 |
thiothixene | 2 | 10.000 | 10.000 | 10.000 | 0.000 |
Other Psychoactive | |||||
alprazolam | 1 | 6.000 | 6.000 | 6.000 | NA |
atomoxetine | 1 | 60.000 | 60.000 | 60.000 | NA |
bromazepam | 1 | 1.500 | 1.500 | 1.500 | NA |
bupropion | 12 | 210.417 | 75.000 | 450.000 | 132.055 |
buspirone | 4 | 106.250 | 60.000 | 200.000 | 66.002 |
citalopram | 12 | 27.500 | 10.000 | 40.000 | 12.881 |
clomipramine | 4 | 156.250 | 25.000 | 250.000 | 102.825 |
clonazepam | 28 | 0.875 | 0.500 | 2.000 | 0.520 |
dextroamphetamine | 2 | 20.000 | 20.000 | 20.000 | 0.000 |
diazepam | 1 | 5.000 | 5.000 | 5.000 | NA |
doxepin | 1 | 10.000 | 10.000 | 10.000 | NA |
duloxetine | 3 | 60.000 | 60.000 | 60.000 | 0.000 |
escitalopram | 19 | 13.947 | 5.000 | 40.000 | 8.093 |
eszopiclone | 1 | 3.000 | 3.000 | 3.000 | NA |
fluoxetine | 8 | 42.500 | 10.000 | 80.000 | 21.876 |
guanfacine | 1 | 4.000 | 4.000 | 4.000 | NA |
lamotrigine | 10 | 190.000 | 100.000 | 300.000 | 56.765 |
lisdexamfetamine | 1 | 59.000 | 59.000 | 59.000 | NA |
lithium | 13 | 742.308 | 150.000 | 1200.000 | 305.400 |
lorazepam | 29 | 1.916 | 0.050 | 8.000 | 1.771 |
methoprazine | 1 | 25.000 | 25.000 | 25.000 | NA |
methylphenidate | 2 | 45.000 | 36.000 | 54.000 | 12.728 |
paroxetine | 3 | 25.000 | 10.000 | 40.000 | 15.000 |
periciazine | 1 | 10.000 | 10.000 | 10.000 | NA |
sertraline | 24 | 133.333 | 25.000 | 300.000 | 72.106 |
trazodone | 10 | 85.000 | 50.000 | 200.000 | 44.410 |
valproate | 16 | 835.938 | 125.000 | 1500.000 | 410.078 |
venlafaxine | 9 | 158.333 | 75.000 | 300.000 | 69.597 |
vortioxetine | 1 | 20.000 | 20.000 | 20.000 | NA |
zopiclone | 2 | 5.268 | 0.536 | 10.000 | 6.692 |
benztropine | 27 | 1.574 | 0.500 | 5.000 | 1.044 |
Other Neuroactive | |||||
gabapentin | 3 | 900.000 | 900.000 | 900.000 | 0.000 |
naltrexone | 1 | 100.000 | 100.000 | 100.000 | NA |
oxcarbazepine | 1 | 1200.000 | 1200.000 | 1200.000 | NA |
Visualizations: Below are interactive heat maps, tabbed by drug classification category, which indicate the daily-dose in \(mg\) (greyscale) by participant (\(x\) axis) and medication (\(y\) axis). Note: PRN medications are not included here (n=33).
#identify depression drugs
depression <- c(
"alprazolam",
"bupropion",
"citalopram",
"clomipramine",
"doxepin",
"duloxetine",
"escitalopram",
"fluoxetine",
"lithium",
"paroxetine",
"oxcarbazepine", #off-label
"sertraline",
"trazodone",
"venlafaxine",
"vortioxetine")
#identify non-depression drugs
not_depression <- c(
"atomoxetine", #ADHD
"benztropine", #Parkinson's
"bromazepam", #anxiety
"buspirone", #anxiety
"clonazepam", #panic, seizures
"dextroamphetamine", #ADHD
"diazepam", #anxiety
"eszopiclone", #insomnia
"gabapentin", #seizures
"guanfacine", #ADHD
"lamotrigine", #seizures
"lisdexamfetamine", #ADHD
"lorazepam", #anxiety
"methoprazine", #anxiety
"methylphenidate", #ADHD
"naltrexone", #drug abuse
"periciazine", #anxiety
"valproate", #epilepsy
"zopiclone" #insomnia
)
Summary of depression medications.
medication name | participant count | mean | minimum | maximum | standard deviation |
---|---|---|---|---|---|
alprazolam | 1 | 6.000 | 6 | 6 | NA |
bupropion | 12 | 210.417 | 75 | 450 | 132.055 |
citalopram | 12 | 27.500 | 10 | 40 | 12.881 |
clomipramine | 4 | 156.250 | 25 | 250 | 102.825 |
doxepin | 1 | 10.000 | 10 | 10 | NA |
duloxetine | 3 | 60.000 | 60 | 60 | 0.000 |
escitalopram | 19 | 13.947 | 5 | 40 | 8.093 |
fluoxetine | 8 | 42.500 | 10 | 80 | 21.876 |
lithium | 13 | 742.308 | 150 | 1200 | 305.400 |
oxcarbazepine | 1 | 1200.000 | 1200 | 1200 | NA |
paroxetine | 3 | 25.000 | 10 | 40 | 15.000 |
sertraline | 24 | 133.333 | 25 | 300 | 72.106 |
trazodone | 10 | 85.000 | 50 | 200 | 44.410 |
venlafaxine | 9 | 158.333 | 75 | 300 | 69.597 |
vortioxetine | 1 | 20.000 | 20 | 20 | NA |
In total, n=105 participants took n=121 depression medications (15 unique).