Suggested Citation:
Mendez Carlos (2020). Classical Sigma and Beta Convergence Analysis in R: Using the REAT 2.1 Package. R Studio/RPubs. Available at https://rpubs.com/econdata777/short-project-classical-convergence
This work is licensed under the Creative Commons Attribution-Share Alike 4.0 International License. 
Load the Data
Let us use a dataset containing the per-capita GDP of 152 Countries over 34 years (Phillips and Sul, 2009). The data is from the package ConvergenceClubs
Sigma convergence for two periods (ANOVA): 1970 and 2003
For a description of the function and method see the online documentation
Let us measure the dispersion as \(SD[Ln(Y)]\)
Sigma convergence for two periods (ANOVA)
Sigma convergence for multiple periods (Trend regression)
For a description of the function and method see the online documentation
Sigma convergence (Trend regression)
Model summary
Linear trend regression

Non-linear trend regression

An increasing disperision implies a lack of sigma convergence
Beta convergence: 1970-2003 period
betaconv_ols <- betaconv.ols (GDP$Y1970,
1970,
GDP$Y2003,
2003,
conditions = NULL,
beta.plot = TRUE,
beta.plotLine = TRUE,
beta.plotLineCol = "red",
beta.plotX = "Ln (initial)",
beta.plotY = "Growth",
beta.plotTitle = "Beta convergence",
beta.bgrid = TRUE,
beta.bgridType = "solid",
output.results = TRUE)
Absolute Beta Convergence
Model coefficients (Estimation method: OLS)
Model summary

Linear beta-convergence regression

Non-linear beta-convergence regression

The lack of stastical significance of the beta coefficient implies a lack of beta convergence
Research tasks
Evaluate sigma convergence using the coefficient of variation of GDP per capita. Are the results consistent with those using the standard deviation of the log of GDP per capita? Why is this the case?
Useful Reference: Ram, R., 2018. Comparison of cross-country measures of sigma-convergence in per-capita income, 1960–2010. Applied Economics Letters, 25(14), pp.1010-1014.
Evaluate how the beta convergence can change over time. In particular, evaluate and interpret the magnitude of the speed of convergence during after the 1990s.
Useful Reference: Patel, Sandefur and Subramanian (2018) Everything You Know about Cross-Country Convergence Is (Now) Wrong. Center for Global Development Blog.
Evaluate the role of population weights in the analysis convergence.
Useful Reference: Cole, M. A., & Neumayer, E. (2003). The pitfalls of convergence analysis: is the income gap really widening?. Applied Economics Letters, 10(6), 355-357.
END
LS0tCnRpdGxlOiAiQ2xhc3NpY2FsIFNpZ21hIGFuZCBCZXRhIENvbnZlcmdlbmNlIEFuYWx5c2lzIGluIFI6IgpzdWJ0aXRsZTogIlVzaW5nIHRoZSBSRUFUIDIuMSBQYWNrYWdlIgphdXRob3I6ICJDYXJsb3MgTWVuZGV6IgpvdXRwdXQ6IAogIGh0bWxfbm90ZWJvb2s6CiAgICB0b2M6IHRydWUKICAgIHRvY19mbG9hdDoKICAgICAgY29sbGFwc2VkOiBmYWxzZQogICAgICBzbW9vdGhfc2Nyb2xsOiBmYWxzZQogICAgdG9jX2RlcHRoOiA0CiAgICBudW1iZXJfc2VjdGlvbnM6IHRydWUKICAgIGNvZGVfZm9sZGluZzogImhpZGUiCiAgICB0aGVtZTogImNvc21vIgogICAgaGlnaGxpZ2h0OiAibW9ub2Nocm9tZSIKICAgIGRmX3ByaW50OiAia2FibGUiCiAgZ2l0aHViX2RvY3VtZW50OiBkZWZhdWx0Ci0tLQoKCjxzdHlsZT4KaDEudGl0bGUge2ZvbnQtc2l6ZTogMThwdDsgY29sb3I6IERhcmtCbHVlO30gCmJvZHksIGgxLCBoMiwgaDMsIGg0IHtmb250LWZhbWlseTogIlBhbGF0aW5vIiwgc2VyaWY7fQpib2R5IHtmb250LXNpemU6IDEycHQ7fQovKiBIZWFkZXJzICovCmgxLGgyLGgzLGg0LGg1LGg2e2ZvbnQtc2l6ZTogMTRwdDsgY29sb3I6ICMwMDAwOEI7fQpib2R5IHtjb2xvcjogIzMzMzMzMzt9CmEsIGE6aG92ZXIge2NvbG9yOiAjOEIzQTYyO30KcHJlIHtmb250LXNpemU6IDEycHg7fQo8L3N0eWxlPgoKCgoKYGBge3Igc2V0dXAsIGluY2x1ZGU9RkFMU0V9CmtuaXRyOjpvcHRzX2NodW5rJHNldChlY2hvID0gVFJVRSkKCmxpYnJhcnkoZ2dwbG90MikKbGlicmFyeShkcGx5cikKbGlicmFyeShDb252ZXJnZW5jZUNsdWJzKSAjIGNvbnZlcmdlbmNlIGNsdWJzCmxpYnJhcnkoUkVBVCkgICAgICAgICAgIyByZWdpb25hbCBhbmQgZWNvbm9taWMgYW5hbHlzaXMgdG9vbGJveAoKIyBUbyBpbnN0YWxsIGFuZCBsb2FkIHZlcnNpb24gMi4xLjEgb2YgUkVBVCBwYWNrYWdlcwojaW5zdGFsbC5wYWNrYWdlcygiZGV2dG9vbHMiKQojbGlicmFyeShkZXZ0b29scykKI3JlbW92ZS5wYWNrYWdlcygiUkVBVCIpCiNpbnN0YWxsX3ZlcnNpb24oIlJFQVQiLCB2ZXJzaW9uID0gIjIuMS4xIiwgcmVwb3MgPSAiaHR0cDovL2NyYW4udXMuci1wcm9qZWN0Lm9yZyIpCiNsaWJyYXJ5KFJFQVQpCgojIENoYW5nZSB0aGUgcHJlc2VudGF0aW9uIG9mIGRlY2ltYWwgbnVtYmVycyB0byA0IGFuZCBhdm9pZCBzY2llbnRpZmljIG5vdGF0aW9uCm9wdGlvbnMocHJvbXB0PSJSPiAiLCBkaWdpdHM9NCwgc2NpcGVuPTk5OSkKYGBgCgoKClN1Z2dlc3RlZCBDaXRhdGlvbjogCgo+IE1lbmRleiBDYXJsb3MgKDIwMjApLiBDbGFzc2ljYWwgU2lnbWEgYW5kIEJldGEgQ29udmVyZ2VuY2UgQW5hbHlzaXMgaW4gUjogVXNpbmcgdGhlIFJFQVQgMi4xIFBhY2thZ2UuIFIgU3R1ZGlvL1JQdWJzLiBBdmFpbGFibGUgYXQgPGh0dHBzOi8vcnB1YnMuY29tL2Vjb25kYXRhNzc3L3Nob3J0LXByb2plY3QtY2xhc3NpY2FsLWNvbnZlcmdlbmNlPgoKVGhpcyB3b3JrIGlzIGxpY2Vuc2VkIHVuZGVyIHRoZSBDcmVhdGl2ZSBDb21tb25zIEF0dHJpYnV0aW9uLVNoYXJlIEFsaWtlIDQuMCBJbnRlcm5hdGlvbmFsIExpY2Vuc2UuIAohW10oTGljZW5zZS5wbmcpCgoKIyBQcmVsaW1pbmFyeSBSZWFkaW5nCgotIFtWb2xscmF0aCAoMjAxOCkgTmV3IGV2aWRlbmNlIG9uIGNvbnZlcmdlbmNlLiBUaGUgR3Jvd3RoIEJsb2cuXShodHRwczovL2dyb3d0aGVjb24uY29tL2Jsb2cvQ29udmVyZ2VuY2UvKSAKCi0gW0pvaG5zb24sIFAuIGFuZCBQYXBhZ2Vvcmdpb3UsIEMuLCAoMjAxOSkuIFdoYXQgUmVtYWlucyBvZiBDcm9zcy1Db3VudHJ5IENvbnZlcmdlbmNlPy4gSm91cm5hbCBvZiBFY29ub21pYyBMaXRlcmF0dXJlIChGb3J0aGNvbWluZykgXShodHRwczovL21wcmEudWIudW5pLW11ZW5jaGVuLmRlL2lkL2VwcmludC84OTM1NSkKCiMgTG9hZCB0aGUgRGF0YQoKTGV0IHVzIHVzZSBhIFtkYXRhc2V0XShodHRwczovL3JkcnIuaW8vY3Jhbi9Db252ZXJnZW5jZUNsdWJzL21hbi9HRFAuaHRtbCkgY29udGFpbmluZyB0aGUgcGVyLWNhcGl0YSBHRFAgb2YgMTUyIENvdW50cmllcyBvdmVyIDM0IHllYXJzIChQaGlsbGlwcyBhbmQgU3VsLCAyMDA5KS4gVGhlIGRhdGEgaXMgZnJvbSB0aGUgcGFja2FnZSBbYENvbnZlcmdlbmNlQ2x1YnNgXShodHRwczovL3JkcnIuaW8vY3Jhbi9Db252ZXJnZW5jZUNsdWJzL2FwaS8pCgpgYGB7cn0KZGF0YShHRFApCkdEUApgYGAKCgojIFNpZ21hIGNvbnZlcmdlbmNlIGZvciB0d28gcGVyaW9kcyAoQU5PVkEpOiAxOTcwIGFuZCAyMDAzIAoKRm9yIGEgZGVzY3JpcHRpb24gb2YgdGhlIGZ1bmN0aW9uIGFuZCBtZXRob2Qgc2VlIHRoZSBbb25saW5lIGRvY3VtZW50YXRpb25dKGh0dHBzOi8vcmRyci5pby9jcmFuL1JFQVQvbWFuL3NpZ21hY29udi5odG1sKQoKTGV0IHVzIG1lYXN1cmUgdGhlIGRpc3BlcnNpb24gYXMgJFNEW0xuKFkpXSQKCgpgYGB7cn0Kc2lnbWFfYW5vdmFfc2RfbG9nIDwtIHNpZ21hY29udigKICAgICAgICAgIEdEUCRZMTk3MCwKICAgICAgICAgIDE5NzAsCiAgICAgICAgICBHRFAkWTIwMDMsCiAgICAgICAgICAyMDAzLAogICAgICAgICAgc2lnbWEubWVhc3VyZSA9ICJzZCIsCiAgICAgICAgICBzaWdtYS5sb2cgPSBUUlVFLCAjIEZpc3QgdGFrZSBsb2cgb2YgWSwgYW5kIHRoZW4gZG8gdGhlIGFuYWx5c2lzCiAgICAgICAgICBvdXRwdXQucmVzdWx0cyA9IFRSVUUKICAgICAgICAgICkKYGBgCgojIFNpZ21hIGNvbnZlcmdlbmNlIGZvciBtdWx0aXBsZSBwZXJpb2RzIChUcmVuZCByZWdyZXNzaW9uKSAKIApGb3IgYSBkZXNjcmlwdGlvbiBvZiB0aGUgZnVuY3Rpb24gYW5kIG1ldGhvZCBzZWUgdGhlIFtvbmxpbmUgZG9jdW1lbnRhdGlvbl0oaHR0cHM6Ly9yZHJyLmlvL2NyYW4vUkVBVC9tYW4vc2lnbWFjb252LnQuaHRtbCkKCmBgYHtyfQpzaWdtYV90cmVuZF9zZF9sb2cgPC0gc2lnbWFjb252LnQoCiAgR0RQJFkxOTcwLAogIDE5NzAsCiAgR0RQWzM6MzVdLAogIDIwMDMsCiAgc2lnbWEubWVhc3VyZSA9ICJzZCIsCiAgc2lnbWEubG9nID0gVFJVRSwgIyBGaXN0IHRha2UgbG9nIG9mIHgsIGFuZCB0aGVuIGRvIHRoZQogIG91dHB1dC5yZXN1bHRzID0gVFJVRQogICkKYGBgCgojIyBMaW5lYXIgdHJlbmQgcmVncmVzc2lvbgoKYGBge3J9CnNpZ21hX3RyZW5kX3NkX2xvZ1tbInNpZ21hLnRyZW5kIl1dICU+JSAKICBnZ3Bsb3QoYWVzKHggPSB5ZWFycywgeSA9IHNpZ21hLnllYXJzKSkgKwogIGdlb21fbGluZShzaXplPTEsIGxpbmV0eXBlID0gImRhc2hlZCIpICsgCiAgZ2VvbV9zbW9vdGgobWV0aG9kID0gbG0pICsgCiAgdGhlbWVfbWluaW1hbCgpICsKICBsYWJzKHN1YnRpdGxlID0gIlNEW0xvZyhHRFAgcGVyIGNhcGl0YSldIiwKICAgICAgIHggPSAiIiwKICAgICAgIHkgPSAiIikKYGBgCgojIyBOb24tbGluZWFyIHRyZW5kIHJlZ3Jlc3Npb24KCmBgYHtyfQpzaWdtYV90cmVuZF9zZF9sb2dbWyJzaWdtYS50cmVuZCJdXSAlPiUgCiAgZ2dwbG90KGFlcyh4ID0geWVhcnMsIHkgPSBzaWdtYS55ZWFycykpICsKICBnZW9tX2xpbmUoc2l6ZT0xLCBsaW5ldHlwZSA9ICJkYXNoZWQiKSArIAogIGdlb21fc21vb3RoKCkgKyAKICB0aGVtZV9taW5pbWFsKCkgKwogIGxhYnMoc3VidGl0bGUgPSAiU0RbTG9nKEdEUCBwZXIgY2FwaXRhKV0iLAogICAgICAgeCA9ICIiLAogICAgICAgeSA9ICIiKQpgYGAKCgpBbiBpbmNyZWFzaW5nIGRpc3BlcmlzaW9uIGltcGxpZXMgYSBsYWNrIG9mIHNpZ21hIGNvbnZlcmdlbmNlCgoKIyBCZXRhIGNvbnZlcmdlbmNlOiAxOTcwLTIwMDMgcGVyaW9kCgoKYGBge3J9CmJldGFjb252X29scyA8LSBiZXRhY29udi5vbHMgKEdEUCRZMTk3MCwKICAgICAgICAgICAgICAxOTcwLAogICAgICAgICAgICAgIEdEUCRZMjAwMywKICAgICAgICAgICAgICAyMDAzLAogICAgICAgICAgICAgIGNvbmRpdGlvbnMgPSBOVUxMLCAKICAgICAgICAgICAgICBiZXRhLnBsb3QgPSBUUlVFLAogICAgICAgICAgICAgIGJldGEucGxvdExpbmUgPSBUUlVFLCAKICAgICAgICAgICAgICBiZXRhLnBsb3RMaW5lQ29sID0gInJlZCIsIAogICAgICAgICAgICAgIGJldGEucGxvdFggPSAiTG4gKGluaXRpYWwpIiwgCiAgICAgICAgICAgICAgYmV0YS5wbG90WSA9ICJHcm93dGgiLCAKICAgICAgICAgICAgICBiZXRhLnBsb3RUaXRsZSA9ICJCZXRhIGNvbnZlcmdlbmNlIiwgCiAgICAgICAgICAgICAgYmV0YS5iZ3JpZCA9IFRSVUUsIAogICAgICAgICAgICAgIGJldGEuYmdyaWRUeXBlID0gInNvbGlkIiwKICAgICAgICAgICAgICBvdXRwdXQucmVzdWx0cyA9IFRSVUUpCmBgYAoKCiMjIExpbmVhciBiZXRhLWNvbnZlcmdlbmNlIHJlZ3Jlc3Npb24KCmBgYHtyfQpiZXRhY29udl9vbHNbWyJyZWdkYXRhIl1dICU+JSAKICBnZ3Bsb3QoYWVzKHggPSBsbl9pbml0aWFsLCB5ID0gZ3Jvd3RoKSkgKwogIGdlb21fcG9pbnQoKSArCiAgZ2VvbV9zbW9vdGgobWV0aG9kID0gbG0pICsgCiAgdGhlbWVfbWluaW1hbCgpICsKICBsYWJzKHN1YnRpdGxlID0gIkdyb3d0aCBvZiBHRFAgcGVyIGNhcGl0YSAoMTk3MC0yMDAzKSIsCiAgICAgICB4ID0gIkxvZyBvZiBHRFAgcGVyIGNhcGl0YSBpbiAxOTcwIiwKICAgICAgIHkgPSAiIikKYGBgCgojIyBOb24tbGluZWFyIGJldGEtY29udmVyZ2VuY2UgcmVncmVzc2lvbgoKYGBge3J9CmJldGFjb252X29sc1tbInJlZ2RhdGEiXV0gJT4lIAogIGdncGxvdChhZXMoeCA9IGxuX2luaXRpYWwsIHkgPSBncm93dGgpKSArCiAgZ2VvbV9wb2ludCgpICsKICBnZW9tX3Ntb290aCgpICsgCiAgdGhlbWVfbWluaW1hbCgpICsKICBsYWJzKHN1YnRpdGxlID0gIkdyb3d0aCBvZiBHRFAgcGVyIGNhcGl0YSAoMTk3MC0yMDAzKSIsCiAgICAgICB4ID0gIkxvZyBvZiBHRFAgcGVyIGNhcGl0YSBpbiAxOTcwIiwKICAgICAgIHkgPSAiIikKYGBgCgoKVGhlIGxhY2sgb2Ygc3Rhc3RpY2FsIHNpZ25pZmljYW5jZSBvZiB0aGUgYmV0YSBjb2VmZmljaWVudCBpbXBsaWVzIGEgbGFjayBvZiBiZXRhIGNvbnZlcmdlbmNlCgoKIyBSZXNlYXJjaCB0YXNrcwoKLSBFdmFsdWF0ZSBzaWdtYSBjb252ZXJnZW5jZSB1c2luZyB0aGUgY29lZmZpY2llbnQgb2YgdmFyaWF0aW9uIG9mIEdEUCBwZXIgY2FwaXRhLiBBcmUgdGhlIHJlc3VsdHMgY29uc2lzdGVudCB3aXRoIHRob3NlIHVzaW5nIHRoZSBzdGFuZGFyZCBkZXZpYXRpb24gb2YgdGhlIGxvZyBvZiBHRFAgcGVyIGNhcGl0YT8gV2h5IGlzIHRoaXMgdGhlIGNhc2U/CgogICAgPiBbVXNlZnVsIFJlZmVyZW5jZV0oaHR0cHM6Ly93d3cudGFuZGZvbmxpbmUuY29tL2RvaS9hYnMvMTAuMTA4MC8xMzUwNDg1MS4yMDE3LjEzOTE5OTIpOiBSYW0sIFIuLCAyMDE4LiBDb21wYXJpc29uIG9mIGNyb3NzLWNvdW50cnkgbWVhc3VyZXMgb2Ygc2lnbWEtY29udmVyZ2VuY2UgaW4gcGVyLWNhcGl0YSBpbmNvbWUsIDE5NjDigJMyMDEwLiBBcHBsaWVkIEVjb25vbWljcyBMZXR0ZXJzLCAyNSgxNCksIHBwLjEwMTAtMTAxNC4KCi0gRXZhbHVhdGUgaG93IHRoZSBiZXRhIGNvbnZlcmdlbmNlIGNhbiBjaGFuZ2Ugb3ZlciB0aW1lLiBJbiBwYXJ0aWN1bGFyLCBldmFsdWF0ZSBhbmQgaW50ZXJwcmV0IHRoZSBtYWduaXR1ZGUgb2YgdGhlIHNwZWVkIG9mIGNvbnZlcmdlbmNlIGR1cmluZyBhZnRlciB0aGUgMTk5MHMuCgogICAgPiBbVXNlZnVsIFJlZmVyZW5jZV0oaHR0cHM6Ly9ncm93dGhlY29uLmNvbS9ibG9nL0NvbnZlcmdlbmNlLyk6IFBhdGVsLCBTYW5kZWZ1ciBhbmQgU3VicmFtYW5pYW4gKDIwMTgpIEV2ZXJ5dGhpbmcgWW91IEtub3cgYWJvdXQgQ3Jvc3MtQ291bnRyeSBDb252ZXJnZW5jZSBJcyAoTm93KSBXcm9uZy4gQ2VudGVyIGZvciBHbG9iYWwgRGV2ZWxvcG1lbnQgQmxvZy4KCi0gRXZhbHVhdGUgdGhlIHJvbGUgb2YgcG9wdWxhdGlvbiB3ZWlnaHRzIGluIHRoZSBhbmFseXNpcyBjb252ZXJnZW5jZS4KCiAgICA+IFtVc2VmdWwgUmVmZXJlbmNlXShodHRwOi8vZXByaW50cy5sc2UuYWMudWsvMDAwMDA2MDMvMDEvQXBwbGllZEVjb25vbWljc0xldHRlcnNfMTAoNikucGRmKTogQ29sZSwgTS4gQS4sICYgTmV1bWF5ZXIsIEUuICgyMDAzKS4gVGhlIHBpdGZhbGxzIG9mIGNvbnZlcmdlbmNlIGFuYWx5c2lzOiBpcyB0aGUgaW5jb21lIGdhcCByZWFsbHkgd2lkZW5pbmc/LiBBcHBsaWVkIEVjb25vbWljcyBMZXR0ZXJzLCAxMCg2KSwgMzU1LTM1Ny4KCkVORAo=