始めに文法の基本:

r基本マニュアル https://cran.r-project.org/doc/contrib/manuals-jp/Mase-Rstatman.pdf

##http://zeema.hatenablog.com/entry/2017/09/04/003400#%E3%83%87%E3%83%BC%E3%82%BF%E3%81%AE%E8%AA%AD%E3%81%BF%E8%BE%BC%E3%81%BF ##上記はrをベースに記述されているため、console画面で、本画面でエラーになったalldata <- bind_rows(train,test) ##のbind_rows(train,test)について以下のとおり実行する ##> test <- read.csv(test_path, stringsAsFactors = F,na.strings=(c(“NA”, "“))) ## read.table(file = file, header = header, sep = sep, quote = quote, でエラー: ## オブジェクト ‘test_path’ がありません ##> test_path <-”C:/Users/721540/Documents/practice/test.csv" ##> test <- read.csv(test_path, stringsAsFactors = F,na.strings=(c(“NA”, "“))) ##> alldata <- bind_rows(train,test) ## エラー: Argument 1 must be a data fra ##> train_path <-”C:/Users/721540/Documents/practice/train.csv" ##> train <- read.csv(train_path, stringsAsFactors = F,na.strings=(c(“NA”, ""))) ##> alldata <- bind_rows(train,test) ##> glimpse(alldata) ##そうするとrのコンソール上では、上記のテキストコマンドが実行し成功していることが確認できる ##Observations: 1,309 ##Variables: 12 ##$ PassengerId 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, ##2… ##$ Survived 0, 1, 1, 1, 0, 0, 0, 0, 1, 1, 1, 1, 0, 0, 0, 1, 0, 1, 0, 1, 0, 1, 1, 1, 0, 1, 0, 0, 1, 0, 0, 1, ##… ##これが成功した後、このウインドウのチャンクに以下のとおり、glimpse(alldata)、summary(alldata)と書き込むとコマンドが成##功しているのが分かる

##変数dftとはデータフレームのこと ##このデータは1行目が列名になっていることと、1列目が行番号になっていることに注意して、header=Tとrow.names=1を指定##します。 ##プログラム ##df <- read.csv(“sample-data.csv”,header=T,row.names=1)

##ロジスティック回帰分析に使うデータはdfの5,1,2,6列目になるので、以下のようなプログラムで解析に使う部分だけを抽出 ##して変数datに代入します。 ##プログラム ##dat <- df[,c(5,1,2,6)]#5列が目的変数。1,2,6列目が説明変数。 ———————————————————– 参考サイト 全般的な考え方:Pclassについて:http://kefism.hatenablog.com/entry/2017/04/22/203740

library(dummies)
## dummies-1.5.6 provided by Decision Patterns
library(data.table)
## Warning: package 'data.table' was built under R version 3.6.2
library(tidyr)
library(ranger)
## Warning: package 'ranger' was built under R version 3.6.2
library(xtable)
library(nnet)
## Warning: package 'nnet' was built under R version 3.6.2
library(e1071)
## Warning: package 'e1071' was built under R version 3.6.2
library(epitools)
library(car)
## Loading required package: carData
library(caret)
## Warning: package 'caret' was built under R version 3.6.2
## Loading required package: lattice
library(ggplot2)
library(ggthemes)
## Warning: package 'ggthemes' was built under R version 3.6.2
library(randomForest)
## randomForest 4.6-14
## Type rfNews() to see new features/changes/bug fixes.
## 
## Attaching package: 'randomForest'
## The following object is masked from 'package:ranger':
## 
##     importance
## The following object is masked from 'package:ggplot2':
## 
##     margin
library(rgl)
library(rattle)
## Warning: package 'rattle' was built under R version 3.6.2
## Rattle: A free graphical interface for data science with R.
## バージョン 5.3.0 Copyright (c) 2006-2018 Togaware Pty Ltd.
## 'rattle()' と入力して、データを多角的に分析します。
## 
## Attaching package: 'rattle'
## The following object is masked from 'package:randomForest':
## 
##     importance
## The following object is masked from 'package:ranger':
## 
##     importance
library(rpart.plot)
## Warning: package 'rpart.plot' was built under R version 3.6.2
## Loading required package: rpart
library(rpart)
library(epitools)
library(caret)
library(ggthemes)
library(readr)
## Warning: package 'readr' was built under R version 3.6.2
library(dplyr)
## 
## Attaching package: 'dplyr'
## The following object is masked from 'package:randomForest':
## 
##     combine
## The following object is masked from 'package:car':
## 
##     recode
## The following objects are masked from 'package:data.table':
## 
##     between, first, last
## The following objects are masked from 'package:stats':
## 
##     filter, lag
## The following objects are masked from 'package:base':
## 
##     intersect, setdiff, setequal, union
getwd()
## [1] "C:/Users/721540/Documents/practice"

#table 関数機能確認

set.seed(20120508)
x <- sample(letters[1:3], 300, replace = T)
y <- sample(letters[4:5], 300, replace = T)
z <- sample(letters[6:7], 300, replace = T)

t1 <- table(z, x, y)
ftable(t1)
##     y  d  e
## z x        
## f a   26 28
##   b   28 22
##   c   24 19
## g a   23 25
##   b   32 28
##   c   27 18

##書き換え「 train_path <- ‘C:\Users\admin\kaggle\Titanic\train.csv’」→「train_path <- “C:/Users/721540/Documents/practice/train.csv”」

# load data
train_path <- "C:/Users/721540/Documents/practice/train.csv"
test_path <- "C:/Users/721540/Documents/practice/test.csv"
train <- read.csv(train_path, stringsAsFactors = F,na.strings=(c("NA", "")))
test  <- read.csv(test_path, stringsAsFactors = F,na.strings=(c("NA", "")))
alldata <- bind_rows(train,test)
glimpse(alldata)
## Observations: 1,309
## Variables: 12
## $ PassengerId <int> 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, ...
## $ Survived    <int> 0, 1, 1, 1, 0, 0, 0, 0, 1, 1, 1, 1, 0, 0, 0, 1, 0, 1, 0...
## $ Pclass      <int> 3, 1, 3, 1, 3, 3, 1, 3, 3, 2, 3, 1, 3, 3, 3, 2, 3, 2, 3...
## $ Name        <chr> "Braund, Mr. Owen Harris", "Cumings, Mrs. John Bradley ...
## $ Sex         <chr> "male", "female", "female", "female", "male", "male", "...
## $ Age         <dbl> 22, 38, 26, 35, 35, NA, 54, 2, 27, 14, 4, 58, 20, 39, 1...
## $ SibSp       <int> 1, 1, 0, 1, 0, 0, 0, 3, 0, 1, 1, 0, 0, 1, 0, 0, 4, 0, 1...
## $ Parch       <int> 0, 0, 0, 0, 0, 0, 0, 1, 2, 0, 1, 0, 0, 5, 0, 0, 1, 0, 0...
## $ Ticket      <chr> "A/5 21171", "PC 17599", "STON/O2. 3101282", "113803", ...
## $ Fare        <dbl> 7.2500, 71.2833, 7.9250, 53.1000, 8.0500, 8.4583, 51.86...
## $ Cabin       <chr> NA, "C85", NA, "C123", NA, NA, "E46", NA, NA, NA, "G6",...
## $ Embarked    <chr> "S", "C", "S", "S", "S", "Q", "S", "S", "S", "C", "S", ...
summary(alldata)
##   PassengerId      Survived          Pclass          Name          
##  Min.   :   1   Min.   :0.0000   Min.   :1.000   Length:1309       
##  1st Qu.: 328   1st Qu.:0.0000   1st Qu.:2.000   Class :character  
##  Median : 655   Median :0.0000   Median :3.000   Mode  :character  
##  Mean   : 655   Mean   :0.3838   Mean   :2.295                     
##  3rd Qu.: 982   3rd Qu.:1.0000   3rd Qu.:3.000                     
##  Max.   :1309   Max.   :1.0000   Max.   :3.000                     
##                 NA's   :418                                        
##      Sex                 Age            SibSp            Parch      
##  Length:1309        Min.   : 0.17   Min.   :0.0000   Min.   :0.000  
##  Class :character   1st Qu.:21.00   1st Qu.:0.0000   1st Qu.:0.000  
##  Mode  :character   Median :28.00   Median :0.0000   Median :0.000  
##                     Mean   :29.88   Mean   :0.4989   Mean   :0.385  
##                     3rd Qu.:39.00   3rd Qu.:1.0000   3rd Qu.:0.000  
##                     Max.   :80.00   Max.   :8.0000   Max.   :9.000  
##                     NA's   :263                                     
##     Ticket               Fare            Cabin             Embarked        
##  Length:1309        Min.   :  0.000   Length:1309        Length:1309       
##  Class :character   1st Qu.:  7.896   Class :character   Class :character  
##  Mode  :character   Median : 14.454   Mode  :character   Mode  :character  
##                     Mean   : 33.295                                        
##                     3rd Qu.: 31.275                                        
##                     Max.   :512.329                                        
##                     NA's   :1
head(alldata)
##   PassengerId Survived Pclass
## 1           1        0      3
## 2           2        1      1
## 3           3        1      3
## 4           4        1      1
## 5           5        0      3
## 6           6        0      3
##                                                  Name    Sex Age SibSp Parch
## 1                             Braund, Mr. Owen Harris   male  22     1     0
## 2 Cumings, Mrs. John Bradley (Florence Briggs Thayer) female  38     1     0
## 3                              Heikkinen, Miss. Laina female  26     0     0
## 4        Futrelle, Mrs. Jacques Heath (Lily May Peel) female  35     1     0
## 5                            Allen, Mr. William Henry   male  35     0     0
## 6                                    Moran, Mr. James   male  NA     0     0
##             Ticket    Fare Cabin Embarked
## 1        A/5 21171  7.2500  <NA>        S
## 2         PC 17599 71.2833   C85        C
## 3 STON/O2. 3101282  7.9250  <NA>        S
## 4           113803 53.1000  C123        S
## 5           373450  8.0500  <NA>        S
## 6           330877  8.4583  <NA>        Q
#'Pclass', 'Sex', 'Survived'をファクター型へ変換する
train$Pclass <- as.factor(train$Pclass)
train$Sex <- as.factor(train$Sex)
train$Survived <- factor(train$Survived,levels=c(0,1),labels=c("Died","Survived"))
# Survived × Pclass
SP <- table(train$Survived, train$Pclass) 
print(SP) # クロス集計表
##           
##              1   2   3
##   Died      80  97 372
##   Survived 136  87 119
# Survived × Age
ggplot(train, aes(Age, fill = Survived)) + 
   geom_histogram() + 
   theme_igray() +
   xlab("Age") +
   scale_fill_discrete(name = "Survived") + 
   ggtitle("Age vs Survived")
## `stat_bin()` using `bins = 30`. Pick better value with `binwidth`.
## Warning: Removed 177 rows containing non-finite values (stat_bin).

# SibSp
 table(train$Survived, train$SibSp)
##           
##              0   1   2   3   4   5   8
##   Died     398  97  15  12  15   5   7
##   Survived 210 112  13   4   3   0   0
round(prop.table(table(train$Survived,train$SibSp),2),digit=2)  
##           
##               0    1    2    3    4    5    8
##   Died     0.65 0.46 0.54 0.75 0.83 1.00 1.00
##   Survived 0.35 0.54 0.46 0.25 0.17 0.00 0.00

##乗船している配偶者(夫、妻)と兄弟姉妹の数は1人のときに生存率が最も高くなりその後減少する

# Parch
table(train$Survived, train$Parch)
##           
##              0   1   2   3   4   5   6
##   Died     445  53  40   2   4   4   1
##   Survived 233  65  40   3   0   1   0

##乗船している両親(父、母)と子供の数が0人のとき生存率が低く,1人から3人では生存率が高くなり,4人以上だとまた低くなっている.

round(prop.table(table(train$Survived, train$Parch),2),digit=2)
##           
##               0    1    2    3    4    5    6
##   Died     0.66 0.45 0.50 0.40 1.00 0.80 1.00
##   Survived 0.34 0.55 0.50 0.60 0.00 0.20 0.00

Family sizeを表す変数Fsizeの作成、tableの作成→以下のとおり変更

train$Fsize <- train$SibSp + train$Parch + 1
# Survived × Fsize
table(train$Survived, train$Fsize)
##           
##              1   2   3   4   5   6   7   8  11
##   Died     374  72  43   8  12  19   8   6   7
##   Survived 163  89  59  21   3   3   4   0   0

##round(prop.table(table(train\(Survived, train\)Fsize),2),digit=2)

round(prop.table(table(train$Survived, train$Fsize),2),digit=2)
##           
##               1    2    3    4    5    6    7    8   11
##   Died     0.70 0.45 0.42 0.28 0.80 0.86 0.67 1.00 1.00
##   Survived 0.30 0.55 0.58 0.72 0.20 0.14 0.33 0.00 0.00

##乗船している家族の人数は1人のとき生存率は0.3と低いが2人から4人までの生存率は高く,5人以上からは生存率が低くなる傾向にある.このことは,家族がいない乗客の生存率は低い傾向にあるが,家族が多すぎる乗客の生存率も低い傾向にあることを示唆している.

# Fare
ggplot(train, aes(x = Fare, fill = Survived)) +
  geom_histogram() +
  scale_x_continuous() +
  labs(x = 'Fare') +
  theme_igray()
## `stat_bin()` using `bins = 30`. Pick better value with `binwidth`.

##運賃が高いほど生存率が上がる?

# Embarked
table(train$Survived, train$Embarked)
##           
##              C   Q   S
##   Died      75  47 427
##   Survived  93  30 217
round(prop.table(table(train$Survived, train$Embarked),2),digit=2)
##           
##               C    Q    S
##   Died     0.45 0.61 0.66
##   Survived 0.55 0.39 0.34

説明変数の作成と欠損値の補完

  • 年末までにここから
# DFamsize変数の作成(Family sizeをSingle, Small, Largeにカテゴリ化)
 alldata$Famsize <- alldata$SibSp + alldata$Parch + 1 
 alldata$DFamsize[alldata$Famsize==1] <- 'Single'
 alldata$DFamsize[alldata$Famsize>1 & alldata$Famsize<5] <- 'Small'
 alldata$DFamsize[alldata$Famsize>4] <- 'Large'
#alldata$DFamsize
#alldata[10-11,]これは文法上間違いでPassengerId 10-11まで抽出できない
alldata[10,]#PassengerId10 これでできる。  
##    PassengerId Survived Pclass                                Name    Sex Age
## 10          10        1      2 Nasser, Mrs. Nicholas (Adele Achem) female  14
##    SibSp Parch Ticket    Fare Cabin Embarked Famsize DFamsize
## 10     1     0 237736 30.0708  <NA>        C       2    Small
#x <- factor(c(5, 0, 5, 0, 10), levels=c(10, 5, 0), labels=c("a", "b", "c"))
#labels(x)
#as.integer(x)

令和2年1/7 チャレンジ

factor_vars <- c('Pclass','Sex','Embarked','Dfamsize','Survived')
factor_vars
## [1] "Pclass"   "Sex"      "Embarked" "Dfamsize" "Survived"
#alldata[factor_vars]
#alldata[factor_vars] <- lapply(alldata[factor_vars], function(x) as.factor(x))
  • ファクター型へ変換

  • factor_vars <- c(‘Pclass’,‘Sex’,‘Embarked’,‘Dfamsize’,‘Survived’)

  • でfactor_varsという配列要素を作るところまではできたが、それにファクター・データを書き込む所がうまくいかない

  • 参考2:https://qiita.com/crash-boy/items/12a6b940fafbc549712a

  • alldata[factor_vars] <- lapply(alldata[factor_vars], function(x) as.factor(x))

  • が良くわからないので、https://qiita.com/crash-boy/items/12a6b940fafbc549712a

  • を後半の参考として、sapply(alldata,function(x) sum(is.na(x)))

  • をまず解析する。これを実行すると 欠損値の合計を一覧で表示する。

  • 例えばAgeは263の欠損があり、 Cabinは1014の欠損

sapply(alldata,function(x) sum(is.na(x)))
## PassengerId    Survived      Pclass        Name         Sex         Age 
##           0         418           0           0           0         263 
##       SibSp       Parch      Ticket        Fare       Cabin    Embarked 
##           0           0           0           1        1014           2 
##     Famsize    DFamsize 
##           0           0
head(alldata)
##   PassengerId Survived Pclass
## 1           1        0      3
## 2           2        1      1
## 3           3        1      3
## 4           4        1      1
## 5           5        0      3
## 6           6        0      3
##                                                  Name    Sex Age SibSp Parch
## 1                             Braund, Mr. Owen Harris   male  22     1     0
## 2 Cumings, Mrs. John Bradley (Florence Briggs Thayer) female  38     1     0
## 3                              Heikkinen, Miss. Laina female  26     0     0
## 4        Futrelle, Mrs. Jacques Heath (Lily May Peel) female  35     1     0
## 5                            Allen, Mr. William Henry   male  35     0     0
## 6                                    Moran, Mr. James   male  NA     0     0
##             Ticket    Fare Cabin Embarked Famsize DFamsize
## 1        A/5 21171  7.2500  <NA>        S       2    Small
## 2         PC 17599 71.2833   C85        C       2    Small
## 3 STON/O2. 3101282  7.9250  <NA>        S       1   Single
## 4           113803 53.1000  C123        S       2    Small
## 5           373450  8.0500  <NA>        S       1   Single
## 6           330877  8.4583  <NA>        Q       1   Single
  • 次に,lapply(alldata, function(x) as.factor(x))を実行すると,
  • 全てのカテゴリごとに全データを打ち出す。
  • lapply はリスト型に対して、何かを一括演算するときに利用する。リスト型のデータは、1、2、…
  • ように番号付けられているため、行列のように行または列を指定しない。
  • そのため行列を指定しない分、引数は入力データと演算処理を行う関数の 2 つだけである。
  • https://stats.biopapyrus.jp/r/basic/apply.html
  • lapply(x,sum)では、ベクトルx毎に合計値を出す。
  • lapply(alldata, function(x) as.factor(x))
  • ここではfunction(x)は、関数を意味するだけでこれには何も演算機能がない
  • as.factor(x)という自分で作成した関数を、実行せよという意味である。
  • factor()関数を使って因子型へ返還する。
  • 参考:http://taustation.com/r-factor/

alldata[is.na(alldata$Age), “Age”] <- apply(alldata[is.na(alldata$Age), ] , 1, function(x)title.age[title.age[, 1]==x[“Title”], 2])

代替プラン (因子型へ返還)

  • alldata[factor_vars] <- lapply(alldata[factor_vars], function(x) as.factor(x))
  • のalldata[factor_vars]の文法は良くわからないので、ひとつづつたってみると
  • 下記の事をしたいのだろうと推測する
  • ◆◆aファクター型へ変換されたalldataを表示 → alldata\(Pclass <- as.factor(alldata\)Pclass);alldata$Pclass
  • ◆参考◆http://by-oneself.com/r_basic_factor/
alldata$Pclass <- as.factor(alldata$Pclass)
alldata$Sex <- as.factor(alldata$Sex)
alldata$Embarked <- as.factor(alldata$Embarked)
alldata$Survived <- as.factor(alldata$Survived)
alldata$DFamsize <- as.factor(alldata$DFamsize)
head(alldata)
##   PassengerId Survived Pclass
## 1           1        0      3
## 2           2        1      1
## 3           3        1      3
## 4           4        1      1
## 5           5        0      3
## 6           6        0      3
##                                                  Name    Sex Age SibSp Parch
## 1                             Braund, Mr. Owen Harris   male  22     1     0
## 2 Cumings, Mrs. John Bradley (Florence Briggs Thayer) female  38     1     0
## 3                              Heikkinen, Miss. Laina female  26     0     0
## 4        Futrelle, Mrs. Jacques Heath (Lily May Peel) female  35     1     0
## 5                            Allen, Mr. William Henry   male  35     0     0
## 6                                    Moran, Mr. James   male  NA     0     0
##             Ticket    Fare Cabin Embarked Famsize DFamsize
## 1        A/5 21171  7.2500  <NA>        S       2    Small
## 2         PC 17599 71.2833   C85        C       2    Small
## 3 STON/O2. 3101282  7.9250  <NA>        S       1   Single
## 4           113803 53.1000  C123        S       2    Small
## 5           373450  8.0500  <NA>        S       1   Single
## 6           330877  8.4583  <NA>        Q       1   Single
#次によりsex等は、chr型からfct型変換されているのがわかる。
glimpse(alldata)
## Observations: 1,309
## Variables: 14
## $ PassengerId <int> 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, ...
## $ Survived    <fct> 0, 1, 1, 1, 0, 0, 0, 0, 1, 1, 1, 1, 0, 0, 0, 1, 0, 1, 0...
## $ Pclass      <fct> 3, 1, 3, 1, 3, 3, 1, 3, 3, 2, 3, 1, 3, 3, 3, 2, 3, 2, 3...
## $ Name        <chr> "Braund, Mr. Owen Harris", "Cumings, Mrs. John Bradley ...
## $ Sex         <fct> male, female, female, female, male, male, male, male, f...
## $ Age         <dbl> 22, 38, 26, 35, 35, NA, 54, 2, 27, 14, 4, 58, 20, 39, 1...
## $ SibSp       <int> 1, 1, 0, 1, 0, 0, 0, 3, 0, 1, 1, 0, 0, 1, 0, 0, 4, 0, 1...
## $ Parch       <int> 0, 0, 0, 0, 0, 0, 0, 1, 2, 0, 1, 0, 0, 5, 0, 0, 1, 0, 0...
## $ Ticket      <chr> "A/5 21171", "PC 17599", "STON/O2. 3101282", "113803", ...
## $ Fare        <dbl> 7.2500, 71.2833, 7.9250, 53.1000, 8.0500, 8.4583, 51.86...
## $ Cabin       <chr> NA, "C85", NA, "C123", NA, NA, "E46", NA, NA, NA, "G6",...
## $ Embarked    <fct> S, C, S, S, S, Q, S, S, S, C, S, S, S, S, S, S, Q, S, S...
## $ Famsize     <dbl> 2, 2, 1, 2, 1, 1, 1, 5, 3, 2, 3, 1, 1, 7, 1, 1, 6, 1, 2...
## $ DFamsize    <fct> Small, Small, Single, Small, Single, Single, Single, La...

欠損値の補完

1.Fare(運賃)の欠損値の補完

  • 以下により、PassengerId 1044のみがFareを欠損していることが分かるので、
# Fareの欠損値の補完
sum(is.na(alldata$Fare))
## [1] 1
which(is.na(alldata$Fare))
## [1] 1044
alldata[1044,]
##      PassengerId Survived Pclass               Name  Sex  Age SibSp Parch
## 1044        1044     <NA>      3 Storey, Mr. Thomas male 60.5     0     0
##      Ticket Fare Cabin Embarked Famsize DFamsize
## 1044   3701   NA  <NA>        S       1   Single
  • 利用できそうな変数:Pclass=3、Embarked=“S”
  • Pclassが3の値を有しており,Embarked(乗船場所)がSouthamptonの乗客の運賃の中央値で補完する
tempdata<-alldata[which(alldata[,"Pclass"]==3 & alldata[,"Embarked"]== "S"),]
  • これにより、8.05で補われた事が確認できる。
alldata[1044,]$Fare<-median(tempdata$Fare,na.rm=T)
alldata[1044,]$Fare
## [1] 8.05

2.Embarked(出発港)の欠損値の補完

sum(is.na(alldata$Embarked))
## [1] 2
a <- which(is.na(alldata$Embarked)) # 62 and 830
alldata[a,]# この2人の乗客の共通点はPclassが1とFareが80ということ
##     PassengerId Survived Pclass                                      Name
## 62           62        1      1                       Icard, Miss. Amelie
## 830         830        1      1 Stone, Mrs. George Nelson (Martha Evelyn)
##        Sex Age SibSp Parch Ticket Fare Cabin Embarked Famsize DFamsize
## 62  female  38     0     0 113572   80   B28     <NA>       1   Single
## 830 female  62     0     0 113572   80   B28     <NA>       1   Single
tempdata <- alldata[-a,]
tempdata <- tempdata[which(tempdata[,"Pclass"]==1),]
table(tempdata$Embarked) # Pclassが1の値を有する乗客の乗船地:Qが圧倒的に少ない
## 
##   C   Q   S 
## 141   3 177
summary(tempdata$Fare)
##    Min. 1st Qu.  Median    Mean 3rd Qu.    Max. 
##    0.00   30.70   60.00   87.56  108.90  512.33

◆◆ Embarked(出発港別料金の箱ひげ図)

ggplot(tempdata, aes(x = Embarked, y = Fare)) +
   geom_boxplot() +
   geom_hline(yintercept = 80,colour = "red" ,lwd = .5)

# boxplotよりアウトサンプルにおけるPclassが1の値を有する乗客の乗船場所別の運賃の中央値(box内の横線)が80なのはCだと分かる.
# なので欠損値にCを補完する
alldata$Embarked[a] <- "C"

3.Ageの欠損値を補完

sum(is.na(alldata$Age)) #263 missing values for 'Age'
## [1] 263
# Name変数の情報を利用して補完を行う
alldata$Title <- gsub('(.*, )|(\\..*)', '', alldata$Name) #Name変数から呼称(Mr, Missなど)部分を抽出して新たな変数Titleとする.
# 使用している正規表現は次のとおり。
# (.*, )|(\\..*)のうち()はグループ化であり,.は任意の一文字。*は直前の一文字を0回以上続ける。
# \\.は単なる「.」文字のことであり\\..は「.の後に任意の一文字」を意味しており,さらに\\..*は「.●●」と.の後の任意の一文字を0回以上続ける,つまり,.の後の文字列を指定していることを意味する.
table(alldata$Title)
## 
##         Capt          Col          Don         Dona           Dr     Jonkheer 
##            1            4            1            1            8            1 
##         Lady        Major       Master         Miss         Mlle          Mme 
##            1            2           61          260            2            1 
##           Mr          Mrs           Ms          Rev          Sir the Countess 
##          757          197            2            8            1            1
officer <- c('Capt', 'Col', 'Don', 'Dr', 'Major', 'Rev')
royalty <- c('Dona', 'Lady', 'the Countess','Sir', 'Jonkheer')

Miss, Mrs, Royalty, Officerへ集約

# Miss, Mrs, Royalty, Officerへ集約する
alldata$Title[alldata$Title == 'Mlle']        <- 'Miss' 
alldata$Title[alldata$Title == 'Ms']          <- 'Miss'
alldata$Title[alldata$Title == 'Mme']         <- 'Mrs' 
alldata$Title[alldata$Title %in% royalty]  <- 'Royalty'
alldata$Title[alldata$Title %in% officer]  <- 'Officer'
alldata$Title<-as.factor(alldata$Title)

Titleごとの中央値でAgeの欠損値を補完する

 # Titleごとの中央値でAgeの欠損値を補完する
 # alldata$Age#欠損値補正前
tapply(alldata$Age, alldata$Title,median, na.rm=TRUE)
##  Master    Miss      Mr     Mrs Officer Royalty 
##       4      22      29      35      49      39
title.age <- aggregate(alldata$Age,by = list(alldata$Title), FUN = function(x) median(x, na.rm = T))
title.age # Titleごとの年齢の中央値
##   Group.1  x
## 1  Master  4
## 2    Miss 22
## 3      Mr 29
## 4     Mrs 35
## 5 Officer 49
## 6 Royalty 39
alldata[is.na(alldata$Age), "Age"] <- apply(alldata[is.na(alldata$Age), ] , 1, function(x) title.age[title.age[, 1]==x["Title"], 2])
#alldata$Age#欠損値を補完後 
library(dplyr)
library(tidyverse)
## Warning: package 'tidyverse' was built under R version 3.6.2
## -- Attaching packages ------------------------------------------------------------------------------ tidyverse 1.3.0 --
## √ tibble  2.1.3     √ stringr 1.4.0
## √ purrr   0.3.3     √ forcats 0.4.0
## Warning: package 'stringr' was built under R version 3.6.2
## Warning: package 'forcats' was built under R version 3.6.2
## -- Conflicts --------------------------------------------------------------------------------- tidyverse_conflicts() --
## x dplyr::between()       masks data.table::between()
## x dplyr::combine()       masks randomForest::combine()
## x dplyr::filter()        masks stats::filter()
## x dplyr::first()         masks data.table::first()
## x dplyr::lag()           masks stats::lag()
## x dplyr::last()          masks data.table::last()
## x purrr::lift()          masks caret::lift()
## x randomForest::margin() masks ggplot2::margin()
## x dplyr::recode()        masks car::recode()
## x purrr::some()          masks car::some()
## x purrr::transpose()     masks data.table::transpose()
library(knitr)
library(purrr) #別解のやり方をするときに使用。

-相関行列を作成する前に変数Wom_chd,Groupを作成しておく。

# Ticketk変数を番号ごとに集計した結果を新たな変数groupTKTとする.
groupTKT <- alldata %>%
         group_by(Ticket) %>%
         summarise(N = n()) %>%
         filter(N > 2) %>%
         arrange(desc(N))
head(groupTKT, 5)
## # A tibble: 5 x 2
##   Ticket       N
##   <chr>    <int>
## 1 CA. 2343    11
## 2 1601         8
## 3 CA 2144      8
## 4 3101295      7
## 5 347077       7
# 女性もしくは18歳以下ならばYes, それ以外はNoの値とるWom_chd変数の作成
alldata$Wom_chd <- "No"
alldata$Wom_chd[which(alldata$Sex == "female" | alldata$Age < 18)] = "Yes"
alldata$Wom_chd <- as.factor(alldata$Wom_chd)
# groupTKTの値が2より大きければYes,それ以外ならNoの値をとるGroup変数の作成
alldata$Group = "No"
alldata$Group[which(alldata$Ticket %in% groupTKT$Ticket)] = "Yes"
alldata$Group <- as.factor(alldata$Group)

相関行列

# ダミー化したい変数をセレクト
dum <- select(.data = alldata,Survived, Pclass,Sex, Embarked, DFamsize, Title, Group, Wom_chd)
# dum <- select(.data = alldata,Survived, Pclass,Sex, Embarked, DFamsize, Title, Wom_chd)
head(dum)
##   Survived Pclass    Sex Embarked DFamsize Title Group Wom_chd
## 1        0      3   male        S    Small    Mr    No      No
## 2        1      1 female        C    Small   Mrs    No     Yes
## 3        1      3 female        S   Single  Miss    No     Yes
## 4        1      1 female        S    Small   Mrs    No     Yes
## 5        0      3   male        S   Single    Mr    No      No
## 6        0      3   male        Q   Single    Mr    No      No
# ダミー化しない変数をセレクト
not_dum  <- select(.data = alldata,PassengerId, Name, Age, SibSp, Parch, Ticket, Fare, Cabin, Famsize)
head(not_dum)
##   PassengerId                                                Name Age SibSp
## 1           1                             Braund, Mr. Owen Harris  22     1
## 2           2 Cumings, Mrs. John Bradley (Florence Briggs Thayer)  38     1
## 3           3                              Heikkinen, Miss. Laina  26     0
## 4           4        Futrelle, Mrs. Jacques Heath (Lily May Peel)  35     1
## 5           5                            Allen, Mr. William Henry  35     0
## 6           6                                    Moran, Mr. James  29     0
##   Parch           Ticket    Fare Cabin Famsize
## 1     0        A/5 21171  7.2500  <NA>       2
## 2     0         PC 17599 71.2833   C85       2
## 3     0 STON/O2. 3101282  7.9250  <NA>       1
## 4     0           113803 53.1000  C123       2
## 5     0           373450  8.0500  <NA>       1
## 6     0           330877  8.4583  <NA>       1
#作成したダミー変数の名前を修正
#参考1:http://webbeginner.hatenablog.com/entry/2014/05/09/234219
#参考2:https://hikaru1122.hatenadiary.jp/entry/2015/05/06/003000
#dummy_var %>% dplyr::rename(Survived=res, Sex=res.1, Group=res.2, Wom_chd=res.3)
#dummy_var <- dplyr::rename(dummy_var,Survived=res, Sex=res.1, Group=res.2, Wom_chd=res.3)
dum %>% dplyr::rename(res=Survived,res.1=Sex, res.2=Group, res.3=Wom_chd)
##       res Pclass  res.1 Embarked DFamsize   Title res.2 res.3
## 1       0      3   male        S    Small      Mr    No    No
## 2       1      1 female        C    Small     Mrs    No   Yes
## 3       1      3 female        S   Single    Miss    No   Yes
## 4       1      1 female        S    Small     Mrs    No   Yes
## 5       0      3   male        S   Single      Mr    No    No
## 6       0      3   male        Q   Single      Mr    No    No
## 7       0      1   male        S   Single      Mr    No    No
## 8       0      3   male        S    Large  Master   Yes   Yes
## 9       1      3 female        S    Small     Mrs   Yes   Yes
## 10      1      2 female        C    Small     Mrs    No   Yes
## 11      1      3 female        S    Small    Miss   Yes   Yes
## 12      1      1 female        S   Single    Miss    No   Yes
## 13      0      3   male        S   Single      Mr    No    No
## 14      0      3   male        S    Large      Mr   Yes    No
## 15      0      3 female        S   Single    Miss    No   Yes
## 16      1      2 female        S   Single     Mrs    No   Yes
## 17      0      3   male        Q    Large  Master   Yes   Yes
## 18      1      2   male        S   Single      Mr    No    No
## 19      0      3 female        S    Small     Mrs    No   Yes
## 20      1      3 female        C   Single     Mrs    No   Yes
## 21      0      2   male        S   Single      Mr    No    No
## 22      1      2   male        S   Single      Mr    No    No
## 23      1      3 female        Q   Single    Miss    No   Yes
## 24      1      1   male        S   Single      Mr    No    No
## 25      0      3 female        S    Large    Miss   Yes   Yes
## 26      1      3 female        S    Large     Mrs   Yes   Yes
## 27      0      3   male        C   Single      Mr    No    No
## 28      0      1   male        S    Large      Mr   Yes    No
## 29      1      3 female        Q   Single    Miss    No   Yes
## 30      0      3   male        S   Single      Mr    No    No
## 31      0      1   male        C   Single Officer    No    No
## 32      1      1 female        C    Small     Mrs   Yes   Yes
## 33      1      3 female        Q   Single    Miss    No   Yes
## 34      0      2   male        S   Single      Mr    No    No
## 35      0      1   male        C    Small      Mr    No    No
## 36      0      1   male        S    Small      Mr    No    No
## 37      1      3   male        C   Single      Mr    No    No
## 38      0      3   male        S   Single      Mr    No    No
## 39      0      3 female        S    Small    Miss    No   Yes
## 40      1      3 female        C    Small    Miss    No   Yes
## 41      0      3 female        S    Small     Mrs    No   Yes
## 42      0      2 female        S    Small     Mrs    No   Yes
## 43      0      3   male        C   Single      Mr    No    No
## 44      1      2 female        C    Small    Miss   Yes   Yes
## 45      1      3 female        Q   Single    Miss    No   Yes
## 46      0      3   male        S   Single      Mr    No    No
## 47      0      3   male        Q    Small      Mr    No    No
## 48      1      3 female        Q   Single    Miss    No   Yes
## 49      0      3   male        C    Small      Mr   Yes    No
## 50      0      3 female        S    Small     Mrs    No   Yes
## 51      0      3   male        S    Large  Master   Yes   Yes
## 52      0      3   male        S   Single      Mr    No    No
## 53      1      1 female        C    Small     Mrs   Yes   Yes
## 54      1      2 female        S    Small     Mrs    No   Yes
## 55      0      1   male        C    Small      Mr    No    No
## 56      1      1   male        S   Single      Mr    No    No
## 57      1      2 female        S   Single    Miss    No   Yes
## 58      0      3   male        C   Single      Mr    No    No
## 59      1      2 female        S    Small    Miss   Yes   Yes
## 60      0      3   male        S    Large  Master   Yes   Yes
## 61      0      3   male        C   Single      Mr    No    No
## 62      1      1 female        C   Single    Miss    No   Yes
## 63      0      1   male        S    Small      Mr    No    No
## 64      0      3   male        S    Large  Master   Yes   Yes
## 65      0      1   male        C   Single      Mr    No    No
## 66      1      3   male        C    Small  Master   Yes   Yes
## 67      1      2 female        S   Single     Mrs    No   Yes
## 68      0      3   male        S   Single      Mr    No    No
## 69      1      3 female        S    Large    Miss    No   Yes
## 70      0      3   male        S    Small      Mr    No    No
## 71      0      2   male        S   Single      Mr    No    No
## 72      0      3 female        S    Large    Miss   Yes   Yes
## 73      0      2   male        S   Single      Mr   Yes    No
## 74      0      3   male        C    Small      Mr    No    No
## 75      1      3   male        S   Single      Mr   Yes    No
## 76      0      3   male        S   Single      Mr    No    No
## 77      0      3   male        S   Single      Mr    No    No
## 78      0      3   male        S   Single      Mr    No    No
## 79      1      2   male        S    Small  Master   Yes   Yes
## 80      1      3 female        S   Single    Miss    No   Yes
## 81      0      3   male        S   Single      Mr    No    No
## 82      1      3   male        S   Single      Mr    No    No
## 83      1      3 female        Q   Single    Miss    No   Yes
## 84      0      1   male        S   Single      Mr    No    No
## 85      1      2 female        S   Single    Miss    No   Yes
## 86      1      3 female        S    Small     Mrs    No   Yes
## 87      0      3   male        S    Large      Mr   Yes   Yes
## 88      0      3   male        S   Single      Mr    No    No
## 89      1      1 female        S    Large    Miss   Yes   Yes
## 90      0      3   male        S   Single      Mr    No    No
## 91      0      3   male        S   Single      Mr    No    No
## 92      0      3   male        S   Single      Mr    No    No
## 93      0      1   male        S    Small      Mr    No    No
## 94      0      3   male        S    Small      Mr   Yes    No
## 95      0      3   male        S   Single      Mr    No    No
## 96      0      3   male        S   Single      Mr    No    No
## 97      0      1   male        C   Single      Mr    No    No
## 98      1      1   male        C    Small      Mr    No    No
## 99      1      2 female        S    Small     Mrs    No   Yes
## 100     0      2   male        S    Small      Mr    No    No
## 101     0      3 female        S   Single    Miss    No   Yes
## 102     0      3   male        S   Single      Mr    No    No
## 103     0      1   male        S    Small      Mr    No    No
## 104     0      3   male        S   Single      Mr    No    No
## 105     0      3   male        S    Small      Mr    No    No
## 106     0      3   male        S   Single      Mr    No    No
## 107     1      3 female        S   Single    Miss    No   Yes
## 108     1      3   male        S   Single      Mr    No    No
## 109     0      3   male        S   Single      Mr    No    No
## 110     1      3 female        Q    Small    Miss   Yes   Yes
## 111     0      1   male        S   Single      Mr    No    No
## 112     0      3 female        C    Small    Miss    No   Yes
## 113     0      3   male        S   Single      Mr    No    No
## 114     0      3 female        S    Small    Miss    No   Yes
## 115     0      3 female        C   Single    Miss    No   Yes
## 116     0      3   male        S   Single      Mr    No    No
## 117     0      3   male        Q   Single      Mr    No    No
## 118     0      2   male        S    Small      Mr    No    No
## 119     0      1   male        C    Small      Mr   Yes    No
## 120     0      3 female        S    Large    Miss   Yes   Yes
## 121     0      2   male        S    Small      Mr   Yes    No
## 122     0      3   male        S   Single      Mr    No    No
## 123     0      2   male        C    Small      Mr    No    No
## 124     1      2 female        S   Single    Miss    No   Yes
## 125     0      1   male        S    Small      Mr    No    No
## 126     1      3   male        C    Small  Master    No   Yes
## 127     0      3   male        Q   Single      Mr    No    No
## 128     1      3   male        S   Single      Mr    No    No
## 129     1      3 female        C    Small    Miss   Yes   Yes
## 130     0      3   male        S   Single      Mr    No    No
## 131     0      3   male        C   Single      Mr    No    No
## 132     0      3   male        S   Single      Mr    No    No
## 133     0      3 female        S    Small     Mrs    No   Yes
## 134     1      2 female        S    Small     Mrs    No   Yes
## 135     0      2   male        S   Single      Mr    No    No
## 136     0      2   male        C   Single      Mr    No    No
## 137     1      1 female        S    Small    Miss    No   Yes
## 138     0      1   male        S    Small      Mr    No    No
## 139     0      3   male        S   Single      Mr    No   Yes
## 140     0      1   male        C   Single      Mr    No    No
## 141     0      3 female        C    Small     Mrs   Yes   Yes
## 142     1      3 female        S   Single    Miss    No   Yes
## 143     1      3 female        S    Small     Mrs    No   Yes
## 144     0      3   male        Q   Single      Mr    No    No
## 145     0      2   male        S   Single      Mr    No    No
## 146     0      2   male        S    Small      Mr   Yes    No
## 147     1      3   male        S   Single      Mr    No    No
## 148     0      3 female        S    Large    Miss   Yes   Yes
## 149     0      2   male        S    Small      Mr   Yes    No
## 150     0      2   male        S   Single Officer    No    No
## 151     0      2   male        S   Single Officer    No    No
## 152     1      1 female        S    Small     Mrs    No   Yes
## 153     0      3   male        S   Single      Mr    No    No
## 154     0      3   male        S    Small      Mr   Yes    No
## 155     0      3   male        S   Single      Mr    No    No
## 156     0      1   male        C    Small      Mr    No    No
## 157     1      3 female        Q   Single    Miss    No   Yes
## 158     0      3   male        S   Single      Mr    No    No
## 159     0      3   male        S   Single      Mr    No    No
## 160     0      3   male        S    Large  Master   Yes   Yes
## 161     0      3   male        S    Small      Mr    No    No
## 162     1      2 female        S   Single     Mrs    No   Yes
## 163     0      3   male        S   Single      Mr    No    No
## 164     0      3   male        S   Single      Mr    No   Yes
## 165     0      3   male        S    Large  Master   Yes   Yes
## 166     1      3   male        S    Small  Master   Yes   Yes
## 167     1      1 female        S    Small     Mrs    No   Yes
## 168     0      3 female        S    Large     Mrs   Yes   Yes
## 169     0      1   male        S   Single      Mr    No    No
## 170     0      3   male        S   Single      Mr   Yes    No
## 171     0      1   male        S   Single      Mr    No    No
## 172     0      3   male        Q    Large  Master   Yes   Yes
## 173     1      3 female        S    Small    Miss   Yes   Yes
## 174     0      3   male        S   Single      Mr    No    No
## 175     0      1   male        C   Single      Mr    No    No
## 176     0      3   male        S    Small      Mr    No    No
## 177     0      3   male        S    Large  Master   Yes   Yes
## 178     0      1 female        C   Single    Miss    No   Yes
## 179     0      2   male        S   Single      Mr    No    No
## 180     0      3   male        S   Single      Mr   Yes    No
## 181     0      3 female        S    Large    Miss   Yes   Yes
## 182     0      2   male        C   Single      Mr    No    No
## 183     0      3   male        S    Large  Master   Yes   Yes
## 184     1      2   male        S    Small  Master   Yes   Yes
## 185     1      3 female        S    Small    Miss   Yes   Yes
## 186     0      1   male        S   Single      Mr    No    No
## 187     1      3 female        Q    Small     Mrs    No   Yes
## 188     1      1   male        S   Single      Mr    No    No
## 189     0      3   male        Q    Small      Mr    No    No
## 190     0      3   male        S   Single      Mr    No    No
## 191     1      2 female        S   Single     Mrs    No   Yes
## 192     0      2   male        S   Single      Mr    No    No
## 193     1      3 female        S    Small    Miss    No   Yes
## 194     1      2   male        S    Small  Master   Yes   Yes
## 195     1      1 female        C   Single     Mrs    No   Yes
## 196     1      1 female        C   Single    Miss   Yes   Yes
## 197     0      3   male        Q   Single      Mr    No    No
## 198     0      3   male        S    Small      Mr    No    No
## 199     1      3 female        Q   Single    Miss    No   Yes
## 200     0      2 female        S   Single    Miss    No   Yes
## 201     0      3   male        S   Single      Mr    No    No
## 202     0      3   male        S    Large      Mr   Yes    No
## 203     0      3   male        S   Single      Mr    No    No
## 204     0      3   male        C   Single      Mr    No    No
## 205     1      3   male        S   Single      Mr    No    No
## 206     0      3 female        S    Small    Miss    No   Yes
## 207     0      3   male        S    Small      Mr    No    No
## 208     1      3   male        C   Single      Mr    No    No
## 209     1      3 female        Q   Single    Miss    No   Yes
## 210     1      1   male        C   Single      Mr    No    No
## 211     0      3   male        S   Single      Mr    No    No
## 212     1      2 female        S   Single    Miss    No   Yes
## 213     0      3   male        S   Single      Mr    No    No
## 214     0      2   male        S   Single      Mr    No    No
## 215     0      3   male        Q    Small      Mr    No    No
## 216     1      1 female        C    Small    Miss   Yes   Yes
## 217     1      3 female        S   Single    Miss    No   Yes
## 218     0      2   male        S    Small      Mr    No    No
## 219     1      1 female        C   Single    Miss    No   Yes
## 220     0      2   male        S   Single      Mr    No    No
## 221     1      3   male        S   Single      Mr    No   Yes
## 222     0      2   male        S   Single      Mr    No    No
## 223     0      3   male        S   Single      Mr    No    No
## 224     0      3   male        S   Single      Mr    No    No
## 225     1      1   male        S    Small      Mr    No    No
## 226     0      3   male        S   Single      Mr    No    No
## 227     1      2   male        S   Single      Mr    No    No
## 228     0      3   male        S   Single      Mr    No    No
## 229     0      2   male        S   Single      Mr    No    No
## 230     0      3 female        S    Large    Miss   Yes   Yes
## 231     1      1 female        S    Small     Mrs    No   Yes
## 232     0      3   male        S   Single      Mr    No    No
## 233     0      2   male        S   Single      Mr    No    No
## 234     1      3 female        S    Large    Miss   Yes   Yes
## 235     0      2   male        S   Single      Mr    No    No
## 236     0      3 female        S   Single    Miss    No   Yes
## 237     0      2   male        S    Small      Mr    No    No
## 238     1      2 female        S    Small    Miss   Yes   Yes
## 239     0      2   male        S   Single      Mr    No    No
## 240     0      2   male        S   Single      Mr    No    No
## 241     0      3 female        C    Small    Miss    No   Yes
## 242     1      3 female        Q    Small    Miss    No   Yes
## 243     0      2   male        S   Single      Mr    No    No
## 244     0      3   male        S   Single      Mr    No    No
## 245     0      3   male        C   Single      Mr    No    No
## 246     0      1   male        Q    Small Officer   Yes    No
## 247     0      3 female        S   Single    Miss    No   Yes
## 248     1      2 female        S    Small     Mrs    No   Yes
## 249     1      1   male        S    Small      Mr    No    No
## 250     0      2   male        S    Small Officer    No    No
## 251     0      3   male        S   Single      Mr    No    No
## 252     0      3 female        S    Small     Mrs    No   Yes
## 253     0      1   male        S   Single      Mr    No    No
## 254     0      3   male        S    Small      Mr    No    No
## 255     0      3 female        S    Small     Mrs   Yes   Yes
## 256     1      3 female        C    Small     Mrs   Yes   Yes
## 257     1      1 female        C   Single     Mrs    No   Yes
## 258     1      1 female        S   Single    Miss   Yes   Yes
## 259     1      1 female        C   Single    Miss   Yes   Yes
## 260     1      2 female        S    Small     Mrs    No   Yes
## 261     0      3   male        Q   Single      Mr    No    No
## 262     1      3   male        S    Large  Master   Yes   Yes
## 263     0      1   male        S    Small      Mr   Yes    No
## 264     0      1   male        S   Single      Mr    No    No
## 265     0      3 female        Q   Single    Miss    No   Yes
## 266     0      2   male        S   Single      Mr    No    No
## 267     0      3   male        S    Large      Mr   Yes   Yes
## 268     1      3   male        S    Small      Mr    No    No
## 269     1      1 female        S    Small     Mrs   Yes   Yes
## 270     1      1 female        S   Single    Miss   Yes   Yes
## 271     0      1   male        S   Single      Mr    No    No
## 272     1      3   male        S   Single      Mr   Yes    No
## 273     1      2 female        S    Small     Mrs    No   Yes
## 274     0      1   male        C    Small      Mr    No    No
## 275     1      3 female        Q   Single    Miss    No   Yes
## 276     1      1 female        S    Small    Miss   Yes   Yes
## 277     0      3 female        S   Single    Miss    No   Yes
## 278     0      2   male        S   Single      Mr   Yes    No
## 279     0      3   male        Q    Large  Master   Yes   Yes
## 280     1      3 female        S    Small     Mrs   Yes   Yes
## 281     0      3   male        Q   Single      Mr    No    No
## 282     0      3   male        S   Single      Mr    No    No
## 283     0      3   male        S   Single      Mr    No   Yes
## 284     1      3   male        S   Single      Mr    No    No
## 285     0      1   male        S   Single      Mr    No    No
## 286     0      3   male        C   Single      Mr    No    No
## 287     1      3   male        S   Single      Mr    No    No
## 288     0      3   male        S   Single      Mr    No    No
## 289     1      2   male        S   Single      Mr    No    No
## 290     1      3 female        Q   Single    Miss    No   Yes
## 291     1      1 female        S   Single    Miss   Yes   Yes
## 292     1      1 female        C    Small     Mrs    No   Yes
## 293     0      2   male        C   Single      Mr    No    No
## 294     0      3 female        S   Single    Miss    No   Yes
## 295     0      3   male        S   Single      Mr    No    No
## 296     0      1   male        C   Single      Mr    No    No
## 297     0      3   male        C   Single      Mr    No    No
## 298     0      1 female        S    Small    Miss   Yes   Yes
## 299     1      1   male        S   Single      Mr    No    No
## 300     1      1 female        C    Small     Mrs   Yes   Yes
## 301     1      3 female        Q   Single    Miss    No   Yes
## 302     1      3   male        Q    Small      Mr   Yes    No
## 303     0      3   male        S   Single      Mr   Yes    No
## 304     1      2 female        Q   Single    Miss    No   Yes
## 305     0      3   male        S   Single      Mr    No    No
## 306     1      1   male        S    Small  Master   Yes   Yes
## 307     1      1 female        C   Single    Miss   Yes   Yes
## 308     1      1 female        C    Small     Mrs   Yes   Yes
## 309     0      2   male        C    Small      Mr    No    No
## 310     1      1 female        C   Single    Miss    No   Yes
## 311     1      1 female        C   Single    Miss   Yes   Yes
## 312     1      1 female        C    Large    Miss   Yes   Yes
## 313     0      2 female        S    Small     Mrs    No   Yes
## 314     0      3   male        S   Single      Mr    No    No
## 315     0      2   male        S    Small      Mr   Yes    No
## 316     1      3 female        S   Single    Miss    No   Yes
## 317     1      2 female        S    Small     Mrs    No   Yes
## 318     0      2   male        S   Single Officer    No    No
## 319     1      1 female        S    Small    Miss   Yes   Yes
## 320     1      1 female        C    Small     Mrs   Yes   Yes
## 321     0      3   male        S   Single      Mr    No    No
## 322     0      3   male        S   Single      Mr    No    No
## 323     1      2 female        Q   Single    Miss    No   Yes
## 324     1      2 female        S    Small     Mrs   Yes   Yes
## 325     0      3   male        S    Large      Mr   Yes    No
## 326     1      1 female        C   Single    Miss   Yes   Yes
## 327     0      3   male        S   Single      Mr    No    No
## 328     1      2 female        S   Single     Mrs    No   Yes
## 329     1      3 female        S    Small     Mrs   Yes   Yes
## 330     1      1 female        C    Small    Miss    No   Yes
## 331     1      3 female        Q    Small    Miss   Yes   Yes
## 332     0      1   male        S   Single      Mr    No    No
## 333     0      1   male        S    Small      Mr   Yes    No
## 334     0      3   male        S    Small      Mr    No   Yes
## 335     1      1 female        S    Small     Mrs    No   Yes
## 336     0      3   male        S   Single      Mr    No    No
## 337     0      1   male        S    Small      Mr    No    No
## 338     1      1 female        C   Single    Miss   Yes   Yes
## 339     1      3   male        S   Single      Mr    No    No
## 340     0      1   male        S   Single      Mr    No    No
## 341     1      2   male        S    Small  Master   Yes   Yes
## 342     1      1 female        S    Large    Miss   Yes   Yes
## 343     0      2   male        S   Single      Mr    No    No
## 344     0      2   male        S   Single      Mr    No    No
## 345     0      2   male        S   Single      Mr    No    No
## 346     1      2 female        S   Single    Miss    No   Yes
## 347     1      2 female        S   Single    Miss    No   Yes
## 348     1      3 female        S    Small     Mrs    No   Yes
## 349     1      3   male        S    Small  Master   Yes   Yes
## 350     0      3   male        S   Single      Mr    No    No
## 351     0      3   male        S   Single      Mr    No    No
## 352     0      1   male        S   Single      Mr    No    No
## 353     0      3   male        C    Small      Mr    No   Yes
## 354     0      3   male        S    Small      Mr    No    No
## 355     0      3   male        C   Single      Mr    No    No
## 356     0      3   male        S   Single      Mr    No    No
## 357     1      1 female        S    Small    Miss    No   Yes
## 358     0      2 female        S   Single    Miss    No   Yes
## 359     1      3 female        Q   Single    Miss    No   Yes
## 360     1      3 female        Q   Single    Miss    No   Yes
## 361     0      3   male        S    Large      Mr   Yes    No
## 362     0      2   male        C    Small      Mr    No    No
## 363     0      3 female        C    Small     Mrs    No   Yes
## 364     0      3   male        S   Single      Mr    No    No
## 365     0      3   male        Q    Small      Mr    No    No
## 366     0      3   male        S   Single      Mr    No    No
## 367     1      1 female        C    Small     Mrs    No   Yes
## 368     1      3 female        C   Single     Mrs    No   Yes
## 369     1      3 female        Q   Single    Miss    No   Yes
## 370     1      1 female        C   Single     Mrs    No   Yes
## 371     1      1   male        C    Small      Mr    No    No
## 372     0      3   male        S    Small      Mr    No    No
## 373     0      3   male        S   Single      Mr    No    No
## 374     0      1   male        C   Single      Mr   Yes    No
## 375     0      3 female        S    Large    Miss   Yes   Yes
## 376     1      1 female        C    Small     Mrs    No   Yes
## 377     1      3 female        S   Single    Miss    No   Yes
## 378     0      1   male        C    Small      Mr   Yes    No
## 379     0      3   male        C   Single      Mr    No    No
## 380     0      3   male        S   Single      Mr    No    No
## 381     1      1 female        C   Single    Miss   Yes   Yes
## 382     1      3 female        C    Small    Miss   Yes   Yes
## 383     0      3   male        S   Single      Mr    No    No
## 384     1      1 female        S    Small     Mrs    No   Yes
## 385     0      3   male        S   Single      Mr    No    No
## 386     0      2   male        S   Single      Mr   Yes    No
## 387     0      3   male        S    Large  Master   Yes   Yes
## 388     1      2 female        S   Single    Miss    No   Yes
## 389     0      3   male        Q   Single      Mr    No    No
## 390     1      2 female        C   Single    Miss    No   Yes
## 391     1      1   male        S    Small      Mr   Yes    No
## 392     1      3   male        S   Single      Mr    No    No
## 393     0      3   male        S    Small      Mr    No    No
## 394     1      1 female        C    Small    Miss   Yes   Yes
## 395     1      3 female        S    Small     Mrs   Yes   Yes
## 396     0      3   male        S   Single      Mr    No    No
## 397     0      3 female        S   Single    Miss    No   Yes
## 398     0      2   male        S   Single      Mr    No    No
## 399     0      2   male        S   Single Officer    No    No
## 400     1      2 female        S   Single     Mrs    No   Yes
## 401     1      3   male        S   Single      Mr    No    No
## 402     0      3   male        S   Single      Mr    No    No
## 403     0      3 female        S    Small    Miss    No   Yes
## 404     0      3   male        S    Small      Mr    No    No
## 405     0      3 female        S   Single    Miss    No   Yes
## 406     0      2   male        S    Small      Mr    No    No
## 407     0      3   male        S   Single      Mr    No    No
## 408     1      2   male        S    Small  Master   Yes   Yes
## 409     0      3   male        S   Single      Mr    No    No
## 410     0      3 female        S    Large    Miss   Yes   Yes
## 411     0      3   male        S   Single      Mr    No    No
## 412     0      3   male        Q   Single      Mr    No    No
## 413     1      1 female        Q    Small    Miss   Yes   Yes
## 414     0      2   male        S   Single      Mr   Yes    No
## 415     1      3   male        S   Single      Mr    No    No
## 416     0      3 female        S   Single     Mrs    No   Yes
## 417     1      2 female        S    Small     Mrs   Yes   Yes
## 418     1      2 female        S    Small    Miss    No   Yes
## 419     0      2   male        S   Single      Mr    No    No
## 420     0      3 female        S    Small    Miss   Yes   Yes
## 421     0      3   male        C   Single      Mr    No    No
## 422     0      3   male        Q   Single      Mr    No    No
## 423     0      3   male        S   Single      Mr    No    No
## 424     0      3 female        S    Small     Mrs   Yes   Yes
## 425     0      3   male        S    Small      Mr   Yes    No
## 426     0      3   male        S   Single      Mr    No    No
## 427     1      2 female        S    Small     Mrs    No   Yes
## 428     1      2 female        S   Single    Miss    No   Yes
## 429     0      3   male        Q   Single      Mr    No    No
## 430     1      3   male        S   Single      Mr    No    No
## 431     1      1   male        S   Single      Mr    No    No
## 432     1      3 female        S    Small     Mrs    No   Yes
## 433     1      2 female        S    Small     Mrs    No   Yes
## 434     0      3   male        S   Single      Mr    No   Yes
## 435     0      1   male        S    Small      Mr    No    No
## 436     1      1 female        S    Small    Miss   Yes   Yes
## 437     0      3 female        S    Large    Miss   Yes   Yes
## 438     1      2 female        S    Large     Mrs   Yes   Yes
## 439     0      1   male        S    Large      Mr   Yes    No
## 440     0      2   male        S   Single      Mr    No    No
## 441     1      2 female        S    Small     Mrs   Yes   Yes
## 442     0      3   male        S   Single      Mr    No    No
## 443     0      3   male        S    Small      Mr    No    No
## 444     1      2 female        S   Single    Miss    No   Yes
## 445     1      3   male        S   Single      Mr    No    No
## 446     1      1   male        S    Small  Master   Yes   Yes
## 447     1      2 female        S    Small    Miss    No   Yes
## 448     1      1   male        S   Single      Mr    No    No
## 449     1      3 female        C    Small    Miss   Yes   Yes
## 450     1      1   male        S   Single Officer    No    No
## 451     0      2   male        S    Small      Mr   Yes    No
## 452     0      3   male        S    Small      Mr    No    No
## 453     0      1   male        C   Single      Mr    No    No
## 454     1      1   male        C    Small      Mr    No    No
## 455     0      3   male        S   Single      Mr    No    No
## 456     1      3   male        C   Single      Mr    No    No
## 457     0      1   male        S   Single      Mr    No    No
## 458     1      1 female        S    Small     Mrs    No   Yes
## 459     1      2 female        S   Single    Miss    No   Yes
## 460     0      3   male        Q   Single      Mr    No    No
## 461     1      1   male        S   Single      Mr    No    No
## 462     0      3   male        S   Single      Mr    No    No
## 463     0      1   male        S   Single      Mr    No    No
## 464     0      2   male        S   Single      Mr    No    No
## 465     0      3   male        S   Single      Mr    No    No
## 466     0      3   male        S   Single      Mr    No    No
## 467     0      2   male        S   Single      Mr   Yes    No
## 468     0      1   male        S   Single      Mr    No    No
## 469     0      3   male        Q   Single      Mr    No    No
## 470     1      3 female        C    Small    Miss   Yes   Yes
## 471     0      3   male        S   Single      Mr    No    No
## 472     0      3   male        S   Single      Mr    No    No
## 473     1      2 female        S    Small     Mrs   Yes   Yes
## 474     1      2 female        C   Single     Mrs    No   Yes
## 475     0      3 female        S   Single    Miss    No   Yes
## 476     0      1   male        S   Single      Mr    No    No
## 477     0      2   male        S    Small      Mr    No    No
## 478     0      3   male        S    Small      Mr    No    No
## 479     0      3   male        S   Single      Mr    No    No
## 480     1      3 female        S    Small    Miss    No   Yes
## 481     0      3   male        S    Large  Master   Yes   Yes
## 482     0      2   male        S   Single      Mr    No    No
## 483     0      3   male        S   Single      Mr    No    No
## 484     1      3 female        S   Single     Mrs    No   Yes
## 485     1      1   male        C    Small      Mr    No    No
## 486     0      3 female        S    Large    Miss   Yes   Yes
## 487     1      1 female        S    Small     Mrs    No   Yes
## 488     0      1   male        C   Single      Mr    No    No
## 489     0      3   male        S   Single      Mr    No    No
## 490     1      3   male        S    Small  Master   Yes   Yes
## 491     0      3   male        S    Small      Mr    No    No
## 492     0      3   male        S   Single      Mr    No    No
## 493     0      1   male        S   Single      Mr    No    No
## 494     0      1   male        C   Single      Mr    No    No
## 495     0      3   male        S   Single      Mr    No    No
## 496     0      3   male        C   Single      Mr    No    No
## 497     1      1 female        C    Small    Miss    No   Yes
## 498     0      3   male        S   Single      Mr    No    No
## 499     0      1 female        S    Small     Mrs   Yes   Yes
## 500     0      3   male        S   Single      Mr    No    No
## 501     0      3   male        S   Single      Mr    No   Yes
## 502     0      3 female        Q   Single    Miss    No   Yes
## 503     0      3 female        Q   Single    Miss    No   Yes
## 504     0      3 female        S   Single    Miss    No   Yes
## 505     1      1 female        S   Single    Miss   Yes   Yes
## 506     0      1   male        C    Small      Mr   Yes    No
## 507     1      2 female        S    Small     Mrs   Yes   Yes
## 508     1      1   male        S   Single      Mr    No    No
## 509     0      3   male        S   Single      Mr   Yes    No
## 510     1      3   male        S   Single      Mr   Yes    No
## 511     1      3   male        Q   Single      Mr    No    No
## 512     0      3   male        S   Single      Mr    No    No
## 513     1      1   male        S   Single      Mr    No    No
## 514     1      1 female        C    Small     Mrs    No   Yes
## 515     0      3   male        S   Single      Mr    No    No
## 516     0      1   male        S   Single      Mr    No    No
## 517     1      2 female        S   Single     Mrs    No   Yes
## 518     0      3   male        Q   Single      Mr   Yes    No
## 519     1      2 female        S    Small     Mrs    No   Yes
## 520     0      3   male        S   Single      Mr    No    No
## 521     1      1 female        S   Single    Miss   Yes   Yes
## 522     0      3   male        S   Single      Mr    No    No
## 523     0      3   male        C   Single      Mr    No    No
## 524     1      1 female        C    Small     Mrs    No   Yes
## 525     0      3   male        C   Single      Mr    No    No
## 526     0      3   male        Q   Single      Mr    No    No
## 527     1      2 female        S   Single    Miss    No   Yes
## 528     0      1   male        S   Single      Mr   Yes    No
## 529     0      3   male        S   Single      Mr    No    No
## 530     0      2   male        S    Small      Mr    No    No
## 531     1      2 female        S    Small    Miss   Yes   Yes
## 532     0      3   male        C   Single      Mr    No    No
## 533     0      3   male        C    Small      Mr    No   Yes
## 534     1      3 female        C    Small     Mrs   Yes   Yes
## 535     0      3 female        S   Single    Miss    No   Yes
## 536     1      2 female        S    Small    Miss   Yes   Yes
## 537     0      1   male        S   Single Officer    No    No
## 538     1      1 female        C   Single    Miss   Yes   Yes
## 539     0      3   male        S   Single      Mr    No    No
## 540     1      1 female        C    Small    Miss    No   Yes
## 541     1      1 female        S    Small    Miss    No   Yes
## 542     0      3 female        S    Large    Miss   Yes   Yes
## 543     0      3 female        S    Large    Miss   Yes   Yes
## 544     1      2   male        S    Small      Mr    No    No
## 545     0      1   male        C    Small      Mr   Yes    No
## 546     0      1   male        S   Single      Mr    No    No
## 547     1      2 female        S    Small     Mrs    No   Yes
## 548     1      2   male        C   Single      Mr    No    No
## 549     0      3   male        S    Small      Mr   Yes    No
## 550     1      2   male        S    Small  Master   Yes   Yes
## 551     1      1   male        C    Small      Mr   Yes   Yes
## 552     0      2   male        S   Single      Mr    No    No
## 553     0      3   male        Q   Single      Mr    No    No
## 554     1      3   male        C   Single      Mr    No    No
## 555     1      3 female        S   Single    Miss    No   Yes
## 556     0      1   male        S   Single      Mr    No    No
## 557     1      1 female        C    Small Royalty    No   Yes
## 558     0      1   male        C   Single      Mr   Yes    No
## 559     1      1 female        S    Small     Mrs   Yes   Yes
## 560     1      3 female        S    Small     Mrs    No   Yes
## 561     0      3   male        Q   Single      Mr    No    No
## 562     0      3   male        S   Single      Mr    No    No
## 563     0      2   male        S   Single      Mr    No    No
## 564     0      3   male        S   Single      Mr    No    No
## 565     0      3 female        S   Single    Miss    No   Yes
## 566     0      3   male        S    Small      Mr   Yes    No
## 567     0      3   male        S   Single      Mr    No    No
## 568     0      3 female        S    Large     Mrs   Yes   Yes
## 569     0      3   male        C   Single      Mr    No    No
## 570     1      3   male        S   Single      Mr    No    No
## 571     1      2   male        S   Single      Mr    No    No
## 572     1      1 female        S    Small     Mrs    No   Yes
## 573     1      1   male        S   Single      Mr    No    No
## 574     1      3 female        Q   Single    Miss    No   Yes
## 575     0      3   male        S   Single      Mr    No   Yes
## 576     0      3   male        S   Single      Mr    No    No
## 577     1      2 female        S   Single    Miss    No   Yes
## 578     1      1 female        S    Small     Mrs    No   Yes
## 579     0      3 female        C    Small     Mrs    No   Yes
## 580     1      3   male        S   Single      Mr    No    No
## 581     1      2 female        S    Small    Miss    No   Yes
## 582     1      1 female        C    Small     Mrs   Yes   Yes
## 583     0      2   male        S   Single      Mr    No    No
## 584     0      1   male        C   Single      Mr    No    No
## 585     0      3   male        C   Single      Mr    No    No
## 586     1      1 female        S    Small    Miss   Yes   Yes
## 587     0      2   male        S   Single      Mr    No    No
## 588     1      1   male        C    Small      Mr    No    No
## 589     0      3   male        S   Single      Mr    No    No
## 590     0      3   male        S   Single      Mr    No    No
## 591     0      3   male        S   Single      Mr    No    No
## 592     1      1 female        C    Small     Mrs    No   Yes
## 593     0      3   male        S   Single      Mr    No    No
## 594     0      3 female        Q    Small    Miss    No   Yes
## 595     0      2   male        S    Small      Mr    No    No
## 596     0      3   male        S    Small      Mr   Yes    No
## 597     1      2 female        S   Single    Miss   Yes   Yes
## 598     0      3   male        S   Single      Mr   Yes    No
## 599     0      3   male        C   Single      Mr    No    No
## 600     1      1   male        C    Small Royalty    No    No
## 601     1      2 female        S    Small     Mrs    No   Yes
## 602     0      3   male        S   Single      Mr    No    No
## 603     0      1   male        S   Single      Mr    No    No
## 604     0      3   male        S   Single      Mr    No    No
## 605     1      1   male        C   Single      Mr    No    No
## 606     0      3   male        S    Small      Mr    No    No
## 607     0      3   male        S   Single      Mr    No    No
## 608     1      1   male        S   Single      Mr    No    No
## 609     1      2 female        C    Small     Mrs   Yes   Yes
## 610     1      1 female        S   Single    Miss   Yes   Yes
## 611     0      3 female        S    Large     Mrs   Yes   Yes
## 612     0      3   male        S   Single      Mr    No    No
## 613     1      3 female        Q    Small    Miss    No   Yes
## 614     0      3   male        Q   Single      Mr    No    No
## 615     0      3   male        S   Single      Mr    No    No
## 616     1      2 female        S    Small    Miss   Yes   Yes
## 617     0      3   male        S    Small      Mr   Yes    No
## 618     0      3 female        S    Small     Mrs    No   Yes
## 619     1      2 female        S    Small    Miss   Yes   Yes
## 620     0      2   male        S   Single      Mr    No    No
## 621     0      3   male        C    Small      Mr    No    No
## 622     1      1   male        S    Small      Mr    No    No
## 623     1      3   male        C    Small      Mr   Yes    No
## 624     0      3   male        S   Single      Mr    No    No
## 625     0      3   male        S   Single      Mr    No    No
## 626     0      1   male        S   Single      Mr    No    No
## 627     0      2   male        Q   Single Officer    No    No
## 628     1      1 female        S   Single    Miss   Yes   Yes
## 629     0      3   male        S   Single      Mr    No    No
## 630     0      3   male        Q   Single      Mr    No    No
## 631     1      1   male        S   Single      Mr    No    No
## 632     0      3   male        S   Single      Mr    No    No
## 633     1      1   male        C   Single Officer    No    No
## 634     0      1   male        S   Single      Mr    No    No
## 635     0      3 female        S    Large    Miss   Yes   Yes
## 636     1      2 female        S   Single    Miss    No   Yes
## 637     0      3   male        S   Single      Mr    No    No
## 638     0      2   male        S    Small      Mr   Yes    No
## 639     0      3 female        S    Large     Mrs   Yes   Yes
## 640     0      3   male        S    Small      Mr    No    No
## 641     0      3   male        S   Single      Mr    No    No
## 642     1      1 female        C   Single    Miss    No   Yes
## 643     0      3 female        S    Large    Miss   Yes   Yes
## 644     1      3   male        S   Single      Mr   Yes    No
## 645     1      3 female        C    Small    Miss   Yes   Yes
## 646     1      1   male        C    Small      Mr   Yes    No
## 647     0      3   male        S   Single      Mr    No    No
## 648     1      1   male        C   Single Officer    No    No
## 649     0      3   male        S   Single      Mr    No    No
## 650     1      3 female        S   Single    Miss    No   Yes
## 651     0      3   male        S   Single      Mr    No    No
## 652     1      2 female        S    Small    Miss    No   Yes
## 653     0      3   male        S   Single      Mr    No    No
## 654     1      3 female        Q   Single    Miss    No   Yes
## 655     0      3 female        Q   Single    Miss    No   Yes
## 656     0      2   male        S    Small      Mr   Yes    No
## 657     0      3   male        S   Single      Mr    No    No
## 658     0      3 female        Q    Small     Mrs    No   Yes
## 659     0      2   male        S   Single      Mr    No    No
## 660     0      1   male        C    Small      Mr   Yes    No
## 661     1      1   male        S    Small Officer    No    No
## 662     0      3   male        C   Single      Mr    No    No
## 663     0      1   male        S   Single      Mr    No    No
## 664     0      3   male        S   Single      Mr    No    No
## 665     1      3   male        S    Small      Mr    No    No
## 666     0      2   male        S    Small      Mr   Yes    No
## 667     0      2   male        S   Single      Mr    No    No
## 668     0      3   male        S   Single      Mr    No    No
## 669     0      3   male        S   Single      Mr    No    No
## 670     1      1 female        S    Small     Mrs    No   Yes
## 671     1      2 female        S    Small     Mrs   Yes   Yes
## 672     0      1   male        S    Small      Mr    No    No
## 673     0      2   male        S   Single      Mr    No    No
## 674     1      2   male        S   Single      Mr    No    No
## 675     0      2   male        S   Single      Mr    No    No
## 676     0      3   male        S   Single      Mr    No    No
## 677     0      3   male        S   Single      Mr    No    No
## 678     1      3 female        S   Single    Miss    No   Yes
## 679     0      3 female        S    Large     Mrs   Yes   Yes
## 680     1      1   male        C    Small      Mr   Yes    No
## 681     0      3 female        Q   Single    Miss    No   Yes
## 682     1      1   male        C   Single      Mr   Yes    No
## 683     0      3   male        S   Single      Mr    No    No
## 684     0      3   male        S    Large      Mr   Yes   Yes
## 685     0      2   male        S    Small      Mr   Yes    No
## 686     0      2   male        C    Small      Mr   Yes    No
## 687     0      3   male        S    Large      Mr   Yes   Yes
## 688     0      3   male        S   Single      Mr    No    No
## 689     0      3   male        S   Single      Mr    No    No
## 690     1      1 female        S    Small    Miss   Yes   Yes
## 691     1      1   male        S    Small      Mr    No    No
## 692     1      3 female        C    Small    Miss    No   Yes
## 693     1      3   male        S   Single      Mr   Yes    No
## 694     0      3   male        C   Single      Mr    No    No
## 695     0      1   male        S   Single Officer    No    No
## 696     0      2   male        S   Single      Mr    No    No
## 697     0      3   male        S   Single      Mr    No    No
## 698     1      3 female        Q   Single    Miss    No   Yes
## 699     0      1   male        C    Small      Mr   Yes    No
## 700     0      3   male        S   Single      Mr    No    No
## 701     1      1 female        C    Small     Mrs   Yes   Yes
## 702     1      1   male        S   Single      Mr    No    No
## 703     0      3 female        C    Small    Miss    No   Yes
## 704     0      3   male        Q   Single      Mr    No    No
## 705     0      3   male        S    Small      Mr    No    No
## 706     0      2   male        S   Single      Mr    No    No
## 707     1      2 female        S   Single     Mrs    No   Yes
## 708     1      1   male        S   Single      Mr    No    No
## 709     1      1 female        S   Single    Miss   Yes   Yes
## 710     1      3   male        C    Small  Master   Yes   Yes
## 711     1      1 female        C   Single    Miss    No   Yes
## 712     0      1   male        S   Single      Mr    No    No
## 713     1      1   male        S    Small      Mr    No    No
## 714     0      3   male        S   Single      Mr    No    No
## 715     0      2   male        S   Single      Mr    No    No
## 716     0      3   male        S   Single      Mr    No    No
## 717     1      1 female        C   Single    Miss   Yes   Yes
## 718     1      2 female        S   Single    Miss    No   Yes
## 719     0      3   male        Q   Single      Mr    No    No
## 720     0      3   male        S   Single      Mr    No    No
## 721     1      2 female        S    Small    Miss   Yes   Yes
## 722     0      3   male        S    Small      Mr    No   Yes
## 723     0      2   male        S   Single      Mr    No    No
## 724     0      2   male        S   Single      Mr    No    No
## 725     1      1   male        S    Small      Mr    No    No
## 726     0      3   male        S   Single      Mr    No    No
## 727     1      2 female        S    Small     Mrs    No   Yes
## 728     1      3 female        Q   Single    Miss    No   Yes
## 729     0      2   male        S    Small      Mr    No    No
## 730     0      3 female        S    Small    Miss    No   Yes
## 731     1      1 female        S   Single    Miss   Yes   Yes
## 732     0      3   male        C   Single      Mr    No   Yes
## 733     0      2   male        S   Single      Mr    No    No
## 734     0      2   male        S   Single      Mr    No    No
## 735     0      2   male        S   Single      Mr    No    No
## 736     0      3   male        S   Single      Mr    No    No
## 737     0      3 female        S    Large     Mrs   Yes   Yes
## 738     1      1   male        C   Single      Mr   Yes    No
## 739     0      3   male        S   Single      Mr    No    No
## 740     0      3   male        S   Single      Mr    No    No
## 741     1      1   male        S   Single      Mr    No    No
## 742     0      1   male        S    Small      Mr   Yes    No
## 743     1      1 female        C    Large    Miss   Yes   Yes
## 744     0      3   male        S    Small      Mr    No    No
## 745     1      3   male        S   Single      Mr    No    No
## 746     0      1   male        S    Small Officer    No    No
## 747     0      3   male        S    Small      Mr   Yes   Yes
## 748     1      2 female        S   Single    Miss    No   Yes
## 749     0      1   male        S    Small      Mr    No    No
## 750     0      3   male        Q   Single      Mr    No    No
## 751     1      2 female        S    Small    Miss   Yes   Yes
## 752     1      3   male        S    Small  Master    No   Yes
## 753     0      3   male        S   Single      Mr    No    No
## 754     0      3   male        S   Single      Mr    No    No
## 755     1      2 female        S    Small     Mrs   Yes   Yes
## 756     1      2   male        S    Small  Master    No   Yes
## 757     0      3   male        S   Single      Mr    No    No
## 758     0      2   male        S   Single      Mr    No    No
## 759     0      3   male        S   Single      Mr    No    No
## 760     1      1 female        S   Single Royalty   Yes   Yes
## 761     0      3   male        S   Single      Mr    No    No
## 762     0      3   male        S   Single      Mr    No    No
## 763     1      3   male        C   Single      Mr    No    No
## 764     1      1 female        S    Small     Mrs   Yes   Yes
## 765     0      3   male        S   Single      Mr    No   Yes
## 766     1      1 female        S    Small     Mrs   Yes   Yes
## 767     0      1   male        C   Single Officer    No    No
## 768     0      3 female        Q   Single    Miss    No   Yes
## 769     0      3   male        Q    Small      Mr   Yes    No
## 770     0      3   male        S   Single      Mr    No    No
## 771     0      3   male        S   Single      Mr    No    No
## 772     0      3   male        S   Single      Mr    No    No
## 773     0      2 female        S   Single     Mrs    No   Yes
## 774     0      3   male        C   Single      Mr    No    No
## 775     1      2 female        S    Large     Mrs    No   Yes
## 776     0      3   male        S   Single      Mr    No    No
## 777     0      3   male        Q   Single      Mr    No    No
## 778     1      3 female        S   Single    Miss    No   Yes
## 779     0      3   male        Q   Single      Mr    No    No
## 780     1      1 female        S    Small     Mrs   Yes   Yes
## 781     1      3 female        C   Single    Miss    No   Yes
## 782     1      1 female        S    Small     Mrs    No   Yes
## 783     0      1   male        S   Single      Mr    No    No
## 784     0      3   male        S    Small      Mr   Yes    No
## 785     0      3   male        S   Single      Mr    No    No
## 786     0      3   male        S   Single      Mr    No    No
## 787     1      3 female        S   Single    Miss    No   Yes
## 788     0      3   male        Q    Large  Master   Yes   Yes
## 789     1      3   male        S    Small  Master   Yes   Yes
## 790     0      1   male        C   Single      Mr    No    No
## 791     0      3   male        Q   Single      Mr    No    No
## 792     0      2   male        S   Single      Mr    No   Yes
## 793     0      3 female        S    Large    Miss   Yes   Yes
## 794     0      1   male        C   Single      Mr    No    No
## 795     0      3   male        S   Single      Mr    No    No
## 796     0      2   male        S   Single      Mr    No    No
## 797     1      1 female        S   Single Officer    No   Yes
## 798     1      3 female        S   Single     Mrs    No   Yes
## 799     0      3   male        C   Single      Mr    No    No
## 800     0      3 female        S    Small     Mrs   Yes   Yes
## 801     0      2   male        S   Single      Mr    No    No
## 802     1      2 female        S    Small     Mrs   Yes   Yes
## 803     1      1   male        S    Small  Master   Yes   Yes
## 804     1      3   male        C    Small  Master    No   Yes
## 805     1      3   male        S   Single      Mr    No    No
## 806     0      3   male        S   Single      Mr    No    No
## 807     0      1   male        S   Single      Mr    No    No
## 808     0      3 female        S   Single    Miss    No   Yes
## 809     0      2   male        S   Single      Mr    No    No
## 810     1      1 female        S    Small     Mrs    No   Yes
## 811     0      3   male        S   Single      Mr    No    No
## 812     0      3   male        S   Single      Mr   Yes    No
## 813     0      2   male        S   Single      Mr    No    No
## 814     0      3 female        S    Large    Miss   Yes   Yes
## 815     0      3   male        S   Single      Mr    No    No
## 816     0      1   male        S   Single      Mr    No    No
## 817     0      3 female        S   Single    Miss    No   Yes
## 818     0      2   male        C    Small      Mr   Yes    No
## 819     0      3   male        S   Single      Mr    No    No
## 820     0      3   male        S    Large  Master   Yes   Yes
## 821     1      1 female        S    Small     Mrs   Yes   Yes
## 822     1      3   male        S   Single      Mr    No    No
## 823     0      1   male        S   Single Royalty    No    No
## 824     1      3 female        S    Small     Mrs    No   Yes
## 825     0      3   male        S    Large  Master   Yes   Yes
## 826     0      3   male        Q   Single      Mr    No    No
## 827     0      3   male        S   Single      Mr   Yes    No
## 828     1      2   male        C    Small  Master   Yes   Yes
## 829     1      3   male        Q   Single      Mr    No    No
## 830     1      1 female        C   Single     Mrs    No   Yes
## 831     1      3 female        C    Small     Mrs    No   Yes
## 832     1      2   male        S    Small  Master   Yes   Yes
## 833     0      3   male        C   Single      Mr    No    No
## 834     0      3   male        S   Single      Mr    No    No
## 835     0      3   male        S   Single      Mr    No    No
## 836     1      1 female        C    Small    Miss   Yes   Yes
## 837     0      3   male        S   Single      Mr    No    No
## 838     0      3   male        S   Single      Mr    No    No
## 839     1      3   male        S   Single      Mr   Yes    No
## 840     1      1   male        C   Single      Mr    No    No
## 841     0      3   male        S   Single      Mr    No    No
## 842     0      2   male        S   Single      Mr    No   Yes
## 843     1      1 female        C   Single    Miss    No   Yes
## 844     0      3   male        C   Single      Mr    No    No
## 845     0      3   male        S   Single      Mr    No   Yes
## 846     0      3   male        S   Single      Mr    No    No
## 847     0      3   male        S    Large      Mr   Yes    No
## 848     0      3   male        C   Single      Mr    No    No
## 849     0      2   male        S    Small Officer   Yes    No
## 850     1      1 female        C    Small     Mrs    No   Yes
## 851     0      3   male        S    Large  Master   Yes   Yes
## 852     0      3   male        S   Single      Mr    No    No
## 853     0      3 female        C    Small    Miss   Yes   Yes
## 854     1      1 female        S    Small    Miss    No   Yes
## 855     0      2 female        S    Small     Mrs    No   Yes
## 856     1      3 female        S    Small     Mrs    No   Yes
## 857     1      1 female        S    Small     Mrs   Yes   Yes
## 858     1      1   male        S   Single      Mr    No    No
## 859     1      3 female        C    Small     Mrs   Yes   Yes
## 860     0      3   male        C   Single      Mr    No    No
## 861     0      3   male        S    Small      Mr    No    No
## 862     0      2   male        S    Small      Mr    No    No
## 863     1      1 female        S   Single     Mrs    No   Yes
## 864     0      3 female        S    Large    Miss   Yes   Yes
## 865     0      2   male        S   Single      Mr    No    No
## 866     1      2 female        S   Single     Mrs    No   Yes
## 867     1      2 female        C    Small    Miss    No   Yes
## 868     0      1   male        S   Single      Mr    No    No
## 869     0      3   male        S   Single      Mr    No    No
## 870     1      3   male        S    Small  Master   Yes   Yes
## 871     0      3   male        S   Single      Mr    No    No
## 872     1      1 female        S    Small     Mrs    No   Yes
## 873     0      1   male        S   Single      Mr    No    No
## 874     0      3   male        S   Single      Mr    No    No
## 875     1      2 female        C    Small     Mrs    No   Yes
## 876     1      3 female        C   Single    Miss    No   Yes
## 877     0      3   male        S   Single      Mr    No    No
## 878     0      3   male        S   Single      Mr    No    No
## 879     0      3   male        S   Single      Mr    No    No
## 880     1      1 female        C    Small     Mrs   Yes   Yes
## 881     1      2 female        S    Small     Mrs    No   Yes
## 882     0      3   male        S   Single      Mr    No    No
## 883     0      3 female        S   Single    Miss    No   Yes
## 884     0      2   male        S   Single      Mr    No    No
## 885     0      3   male        S   Single      Mr    No    No
## 886     0      3 female        Q    Large     Mrs   Yes   Yes
## 887     0      2   male        S   Single Officer    No    No
## 888     1      1 female        S   Single    Miss    No   Yes
## 889     0      3 female        S    Small    Miss   Yes   Yes
## 890     1      1   male        C   Single      Mr    No    No
## 891     0      3   male        Q   Single      Mr    No    No
## 892  <NA>      3   male        Q   Single      Mr    No    No
## 893  <NA>      3 female        S    Small     Mrs    No   Yes
## 894  <NA>      2   male        Q   Single      Mr    No    No
## 895  <NA>      3   male        S   Single      Mr    No    No
## 896  <NA>      3 female        S    Small     Mrs    No   Yes
## 897  <NA>      3   male        S   Single      Mr    No   Yes
## 898  <NA>      3 female        Q   Single    Miss    No   Yes
## 899  <NA>      2   male        S    Small      Mr   Yes    No
## 900  <NA>      3 female        C   Single     Mrs    No   Yes
## 901  <NA>      3   male        S    Small      Mr   Yes    No
## 902  <NA>      3   male        S   Single      Mr    No    No
## 903  <NA>      1   male        S   Single      Mr    No    No
## 904  <NA>      1 female        S    Small     Mrs    No   Yes
## 905  <NA>      2   male        S    Small      Mr    No    No
## 906  <NA>      1 female        S    Small     Mrs    No   Yes
## 907  <NA>      2 female        C    Small     Mrs    No   Yes
## 908  <NA>      2   male        Q   Single      Mr    No    No
## 909  <NA>      3   male        C   Single      Mr    No    No
## 910  <NA>      3 female        S    Small    Miss    No   Yes
## 911  <NA>      3 female        C   Single     Mrs    No   Yes
## 912  <NA>      1   male        C    Small      Mr    No    No
## 913  <NA>      3   male        S    Small  Master    No   Yes
## 914  <NA>      1 female        S   Single     Mrs    No   Yes
## 915  <NA>      1   male        C    Small      Mr    No    No
## 916  <NA>      1 female        C    Large     Mrs   Yes   Yes
## 917  <NA>      3   male        S    Small      Mr    No    No
## 918  <NA>      1 female        C    Small    Miss    No   Yes
## 919  <NA>      3   male        C   Single      Mr    No    No
## 920  <NA>      1   male        S   Single      Mr    No    No
## 921  <NA>      3   male        C    Small      Mr   Yes    No
## 922  <NA>      2   male        S    Small      Mr    No    No
## 923  <NA>      2   male        S    Small      Mr   Yes    No
## 924  <NA>      3 female        S    Small     Mrs   Yes   Yes
## 925  <NA>      3 female        S    Small     Mrs   Yes   Yes
## 926  <NA>      1   male        C    Small      Mr    No    No
## 927  <NA>      3   male        C   Single      Mr    No    No
## 928  <NA>      3 female        S   Single    Miss    No   Yes
## 929  <NA>      3 female        S   Single    Miss    No   Yes
## 930  <NA>      3   male        S   Single      Mr    No    No
## 931  <NA>      3   male        S   Single      Mr   Yes    No
## 932  <NA>      3   male        C    Small      Mr    No    No
## 933  <NA>      1   male        S   Single      Mr    No    No
## 934  <NA>      3   male        S   Single      Mr    No    No
## 935  <NA>      2 female        S   Single     Mrs    No   Yes
## 936  <NA>      1 female        S    Small     Mrs    No   Yes
## 937  <NA>      3   male        S   Single      Mr    No    No
## 938  <NA>      1   male        C   Single      Mr    No    No
## 939  <NA>      3   male        Q   Single      Mr    No    No
## 940  <NA>      1 female        C   Single     Mrs    No   Yes
## 941  <NA>      3 female        S    Small     Mrs   Yes   Yes
## 942  <NA>      1   male        S    Small      Mr    No    No
## 943  <NA>      2   male        C   Single      Mr    No    No
## 944  <NA>      2 female        S    Small    Miss    No   Yes
## 945  <NA>      1 female        S    Large    Miss   Yes   Yes
## 946  <NA>      2   male        C   Single      Mr    No    No
## 947  <NA>      3   male        Q    Large  Master   Yes   Yes
## 948  <NA>      3   male        S   Single      Mr    No    No
## 949  <NA>      3   male        S   Single      Mr    No    No
## 950  <NA>      3   male        S    Small      Mr    No    No
## 951  <NA>      1 female        C   Single    Miss   Yes   Yes
## 952  <NA>      3   male        S   Single      Mr    No   Yes
## 953  <NA>      2   male        S   Single      Mr    No    No
## 954  <NA>      3   male        S   Single      Mr    No    No
## 955  <NA>      3 female        Q   Single    Miss    No   Yes
## 956  <NA>      1   male        C    Large  Master   Yes   Yes
## 957  <NA>      2 female        S   Single     Mrs    No   Yes
## 958  <NA>      3 female        Q   Single    Miss    No   Yes
## 959  <NA>      1   male        S   Single      Mr    No    No
## 960  <NA>      1   male        C   Single      Mr    No    No
## 961  <NA>      1 female        S    Large     Mrs   Yes   Yes
## 962  <NA>      3 female        Q   Single    Miss    No   Yes
## 963  <NA>      3   male        S   Single      Mr    No    No
## 964  <NA>      3 female        S   Single    Miss    No   Yes
## 965  <NA>      1   male        C   Single      Mr    No    No
## 966  <NA>      1 female        C   Single    Miss   Yes   Yes
## 967  <NA>      1   male        C   Single      Mr   Yes    No
## 968  <NA>      3   male        S   Single      Mr    No    No
## 969  <NA>      1 female        S    Small     Mrs    No   Yes
## 970  <NA>      2   male        S   Single      Mr    No    No
## 971  <NA>      3 female        Q   Single    Miss    No   Yes
## 972  <NA>      3   male        C    Small  Master   Yes   Yes
## 973  <NA>      1   male        S    Small      Mr   Yes    No
## 974  <NA>      1   male        S   Single      Mr    No    No
## 975  <NA>      3   male        S   Single      Mr    No    No
## 976  <NA>      2   male        Q   Single      Mr    No    No
## 977  <NA>      3   male        C    Small      Mr    No    No
## 978  <NA>      3 female        Q   Single    Miss    No   Yes
## 979  <NA>      3 female        S   Single    Miss    No   Yes
## 980  <NA>      3 female        Q   Single    Miss    No   Yes
## 981  <NA>      2   male        S    Small  Master   Yes   Yes
## 982  <NA>      3 female        S    Small     Mrs    No   Yes
## 983  <NA>      3   male        S   Single      Mr    No    No
## 984  <NA>      1 female        S    Small     Mrs    No   Yes
## 985  <NA>      3   male        S   Single      Mr    No    No
## 986  <NA>      1   male        C   Single      Mr    No    No
## 987  <NA>      3   male        S   Single      Mr    No    No
## 988  <NA>      1 female        S    Small     Mrs   Yes   Yes
## 989  <NA>      3   male        S   Single      Mr    No    No
## 990  <NA>      3 female        S   Single    Miss    No   Yes
## 991  <NA>      3   male        S   Single      Mr    No    No
## 992  <NA>      1 female        C    Small     Mrs    No   Yes
## 993  <NA>      2   male        S    Small      Mr    No    No
## 994  <NA>      3   male        Q   Single      Mr    No    No
## 995  <NA>      3   male        S   Single      Mr    No    No
## 996  <NA>      3 female        C    Small     Mrs    No   Yes
## 997  <NA>      3   male        S   Single      Mr   Yes    No
## 998  <NA>      3   male        Q   Single      Mr    No    No
## 999  <NA>      3   male        Q   Single      Mr    No    No
## 1000 <NA>      3   male        S   Single      Mr    No    No
## 1001 <NA>      2   male        S   Single      Mr    No    No
## 1002 <NA>      2   male        C   Single      Mr    No    No
## 1003 <NA>      3 female        Q   Single    Miss    No   Yes
## 1004 <NA>      1 female        C   Single    Miss    No   Yes
## 1005 <NA>      3 female        Q   Single    Miss    No   Yes
## 1006 <NA>      1 female        S    Small     Mrs   Yes   Yes
## 1007 <NA>      3   male        C    Small      Mr    No    No
## 1008 <NA>      3   male        C   Single      Mr    No    No
## 1009 <NA>      3 female        S    Small    Miss   Yes   Yes
## 1010 <NA>      1   male        C   Single      Mr    No    No
## 1011 <NA>      2 female        S    Small     Mrs    No   Yes
## 1012 <NA>      2 female        S   Single    Miss    No   Yes
## 1013 <NA>      3   male        Q    Small      Mr    No    No
## 1014 <NA>      1 female        C    Small     Mrs    No   Yes
## 1015 <NA>      3   male        S   Single      Mr    No    No
## 1016 <NA>      3   male        Q   Single      Mr    No    No
## 1017 <NA>      3 female        S    Small    Miss    No   Yes
## 1018 <NA>      3   male        S   Single      Mr    No    No
## 1019 <NA>      3 female        Q    Small    Miss   Yes   Yes
## 1020 <NA>      2   male        S   Single      Mr    No    No
## 1021 <NA>      3   male        S   Single      Mr    No    No
## 1022 <NA>      3   male        S   Single      Mr    No    No
## 1023 <NA>      1   male        C   Single Officer    No    No
## 1024 <NA>      3 female        S    Large     Mrs   Yes   Yes
## 1025 <NA>      3   male        C    Small      Mr    No    No
## 1026 <NA>      3   male        S   Single      Mr    No    No
## 1027 <NA>      3   male        S   Single      Mr    No    No
## 1028 <NA>      3   male        C   Single      Mr    No    No
## 1029 <NA>      2   male        S   Single      Mr    No    No
## 1030 <NA>      3 female        S   Single    Miss    No   Yes
## 1031 <NA>      3   male        S    Large      Mr   Yes    No
## 1032 <NA>      3 female        S    Large    Miss   Yes   Yes
## 1033 <NA>      1 female        S   Single    Miss   Yes   Yes
## 1034 <NA>      1   male        C    Large      Mr   Yes    No
## 1035 <NA>      2   male        S   Single      Mr    No    No
## 1036 <NA>      1   male        S   Single      Mr    No    No
## 1037 <NA>      3   male        S    Small      Mr    No    No
## 1038 <NA>      1   male        S   Single      Mr    No    No
## 1039 <NA>      3   male        S   Single      Mr    No    No
## 1040 <NA>      1   male        S   Single      Mr    No    No
## 1041 <NA>      2   male        S    Small Officer    No    No
## 1042 <NA>      1 female        C    Small     Mrs   Yes   Yes
## 1043 <NA>      3   male        C   Single      Mr    No    No
## 1044 <NA>      3   male        S   Single      Mr    No    No
## 1045 <NA>      3 female        S    Small     Mrs    No   Yes
## 1046 <NA>      3   male        S    Large  Master   Yes   Yes
## 1047 <NA>      3   male        S   Single      Mr    No    No
## 1048 <NA>      1 female        S   Single    Miss   Yes   Yes
## 1049 <NA>      3 female        S   Single    Miss    No   Yes
## 1050 <NA>      1   male        S   Single      Mr    No    No
## 1051 <NA>      3 female        S    Small     Mrs   Yes   Yes
## 1052 <NA>      3 female        Q   Single    Miss    No   Yes
## 1053 <NA>      3   male        C    Small  Master   Yes   Yes
## 1054 <NA>      2 female        S   Single    Miss    No   Yes
## 1055 <NA>      3   male        S   Single      Mr    No    No
## 1056 <NA>      2   male        S   Single Officer    No    No
## 1057 <NA>      3 female        S    Small     Mrs   Yes   Yes
## 1058 <NA>      1   male        C   Single      Mr    No    No
## 1059 <NA>      3   male        S    Large      Mr   Yes    No
## 1060 <NA>      1 female        C   Single     Mrs    No   Yes
## 1061 <NA>      3 female        S   Single    Miss    No   Yes
## 1062 <NA>      3   male        S   Single      Mr    No    No
## 1063 <NA>      3   male        C   Single      Mr    No    No
## 1064 <NA>      3   male        S    Small      Mr    No    No
## 1065 <NA>      3   male        C   Single      Mr    No    No
## 1066 <NA>      3   male        S    Large      Mr   Yes    No
## 1067 <NA>      2 female        S    Small    Miss   Yes   Yes
## 1068 <NA>      2 female        S   Single    Miss   Yes   Yes
## 1069 <NA>      1   male        C    Small      Mr    No    No
## 1070 <NA>      2 female        S    Small     Mrs   Yes   Yes
## 1071 <NA>      1 female        C    Small     Mrs   Yes   Yes
## 1072 <NA>      2   male        S   Single      Mr    No    No
## 1073 <NA>      1   male        C    Small      Mr   Yes    No
## 1074 <NA>      1 female        S    Small     Mrs    No   Yes
## 1075 <NA>      3   male        Q   Single      Mr    No    No
## 1076 <NA>      1 female        C    Small     Mrs   Yes   Yes
## 1077 <NA>      2   male        S   Single      Mr    No    No
## 1078 <NA>      2 female        S    Small    Miss    No   Yes
## 1079 <NA>      3   male        S    Small      Mr    No   Yes
## 1080 <NA>      3 female        S    Large    Miss   Yes   Yes
## 1081 <NA>      2   male        S   Single      Mr    No    No
## 1082 <NA>      2   male        S    Small      Mr    No    No
## 1083 <NA>      1   male        S   Single      Mr    No    No
## 1084 <NA>      3   male        S    Small  Master   Yes   Yes
## 1085 <NA>      2   male        Q   Single      Mr    No    No
## 1086 <NA>      2   male        S    Small  Master   Yes   Yes
## 1087 <NA>      3   male        S   Single      Mr    No    No
## 1088 <NA>      1   male        C    Small  Master   Yes   Yes
## 1089 <NA>      3 female        S   Single    Miss    No   Yes
## 1090 <NA>      2   male        S   Single      Mr    No    No
## 1091 <NA>      3 female        S   Single     Mrs    No   Yes
## 1092 <NA>      3 female        Q   Single    Miss    No   Yes
## 1093 <NA>      3   male        S    Small  Master   Yes   Yes
## 1094 <NA>      1   male        C    Small Officer   Yes    No
## 1095 <NA>      2 female        S    Small    Miss   Yes   Yes
## 1096 <NA>      2   male        S   Single      Mr    No    No
## 1097 <NA>      1   male        C   Single      Mr    No    No
## 1098 <NA>      3 female        Q   Single    Miss    No   Yes
## 1099 <NA>      2   male        S   Single      Mr    No    No
## 1100 <NA>      1 female        C   Single    Miss    No   Yes
## 1101 <NA>      3   male        S   Single      Mr    No    No
## 1102 <NA>      3   male        S   Single      Mr   Yes    No
## 1103 <NA>      3   male        S   Single      Mr    No    No
## 1104 <NA>      2   male        S   Single      Mr   Yes   Yes
## 1105 <NA>      2 female        S    Small     Mrs    No   Yes
## 1106 <NA>      3 female        S    Large    Miss    No   Yes
## 1107 <NA>      1   male        S   Single      Mr    No    No
## 1108 <NA>      3 female        Q   Single    Miss    No   Yes
## 1109 <NA>      1   male        S    Small      Mr   Yes    No
## 1110 <NA>      1 female        C    Small     Mrs   Yes   Yes
## 1111 <NA>      3   male        S   Single      Mr    No    No
## 1112 <NA>      2 female        C    Small    Miss    No   Yes
## 1113 <NA>      3   male        S   Single      Mr    No    No
## 1114 <NA>      2 female        S   Single     Mrs    No   Yes
## 1115 <NA>      3   male        S   Single      Mr    No    No
## 1116 <NA>      1 female        C   Single     Mrs    No   Yes
## 1117 <NA>      3 female        C    Small     Mrs   Yes   Yes
## 1118 <NA>      3   male        S   Single      Mr    No    No
## 1119 <NA>      3 female        Q   Single    Miss    No   Yes
## 1120 <NA>      3   male        S   Single      Mr    No    No
## 1121 <NA>      2   male        S   Single      Mr    No    No
## 1122 <NA>      2   male        S   Single      Mr   Yes   Yes
## 1123 <NA>      1 female        S   Single    Miss    No   Yes
## 1124 <NA>      3   male        S    Small      Mr    No    No
## 1125 <NA>      3   male        Q   Single      Mr    No    No
## 1126 <NA>      1   male        C    Small      Mr    No    No
## 1127 <NA>      3   male        S   Single      Mr    No    No
## 1128 <NA>      1   male        C    Small      Mr    No    No
## 1129 <NA>      3   male        C   Single      Mr    No    No
## 1130 <NA>      2 female        S    Small    Miss    No   Yes
## 1131 <NA>      1 female        C    Small     Mrs   Yes   Yes
## 1132 <NA>      1 female        C   Single     Mrs    No   Yes
## 1133 <NA>      2 female        S    Small     Mrs    No   Yes
## 1134 <NA>      1   male        C    Small      Mr   Yes    No
## 1135 <NA>      3   male        S   Single      Mr    No    No
## 1136 <NA>      3   male        S    Small  Master   Yes   Yes
## 1137 <NA>      1   male        S    Small      Mr    No    No
## 1138 <NA>      2 female        S   Single     Mrs    No   Yes
## 1139 <NA>      2   male        S    Small      Mr   Yes    No
## 1140 <NA>      2 female        S    Small     Mrs    No   Yes
## 1141 <NA>      3 female        C    Small     Mrs    No   Yes
## 1142 <NA>      2 female        S    Small    Miss   Yes   Yes
## 1143 <NA>      3   male        S   Single      Mr    No    No
## 1144 <NA>      1   male        C    Small      Mr    No    No
## 1145 <NA>      3   male        S   Single      Mr    No    No
## 1146 <NA>      3   male        S   Single      Mr    No    No
## 1147 <NA>      3   male        S   Single      Mr    No    No
## 1148 <NA>      3   male        Q   Single      Mr    No    No
## 1149 <NA>      3   male        S   Single      Mr    No    No
## 1150 <NA>      2 female        S   Single    Miss    No   Yes
## 1151 <NA>      3   male        S   Single      Mr    No    No
## 1152 <NA>      3   male        S    Small      Mr    No    No
## 1153 <NA>      3   male        S   Single      Mr    No    No
## 1154 <NA>      2 female        S    Small     Mrs   Yes   Yes
## 1155 <NA>      3 female        S    Small    Miss    No   Yes
## 1156 <NA>      2   male        C   Single      Mr    No    No
## 1157 <NA>      3   male        S   Single      Mr    No    No
## 1158 <NA>      1   male        S   Single      Mr    No    No
## 1159 <NA>      3   male        S   Single      Mr    No    No
## 1160 <NA>      3 female        S   Single    Miss    No   Yes
## 1161 <NA>      3   male        S   Single      Mr    No   Yes
## 1162 <NA>      1   male        C   Single      Mr    No    No
## 1163 <NA>      3   male        Q   Single      Mr    No    No
## 1164 <NA>      1 female        C    Small     Mrs    No   Yes
## 1165 <NA>      3 female        Q    Small    Miss    No   Yes
## 1166 <NA>      3   male        C   Single      Mr    No    No
## 1167 <NA>      2 female        S    Small    Miss    No   Yes
## 1168 <NA>      2   male        S   Single      Mr    No    No
## 1169 <NA>      2   male        S    Small      Mr    No    No
## 1170 <NA>      2   male        S    Small      Mr    No    No
## 1171 <NA>      2   male        S   Single      Mr    No    No
## 1172 <NA>      3 female        S   Single    Miss    No   Yes
## 1173 <NA>      3   male        S    Small  Master   Yes   Yes
## 1174 <NA>      3 female        Q   Single    Miss    No   Yes
## 1175 <NA>      3 female        C    Small    Miss   Yes   Yes
## 1176 <NA>      3 female        S    Small    Miss   Yes   Yes
## 1177 <NA>      3   male        S   Single      Mr    No    No
## 1178 <NA>      3   male        S   Single      Mr    No    No
## 1179 <NA>      1   male        S    Small      Mr    No    No
## 1180 <NA>      3   male        C   Single      Mr    No    No
## 1181 <NA>      3   male        S   Single      Mr    No    No
## 1182 <NA>      1   male        S   Single      Mr    No    No
## 1183 <NA>      3 female        Q   Single    Miss    No   Yes
## 1184 <NA>      3   male        C   Single      Mr    No    No
## 1185 <NA>      1   male        S    Small Officer   Yes    No
## 1186 <NA>      3   male        S   Single      Mr    No    No
## 1187 <NA>      3   male        S   Single      Mr    No    No
## 1188 <NA>      2 female        C    Small    Miss   Yes   Yes
## 1189 <NA>      3   male        C    Small      Mr   Yes    No
## 1190 <NA>      1   male        S   Single      Mr    No    No
## 1191 <NA>      3   male        S   Single      Mr    No    No
## 1192 <NA>      3   male        S   Single      Mr    No    No
## 1193 <NA>      2   male        C   Single      Mr    No    No
## 1194 <NA>      2   male        S    Small      Mr    No    No
## 1195 <NA>      3   male        S   Single      Mr    No    No
## 1196 <NA>      3 female        Q   Single    Miss    No   Yes
## 1197 <NA>      1 female        S    Small     Mrs    No   Yes
## 1198 <NA>      1   male        S    Small      Mr   Yes    No
## 1199 <NA>      3   male        S    Small  Master    No   Yes
## 1200 <NA>      1   male        S    Small      Mr   Yes    No
## 1201 <NA>      3 female        S    Small     Mrs    No   Yes
## 1202 <NA>      3   male        S   Single      Mr    No    No
## 1203 <NA>      3   male        C   Single      Mr    No    No
## 1204 <NA>      3   male        S   Single      Mr    No    No
## 1205 <NA>      3 female        Q   Single    Miss    No   Yes
## 1206 <NA>      1 female        C   Single     Mrs   Yes   Yes
## 1207 <NA>      3 female        Q   Single    Miss    No   Yes
## 1208 <NA>      1   male        C    Small      Mr   Yes    No
## 1209 <NA>      2   male        S   Single      Mr    No    No
## 1210 <NA>      3   male        S   Single      Mr    No    No
## 1211 <NA>      2   male        S    Small      Mr   Yes    No
## 1212 <NA>      3   male        S   Single      Mr    No    No
## 1213 <NA>      3   male        C   Single      Mr    No    No
## 1214 <NA>      2   male        S   Single      Mr    No    No
## 1215 <NA>      1   male        S   Single      Mr    No    No
## 1216 <NA>      1 female        S   Single    Miss   Yes   Yes
## 1217 <NA>      3   male        S   Single      Mr    No    No
## 1218 <NA>      2 female        S    Small    Miss   Yes   Yes
## 1219 <NA>      1   male        C   Single      Mr    No    No
## 1220 <NA>      2   male        S    Small      Mr    No    No
## 1221 <NA>      2   male        S   Single      Mr    No    No
## 1222 <NA>      2 female        S    Small     Mrs   Yes   Yes
## 1223 <NA>      1   male        C   Single      Mr    No    No
## 1224 <NA>      3   male        C   Single      Mr    No    No
## 1225 <NA>      3 female        C    Small     Mrs   Yes   Yes
## 1226 <NA>      3   male        S   Single      Mr    No    No
## 1227 <NA>      1   male        S   Single      Mr    No    No
## 1228 <NA>      2   male        S   Single      Mr    No    No
## 1229 <NA>      3   male        C    Small      Mr    No    No
## 1230 <NA>      2   male        S   Single      Mr   Yes    No
## 1231 <NA>      3   male        C   Single  Master    No   Yes
## 1232 <NA>      2   male        S   Single      Mr    No    No
## 1233 <NA>      3   male        S   Single      Mr    No    No
## 1234 <NA>      3   male        S    Large      Mr   Yes    No
## 1235 <NA>      1 female        C    Small     Mrs   Yes   Yes
## 1236 <NA>      3   male        S    Small  Master   Yes   Yes
## 1237 <NA>      3 female        S   Single    Miss    No   Yes
## 1238 <NA>      2   male        S   Single      Mr    No    No
## 1239 <NA>      3 female        C   Single     Mrs    No   Yes
## 1240 <NA>      2   male        S   Single      Mr    No    No
## 1241 <NA>      2 female        S   Single    Miss    No   Yes
## 1242 <NA>      1 female        C    Small     Mrs    No   Yes
## 1243 <NA>      2   male        S   Single      Mr    No    No
## 1244 <NA>      2   male        S   Single      Mr   Yes    No
## 1245 <NA>      2   male        S    Small      Mr   Yes    No
## 1246 <NA>      3 female        S    Small    Miss   Yes   Yes
## 1247 <NA>      1   male        S   Single      Mr    No    No
## 1248 <NA>      1 female        S    Small     Mrs    No   Yes
## 1249 <NA>      3   male        S   Single      Mr    No    No
## 1250 <NA>      3   male        Q   Single      Mr    No    No
## 1251 <NA>      3 female        S    Small     Mrs    No   Yes
## 1252 <NA>      3   male        S    Large  Master   Yes   Yes
## 1253 <NA>      2 female        C    Small     Mrs   Yes   Yes
## 1254 <NA>      2 female        S   Single     Mrs    No   Yes
## 1255 <NA>      3   male        S   Single      Mr    No    No
## 1256 <NA>      1 female        C    Small     Mrs    No   Yes
## 1257 <NA>      3 female        S    Large     Mrs   Yes   Yes
## 1258 <NA>      3   male        C    Small      Mr    No    No
## 1259 <NA>      3 female        S   Single    Miss   Yes   Yes
## 1260 <NA>      1 female        C    Small     Mrs    No   Yes
## 1261 <NA>      2   male        C   Single      Mr    No    No
## 1262 <NA>      2   male        S    Small      Mr    No    No
## 1263 <NA>      1 female        C   Single    Miss   Yes   Yes
## 1264 <NA>      1   male        S   Single      Mr    No    No
## 1265 <NA>      2   male        S   Single      Mr    No    No
## 1266 <NA>      1 female        S    Small     Mrs   Yes   Yes
## 1267 <NA>      1 female        C   Single    Miss   Yes   Yes
## 1268 <NA>      3 female        S    Small    Miss    No   Yes
## 1269 <NA>      2   male        S   Single      Mr    No    No
## 1270 <NA>      1   male        S   Single      Mr    No    No
## 1271 <NA>      3   male        S    Large  Master   Yes   Yes
## 1272 <NA>      3   male        Q   Single      Mr    No    No
## 1273 <NA>      3   male        Q   Single      Mr    No    No
## 1274 <NA>      3 female        S   Single     Mrs    No   Yes
## 1275 <NA>      3 female        S    Small     Mrs    No   Yes
## 1276 <NA>      2   male        S   Single      Mr    No    No
## 1277 <NA>      2 female        S    Small    Miss   Yes   Yes
## 1278 <NA>      3   male        S   Single      Mr    No    No
## 1279 <NA>      2   male        S   Single      Mr    No    No
## 1280 <NA>      3   male        Q   Single      Mr    No    No
## 1281 <NA>      3   male        S    Large  Master   Yes   Yes
## 1282 <NA>      1   male        S   Single      Mr   Yes    No
## 1283 <NA>      1 female        S    Small     Mrs    No   Yes
## 1284 <NA>      3   male        S    Small  Master   Yes   Yes
## 1285 <NA>      2   male        S   Single      Mr    No    No
## 1286 <NA>      3   male        S    Large      Mr   Yes    No
## 1287 <NA>      1 female        S    Small     Mrs    No   Yes
## 1288 <NA>      3   male        Q   Single      Mr    No    No
## 1289 <NA>      1 female        C    Small     Mrs    No   Yes
## 1290 <NA>      3   male        S   Single      Mr    No    No
## 1291 <NA>      3   male        Q   Single      Mr    No    No
## 1292 <NA>      1 female        S   Single    Miss   Yes   Yes
## 1293 <NA>      2   male        S    Small      Mr    No    No
## 1294 <NA>      1 female        C    Small    Miss    No   Yes
## 1295 <NA>      1   male        S   Single      Mr    No   Yes
## 1296 <NA>      1   male        C    Small      Mr    No    No
## 1297 <NA>      2   male        C   Single      Mr    No    No
## 1298 <NA>      2   male        S    Small      Mr    No    No
## 1299 <NA>      1   male        C    Small      Mr   Yes    No
## 1300 <NA>      3 female        Q   Single    Miss    No   Yes
## 1301 <NA>      3 female        S    Small    Miss   Yes   Yes
## 1302 <NA>      3 female        Q   Single    Miss    No   Yes
## 1303 <NA>      1 female        Q    Small     Mrs   Yes   Yes
## 1304 <NA>      3 female        S   Single    Miss    No   Yes
## 1305 <NA>      3   male        S   Single      Mr    No    No
## 1306 <NA>      1 female        C   Single Royalty   Yes   Yes
## 1307 <NA>      3   male        S   Single      Mr    No    No
## 1308 <NA>      3   male        S   Single      Mr    No    No
## 1309 <NA>      3   male        C    Small  Master   Yes   Yes
library("makedummies")
## Warning: package 'makedummies' was built under R version 3.6.2
# makedummies()を使用してダミー変数を作成
dummy_var <- makedummies(dum, basal_level = FALSE)

# 結合する
cordata <- cbind(dummy_var, not_dum)
head(cordata)
##   Survived Pclass_2 Pclass_3 Sex Embarked_Q Embarked_S DFamsize_Single
## 1        0        0        1   1          0          1               0
## 2        1        0        0   0          0          0               0
## 3        1        0        1   0          0          1               1
## 4        1        0        0   0          0          1               0
## 5        0        0        1   1          0          1               1
## 6        0        0        1   1          1          0               1
##   DFamsize_Small Title_Miss Title_Mr Title_Mrs Title_Officer Title_Royalty
## 1              1          0        1         0             0             0
## 2              1          0        0         1             0             0
## 3              0          1        0         0             0             0
## 4              1          0        0         1             0             0
## 5              0          0        1         0             0             0
## 6              0          0        1         0             0             0
##   Group Wom_chd PassengerId                                                Name
## 1     0       0           1                             Braund, Mr. Owen Harris
## 2     0       1           2 Cumings, Mrs. John Bradley (Florence Briggs Thayer)
## 3     0       1           3                              Heikkinen, Miss. Laina
## 4     0       1           4        Futrelle, Mrs. Jacques Heath (Lily May Peel)
## 5     0       0           5                            Allen, Mr. William Henry
## 6     0       0           6                                    Moran, Mr. James
##   Age SibSp Parch           Ticket    Fare Cabin Famsize
## 1  22     1     0        A/5 21171  7.2500  <NA>       2
## 2  38     1     0         PC 17599 71.2833   C85       2
## 3  26     0     0 STON/O2. 3101282  7.9250  <NA>       1
## 4  35     1     0           113803 53.1000  C123       2
## 5  35     0     0           373450  8.0500  <NA>       1
## 6  29     0     0           330877  8.4583  <NA>       1

相関行列の表示

cordata_ver1 <- cordata %>% dplyr::select(Pclass_2,Pclass_3, Sex, Age, Fare, Embarked_Q,Embarked_S,DFamsize_Single, DFamsize_Small, Title_Miss, Title_Mr,Title_Mrs, Title_Officer, Title_Royalty)
factor_vars <- c('Pclass_2','Pclass_3', 'Sex', 'Age', 'Fare', 'Embarked_Q', 'Embarked_S','DFamsize_Single', 'DFamsize_Small', 'Title_Miss', 'Title_Mr', 'Title_Mrs','Title_Officer', 'Title_Royalty')
cordata_ver1[factor_vars] <- lapply(cordata_ver1[factor_vars], function(x) as.numeric(x))
cormat1 <- cor(cordata_ver1)
library("corrplot")
## Warning: package 'corrplot' was built under R version 3.6.2
## corrplot 0.84 loaded
corrplot(cormat1,method="circle",,numbers=T)
## Warning in text.default(pos.xlabel[, 1], pos.xlabel[, 2], newcolnames, srt =
## tl.srt, : "numbers" はグラフィックスパラメータではありません
## Warning in text.default(pos.ylabel[, 1], pos.ylabel[, 2], newrownames, col =
## tl.col, : "numbers" はグラフィックスパラメータではありません
## Warning in title(title, ...): "numbers" はグラフィックスパラメータではありません

データセットの分割(◆■原文ではcordatagがalldataになっており間違い)

# cordataをもとのtrainデータとtestデータに分割
train <- cordata[1:891,]
test <- cordata[892:1309,]

説明変数formulaの作成(1回目)

# 説明変数formulaの作成
n <- names(train)
n <- n[-14][-15][-14:-15][-15:-17][-16:-18] # 推定に使用しないカラム名を取り除く
formula_train <- as.formula(paste("Survived~",paste(n[!n%in%c("Survived")],collapse="+")))
Survived ~ Pclass_2 + Pclass_3 + Sex + Embarked_Q + Embarked_S + 
    Dfamsize_Single + Dfamsize_Small + Title_Miss + Title_Mr + 
    Title_Mrs + Title_Officer + Title_Royalty + Age + Fare
## Survived ~ Pclass_2 + Pclass_3 + Sex + Embarked_Q + Embarked_S + 
##     Dfamsize_Single + Dfamsize_Small + Title_Miss + Title_Mr + 
##     Title_Mrs + Title_Officer + Title_Royalty + Age + Fare
library(car)#carライブラリ読み込み

VIFの確認

#VIFの確認:VIF / Variance Inflation Factor:
#独立変数間の多重共線性を検出するための指標の1つ。独立変数間の相関係数行列の逆行列の対角要素であり、値が大きい場
#合はその変数を分析から除いた方がよいと考えられる。10を基準とすることが多い。
#関数 glm() を用いることで一般化線形モデルを扱うことが出来る.
#http://cse.naro.affrc.go.jp/takezawa/r-tips/r/72.html
#関数 vif()で
#carライブラリにvif()という関数がある。
#https://toukeier.hatenablog.com/entry/how-to-calculate-vif-by-r/
#car::vif(data_vif_ver1)は、パッケージcarの場合に、car::vif(data_vif_ver1)は名前空間carエクスポートされた変数vif(data_vif_ver1)の値を返す。
#https://stat.ethz.ch/R-manual/R-devel/library/base/html/ns-dblcolon.html

data_vif_ver1 <- glm(formula_train,family=binomial(link='logit'),data=train)
car::vif(data_vif_ver1) 
##        Pclass_2        Pclass_3             Sex      Embarked_Q      Embarked_S 
##    2.018606e+00    2.887521e+00    6.305522e+06    1.597044e+00    1.528755e+00 
## DFamsize_Single  DFamsize_Small      Title_Miss        Title_Mr       Title_Mrs 
##    7.014843e+00    5.768453e+00    5.062867e+06    9.332808e+00    3.037016e+06 
##   Title_Officer   Title_Royalty             Age            Fare 
##    2.072341e+00    1.187356e+00    1.879358e+00    1.723444e+00

説明変数formulaの作成(2回目))Sex変数を除い

# 説明変数formulaの作成(Sex変数を除くバージョン)
n <- names(train)
n <- n[-14][-15][-14:-15][-15:-17][-16:-18][-4] # 不要なカラム名を取り除く
formula_train <- as.formula(paste("Survived~",paste(n[!n%in%c("Survived")],collapse="+")))
Survived ~ Pclass_2 + Pclass_3 + Sex + Embarked_Q + Embarked_S + 
    Dfamsize_Single + Dfamsize_Small + Title_Miss + Title_Mr + 
    Title_Mrs + Title_Officer + Title_Royalty + Age + Fare
## Survived ~ Pclass_2 + Pclass_3 + Sex + Embarked_Q + Embarked_S + 
##     Dfamsize_Single + Dfamsize_Small + Title_Miss + Title_Mr + 
##     Title_Mrs + Title_Officer + Title_Royalty + Age + Fare
formula_train
## Survived ~ Pclass_2 + Pclass_3 + Embarked_Q + Embarked_S + DFamsize_Single + 
##     DFamsize_Small + Title_Miss + Title_Mr + Title_Mrs + Title_Officer + 
##     Title_Royalty + Age + Fare
# VIFの確認(Sex変数を除くバージョン)
data_vif_ver1 <- glm(formula_train,family=binomial(link='logit'),data=train)
car::vif(data_vif_ver1) 
##        Pclass_2        Pclass_3      Embarked_Q      Embarked_S DFamsize_Single 
##        2.014926        2.896888        1.595989        1.526755        7.044565 
##  DFamsize_Small      Title_Miss        Title_Mr       Title_Mrs   Title_Officer 
##        5.803506        6.283852        9.397575        4.804631        2.261898 
##   Title_Royalty             Age            Fare 
##        1.272498        1.895658        1.716537

#例題では説明変数がformula_trainとなっていたが、これではうまくいかないので、変数を書き連ねる。 #train\(Survived <- as.factor(train\)Survived) #Survived変数がnumeric型になっていたのでfactor型に変換する #acc_data_ver1 <- train(data = train,formula_train,method = “glmStepAIC”, #AICに基づきモデル構築 #family = binomial()) #summary(acc_data_ver1)

ロジスティック回帰モデルの推定

– glm関数(ロジスティック曲線)の文法————————————② - glm(解析用のデータ$目的変数の列名~.,data=解析用のデータ,family=binomial) - https://to-kei.net/r-beginner/r-5-logistic/

# ロジスティック回帰モデルの推定
#rdata <- alldata[1:891,]
#str(rdata)
#rdata$Survived <- as.factor(rdata$Survived) #Survived変数がnumeric型になっていたのでfactor型に変換する
#head(rdata)
#acc_data_ver1 <- glm(rdata$Survived~.,data=rdata,family=binomial)
#algorithm did not converge:アルゴリズムが収束しませんでしたというエラーがでる。???
#cc_data_ver1 <- train(data = train,formula_train,method = "glm",family = binomial())
#教科書データではうまくいかないので、glm関数の文法------②を使用して解いた
#summary(acc_data_ver1)

ロジスティック回帰モデルの推定の見直し

Titanic1 <- expand.table(Titanic)
head (Titanic1)
##   Class  Sex   Age Survived
## 1   1st Male Child      Yes
## 2   1st Male Child      Yes
## 3   1st Male Child      Yes
## 4   1st Male Child      Yes
## 5   1st Male Child      Yes
## 6   1st Male Adult       No
nrow (Titanic1)
## [1] 2201
#head (Titanic1)
Titanic.glm <- glm(Survived ~ +Sex + Age+ Class, data = Titanic1, family = "binomial")
summary (Titanic.glm)
## 
## Call:
## glm(formula = Survived ~ +Sex + Age + Class, family = "binomial", 
##     data = Titanic1)
## 
## Deviance Residuals: 
##     Min       1Q   Median       3Q      Max  
## -2.0812  -0.7149  -0.6656   0.6858   2.1278  
## 
## Coefficients:
##             Estimate Std. Error z value Pr(>|z|)    
## (Intercept)   0.6853     0.2730   2.510   0.0121 *  
## SexFemale     2.4201     0.1404  17.236  < 2e-16 ***
## AgeAdult     -1.0615     0.2440  -4.350 1.36e-05 ***
## Class2nd     -1.0181     0.1960  -5.194 2.05e-07 ***
## Class3rd     -1.7778     0.1716 -10.362  < 2e-16 ***
## ClassCrew    -0.8577     0.1573  -5.451 5.00e-08 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## (Dispersion parameter for binomial family taken to be 1)
## 
##     Null deviance: 2769.5  on 2200  degrees of freedom
## Residual deviance: 2210.1  on 2195  degrees of freedom
## AIC: 2222.1
## 
## Number of Fisher Scoring iterations: 4
#注目するのは,やはりCoefficientsのところです.
#まず(Intercept) ですが,これは切片です.より具体的にいうと,性別が男性,年齢が子供,等級が1等客室の乗客の場合の推定値です.
#実際にこの条件で予測をおこなってみると以下のようになります.
newData <-  data.frame (Sex = "Male", Age = "Child", Class = "1st" )
predict(Titanic.glm, newdata = newData)
##         1 
## 0.6853195
predict(Titanic.glm, newdata = newData, type = "response")
##         1 
## 0.6649249
#最初にnewDataという名前で,性別が男性,年齢が子供,等級が1等客室の乗客というデータを作っています.predict関数に,先のロジスティック回帰分析の結果と,いまの新規データを指定して実行してみると,予測値が出ます.
#predict()関数を二度実行していますが,最初の出力は,先ほどの切片(Intercept)と同じ0.6853ですが,これは対数オッズです.二度目の実行では,「type = "response"」を追加しています.これは対数オッズを確率に変える指定です. 結果の0.66,約 66% が生き残る確率になります.Coefficients:の欄の切片の下は,まず女性の場合対数オッズで2.4201が追加されます.これは対数を外すと(exp(2.4201)を計算すると),約11で,女性の場合,生存率が11倍に跳ね上がることを意味します.また年齢が成人(Adult)の係数は-1.0615で負の値です.これは成人の場合,生存率が三分の1に減少することを意味します(exp(-1.06)を計算).以下同様に,Class2ndは等級が2等の場合,class3rdは3等の場合,そしてClassCrewは乗務員を表しますが,いずれもマイナスなので,生存率は下がっていることになります
#mまずhttp://smrmkt.hatenablog.jp/entry/2012/12/20/232113のロジステック回帰とおりにやってみる
#train3 <- read.table('train.csv', header=T, sep=',')
#test3 <- expand.table(train3)
#train3.lr <- glm(survived~pclass+sex+age+sibsp+parch+fare, data=test3, family = "binomial")
#pred <-predict(train3.lr, test3, interval='prediction')
#pred_b <- ifelse(pred[,1] > 0.5, 1, 0)
#table(train3$survived, pred_b)
#dat = data.frame(Titanic)# dat <- expand.table(Titanic)でも結果は同じ
#train.lr <- glm(survived~pclass+sex+age+sibsp+parch+fare,data=dat)

1/17 失敗 pred の値が2値でない。

次の例題に基づき実施:http://smrmkt.hatenablog.jp/entry/2012/12/20/232113

print(Titanic1)
##      Class    Sex   Age Survived
## 1      1st   Male Child      Yes
## 2      1st   Male Child      Yes
## 3      1st   Male Child      Yes
## 4      1st   Male Child      Yes
## 5      1st   Male Child      Yes
## 6      1st   Male Adult       No
## 7      1st   Male Adult       No
## 8      1st   Male Adult       No
## 9      1st   Male Adult       No
## 10     1st   Male Adult       No
## 11     1st   Male Adult       No
## 12     1st   Male Adult       No
## 13     1st   Male Adult       No
## 14     1st   Male Adult       No
## 15     1st   Male Adult       No
## 16     1st   Male Adult       No
## 17     1st   Male Adult       No
## 18     1st   Male Adult       No
## 19     1st   Male Adult       No
## 20     1st   Male Adult       No
## 21     1st   Male Adult       No
## 22     1st   Male Adult       No
## 23     1st   Male Adult       No
## 24     1st   Male Adult       No
## 25     1st   Male Adult       No
## 26     1st   Male Adult       No
## 27     1st   Male Adult       No
## 28     1st   Male Adult       No
## 29     1st   Male Adult       No
## 30     1st   Male Adult       No
## 31     1st   Male Adult       No
## 32     1st   Male Adult       No
## 33     1st   Male Adult       No
## 34     1st   Male Adult       No
## 35     1st   Male Adult       No
## 36     1st   Male Adult       No
## 37     1st   Male Adult       No
## 38     1st   Male Adult       No
## 39     1st   Male Adult       No
## 40     1st   Male Adult       No
## 41     1st   Male Adult       No
## 42     1st   Male Adult       No
## 43     1st   Male Adult       No
## 44     1st   Male Adult       No
## 45     1st   Male Adult       No
## 46     1st   Male Adult       No
## 47     1st   Male Adult       No
## 48     1st   Male Adult       No
## 49     1st   Male Adult       No
## 50     1st   Male Adult       No
## 51     1st   Male Adult       No
## 52     1st   Male Adult       No
## 53     1st   Male Adult       No
## 54     1st   Male Adult       No
## 55     1st   Male Adult       No
## 56     1st   Male Adult       No
## 57     1st   Male Adult       No
## 58     1st   Male Adult       No
## 59     1st   Male Adult       No
## 60     1st   Male Adult       No
## 61     1st   Male Adult       No
## 62     1st   Male Adult       No
## 63     1st   Male Adult       No
## 64     1st   Male Adult       No
## 65     1st   Male Adult       No
## 66     1st   Male Adult       No
## 67     1st   Male Adult       No
## 68     1st   Male Adult       No
## 69     1st   Male Adult       No
## 70     1st   Male Adult       No
## 71     1st   Male Adult       No
## 72     1st   Male Adult       No
## 73     1st   Male Adult       No
## 74     1st   Male Adult       No
## 75     1st   Male Adult       No
## 76     1st   Male Adult       No
## 77     1st   Male Adult       No
## 78     1st   Male Adult       No
## 79     1st   Male Adult       No
## 80     1st   Male Adult       No
## 81     1st   Male Adult       No
## 82     1st   Male Adult       No
## 83     1st   Male Adult       No
## 84     1st   Male Adult       No
## 85     1st   Male Adult       No
## 86     1st   Male Adult       No
## 87     1st   Male Adult       No
## 88     1st   Male Adult       No
## 89     1st   Male Adult       No
## 90     1st   Male Adult       No
## 91     1st   Male Adult       No
## 92     1st   Male Adult       No
## 93     1st   Male Adult       No
## 94     1st   Male Adult       No
## 95     1st   Male Adult       No
## 96     1st   Male Adult       No
## 97     1st   Male Adult       No
## 98     1st   Male Adult       No
## 99     1st   Male Adult       No
## 100    1st   Male Adult       No
## 101    1st   Male Adult       No
## 102    1st   Male Adult       No
## 103    1st   Male Adult       No
## 104    1st   Male Adult       No
## 105    1st   Male Adult       No
## 106    1st   Male Adult       No
## 107    1st   Male Adult       No
## 108    1st   Male Adult       No
## 109    1st   Male Adult       No
## 110    1st   Male Adult       No
## 111    1st   Male Adult       No
## 112    1st   Male Adult       No
## 113    1st   Male Adult       No
## 114    1st   Male Adult       No
## 115    1st   Male Adult       No
## 116    1st   Male Adult       No
## 117    1st   Male Adult       No
## 118    1st   Male Adult       No
## 119    1st   Male Adult       No
## 120    1st   Male Adult       No
## 121    1st   Male Adult       No
## 122    1st   Male Adult       No
## 123    1st   Male Adult       No
## 124    1st   Male Adult      Yes
## 125    1st   Male Adult      Yes
## 126    1st   Male Adult      Yes
## 127    1st   Male Adult      Yes
## 128    1st   Male Adult      Yes
## 129    1st   Male Adult      Yes
## 130    1st   Male Adult      Yes
## 131    1st   Male Adult      Yes
## 132    1st   Male Adult      Yes
## 133    1st   Male Adult      Yes
## 134    1st   Male Adult      Yes
## 135    1st   Male Adult      Yes
## 136    1st   Male Adult      Yes
## 137    1st   Male Adult      Yes
## 138    1st   Male Adult      Yes
## 139    1st   Male Adult      Yes
## 140    1st   Male Adult      Yes
## 141    1st   Male Adult      Yes
## 142    1st   Male Adult      Yes
## 143    1st   Male Adult      Yes
## 144    1st   Male Adult      Yes
## 145    1st   Male Adult      Yes
## 146    1st   Male Adult      Yes
## 147    1st   Male Adult      Yes
## 148    1st   Male Adult      Yes
## 149    1st   Male Adult      Yes
## 150    1st   Male Adult      Yes
## 151    1st   Male Adult      Yes
## 152    1st   Male Adult      Yes
## 153    1st   Male Adult      Yes
## 154    1st   Male Adult      Yes
## 155    1st   Male Adult      Yes
## 156    1st   Male Adult      Yes
## 157    1st   Male Adult      Yes
## 158    1st   Male Adult      Yes
## 159    1st   Male Adult      Yes
## 160    1st   Male Adult      Yes
## 161    1st   Male Adult      Yes
## 162    1st   Male Adult      Yes
## 163    1st   Male Adult      Yes
## 164    1st   Male Adult      Yes
## 165    1st   Male Adult      Yes
## 166    1st   Male Adult      Yes
## 167    1st   Male Adult      Yes
## 168    1st   Male Adult      Yes
## 169    1st   Male Adult      Yes
## 170    1st   Male Adult      Yes
## 171    1st   Male Adult      Yes
## 172    1st   Male Adult      Yes
## 173    1st   Male Adult      Yes
## 174    1st   Male Adult      Yes
## 175    1st   Male Adult      Yes
## 176    1st   Male Adult      Yes
## 177    1st   Male Adult      Yes
## 178    1st   Male Adult      Yes
## 179    1st   Male Adult      Yes
## 180    1st   Male Adult      Yes
## 181    1st Female Child      Yes
## 182    1st Female Adult       No
## 183    1st Female Adult       No
## 184    1st Female Adult       No
## 185    1st Female Adult       No
## 186    1st Female Adult      Yes
## 187    1st Female Adult      Yes
## 188    1st Female Adult      Yes
## 189    1st Female Adult      Yes
## 190    1st Female Adult      Yes
## 191    1st Female Adult      Yes
## 192    1st Female Adult      Yes
## 193    1st Female Adult      Yes
## 194    1st Female Adult      Yes
## 195    1st Female Adult      Yes
## 196    1st Female Adult      Yes
## 197    1st Female Adult      Yes
## 198    1st Female Adult      Yes
## 199    1st Female Adult      Yes
## 200    1st Female Adult      Yes
## 201    1st Female Adult      Yes
## 202    1st Female Adult      Yes
## 203    1st Female Adult      Yes
## 204    1st Female Adult      Yes
## 205    1st Female Adult      Yes
## 206    1st Female Adult      Yes
## 207    1st Female Adult      Yes
## 208    1st Female Adult      Yes
## 209    1st Female Adult      Yes
## 210    1st Female Adult      Yes
## 211    1st Female Adult      Yes
## 212    1st Female Adult      Yes
## 213    1st Female Adult      Yes
## 214    1st Female Adult      Yes
## 215    1st Female Adult      Yes
## 216    1st Female Adult      Yes
## 217    1st Female Adult      Yes
## 218    1st Female Adult      Yes
## 219    1st Female Adult      Yes
## 220    1st Female Adult      Yes
## 221    1st Female Adult      Yes
## 222    1st Female Adult      Yes
## 223    1st Female Adult      Yes
## 224    1st Female Adult      Yes
## 225    1st Female Adult      Yes
## 226    1st Female Adult      Yes
## 227    1st Female Adult      Yes
## 228    1st Female Adult      Yes
## 229    1st Female Adult      Yes
## 230    1st Female Adult      Yes
## 231    1st Female Adult      Yes
## 232    1st Female Adult      Yes
## 233    1st Female Adult      Yes
## 234    1st Female Adult      Yes
## 235    1st Female Adult      Yes
## 236    1st Female Adult      Yes
## 237    1st Female Adult      Yes
## 238    1st Female Adult      Yes
## 239    1st Female Adult      Yes
## 240    1st Female Adult      Yes
## 241    1st Female Adult      Yes
## 242    1st Female Adult      Yes
## 243    1st Female Adult      Yes
## 244    1st Female Adult      Yes
## 245    1st Female Adult      Yes
## 246    1st Female Adult      Yes
## 247    1st Female Adult      Yes
## 248    1st Female Adult      Yes
## 249    1st Female Adult      Yes
## 250    1st Female Adult      Yes
## 251    1st Female Adult      Yes
## 252    1st Female Adult      Yes
## 253    1st Female Adult      Yes
## 254    1st Female Adult      Yes
## 255    1st Female Adult      Yes
## 256    1st Female Adult      Yes
## 257    1st Female Adult      Yes
## 258    1st Female Adult      Yes
## 259    1st Female Adult      Yes
## 260    1st Female Adult      Yes
## 261    1st Female Adult      Yes
## 262    1st Female Adult      Yes
## 263    1st Female Adult      Yes
## 264    1st Female Adult      Yes
## 265    1st Female Adult      Yes
## 266    1st Female Adult      Yes
## 267    1st Female Adult      Yes
## 268    1st Female Adult      Yes
## 269    1st Female Adult      Yes
## 270    1st Female Adult      Yes
## 271    1st Female Adult      Yes
## 272    1st Female Adult      Yes
## 273    1st Female Adult      Yes
## 274    1st Female Adult      Yes
## 275    1st Female Adult      Yes
## 276    1st Female Adult      Yes
## 277    1st Female Adult      Yes
## 278    1st Female Adult      Yes
## 279    1st Female Adult      Yes
## 280    1st Female Adult      Yes
## 281    1st Female Adult      Yes
## 282    1st Female Adult      Yes
## 283    1st Female Adult      Yes
## 284    1st Female Adult      Yes
## 285    1st Female Adult      Yes
## 286    1st Female Adult      Yes
## 287    1st Female Adult      Yes
## 288    1st Female Adult      Yes
## 289    1st Female Adult      Yes
## 290    1st Female Adult      Yes
## 291    1st Female Adult      Yes
## 292    1st Female Adult      Yes
## 293    1st Female Adult      Yes
## 294    1st Female Adult      Yes
## 295    1st Female Adult      Yes
## 296    1st Female Adult      Yes
## 297    1st Female Adult      Yes
## 298    1st Female Adult      Yes
## 299    1st Female Adult      Yes
## 300    1st Female Adult      Yes
## 301    1st Female Adult      Yes
## 302    1st Female Adult      Yes
## 303    1st Female Adult      Yes
## 304    1st Female Adult      Yes
## 305    1st Female Adult      Yes
## 306    1st Female Adult      Yes
## 307    1st Female Adult      Yes
## 308    1st Female Adult      Yes
## 309    1st Female Adult      Yes
## 310    1st Female Adult      Yes
## 311    1st Female Adult      Yes
## 312    1st Female Adult      Yes
## 313    1st Female Adult      Yes
## 314    1st Female Adult      Yes
## 315    1st Female Adult      Yes
## 316    1st Female Adult      Yes
## 317    1st Female Adult      Yes
## 318    1st Female Adult      Yes
## 319    1st Female Adult      Yes
## 320    1st Female Adult      Yes
## 321    1st Female Adult      Yes
## 322    1st Female Adult      Yes
## 323    1st Female Adult      Yes
## 324    1st Female Adult      Yes
## 325    1st Female Adult      Yes
## 326    2nd   Male Child      Yes
## 327    2nd   Male Child      Yes
## 328    2nd   Male Child      Yes
## 329    2nd   Male Child      Yes
## 330    2nd   Male Child      Yes
## 331    2nd   Male Child      Yes
## 332    2nd   Male Child      Yes
## 333    2nd   Male Child      Yes
## 334    2nd   Male Child      Yes
## 335    2nd   Male Child      Yes
## 336    2nd   Male Child      Yes
## 337    2nd   Male Adult       No
## 338    2nd   Male Adult       No
## 339    2nd   Male Adult       No
## 340    2nd   Male Adult       No
## 341    2nd   Male Adult       No
## 342    2nd   Male Adult       No
## 343    2nd   Male Adult       No
## 344    2nd   Male Adult       No
## 345    2nd   Male Adult       No
## 346    2nd   Male Adult       No
## 347    2nd   Male Adult       No
## 348    2nd   Male Adult       No
## 349    2nd   Male Adult       No
## 350    2nd   Male Adult       No
## 351    2nd   Male Adult       No
## 352    2nd   Male Adult       No
## 353    2nd   Male Adult       No
## 354    2nd   Male Adult       No
## 355    2nd   Male Adult       No
## 356    2nd   Male Adult       No
## 357    2nd   Male Adult       No
## 358    2nd   Male Adult       No
## 359    2nd   Male Adult       No
## 360    2nd   Male Adult       No
## 361    2nd   Male Adult       No
## 362    2nd   Male Adult       No
## 363    2nd   Male Adult       No
## 364    2nd   Male Adult       No
## 365    2nd   Male Adult       No
## 366    2nd   Male Adult       No
## 367    2nd   Male Adult       No
## 368    2nd   Male Adult       No
## 369    2nd   Male Adult       No
## 370    2nd   Male Adult       No
## 371    2nd   Male Adult       No
## 372    2nd   Male Adult       No
## 373    2nd   Male Adult       No
## 374    2nd   Male Adult       No
## 375    2nd   Male Adult       No
## 376    2nd   Male Adult       No
## 377    2nd   Male Adult       No
## 378    2nd   Male Adult       No
## 379    2nd   Male Adult       No
## 380    2nd   Male Adult       No
## 381    2nd   Male Adult       No
## 382    2nd   Male Adult       No
## 383    2nd   Male Adult       No
## 384    2nd   Male Adult       No
## 385    2nd   Male Adult       No
## 386    2nd   Male Adult       No
## 387    2nd   Male Adult       No
## 388    2nd   Male Adult       No
## 389    2nd   Male Adult       No
## 390    2nd   Male Adult       No
## 391    2nd   Male Adult       No
## 392    2nd   Male Adult       No
## 393    2nd   Male Adult       No
## 394    2nd   Male Adult       No
## 395    2nd   Male Adult       No
## 396    2nd   Male Adult       No
## 397    2nd   Male Adult       No
## 398    2nd   Male Adult       No
## 399    2nd   Male Adult       No
## 400    2nd   Male Adult       No
## 401    2nd   Male Adult       No
## 402    2nd   Male Adult       No
## 403    2nd   Male Adult       No
## 404    2nd   Male Adult       No
## 405    2nd   Male Adult       No
## 406    2nd   Male Adult       No
## 407    2nd   Male Adult       No
## 408    2nd   Male Adult       No
## 409    2nd   Male Adult       No
## 410    2nd   Male Adult       No
## 411    2nd   Male Adult       No
## 412    2nd   Male Adult       No
## 413    2nd   Male Adult       No
## 414    2nd   Male Adult       No
## 415    2nd   Male Adult       No
## 416    2nd   Male Adult       No
## 417    2nd   Male Adult       No
## 418    2nd   Male Adult       No
## 419    2nd   Male Adult       No
## 420    2nd   Male Adult       No
## 421    2nd   Male Adult       No
## 422    2nd   Male Adult       No
## 423    2nd   Male Adult       No
## 424    2nd   Male Adult       No
## 425    2nd   Male Adult       No
## 426    2nd   Male Adult       No
## 427    2nd   Male Adult       No
## 428    2nd   Male Adult       No
## 429    2nd   Male Adult       No
## 430    2nd   Male Adult       No
## 431    2nd   Male Adult       No
## 432    2nd   Male Adult       No
## 433    2nd   Male Adult       No
## 434    2nd   Male Adult       No
## 435    2nd   Male Adult       No
## 436    2nd   Male Adult       No
## 437    2nd   Male Adult       No
## 438    2nd   Male Adult       No
## 439    2nd   Male Adult       No
## 440    2nd   Male Adult       No
## 441    2nd   Male Adult       No
## 442    2nd   Male Adult       No
## 443    2nd   Male Adult       No
## 444    2nd   Male Adult       No
## 445    2nd   Male Adult       No
## 446    2nd   Male Adult       No
## 447    2nd   Male Adult       No
## 448    2nd   Male Adult       No
## 449    2nd   Male Adult       No
## 450    2nd   Male Adult       No
## 451    2nd   Male Adult       No
## 452    2nd   Male Adult       No
## 453    2nd   Male Adult       No
## 454    2nd   Male Adult       No
## 455    2nd   Male Adult       No
## 456    2nd   Male Adult       No
## 457    2nd   Male Adult       No
## 458    2nd   Male Adult       No
## 459    2nd   Male Adult       No
## 460    2nd   Male Adult       No
## 461    2nd   Male Adult       No
## 462    2nd   Male Adult       No
## 463    2nd   Male Adult       No
## 464    2nd   Male Adult       No
## 465    2nd   Male Adult       No
## 466    2nd   Male Adult       No
## 467    2nd   Male Adult       No
## 468    2nd   Male Adult       No
## 469    2nd   Male Adult       No
## 470    2nd   Male Adult       No
## 471    2nd   Male Adult       No
## 472    2nd   Male Adult       No
## 473    2nd   Male Adult       No
## 474    2nd   Male Adult       No
## 475    2nd   Male Adult       No
## 476    2nd   Male Adult       No
## 477    2nd   Male Adult       No
## 478    2nd   Male Adult       No
## 479    2nd   Male Adult       No
## 480    2nd   Male Adult       No
## 481    2nd   Male Adult       No
## 482    2nd   Male Adult       No
## 483    2nd   Male Adult       No
## 484    2nd   Male Adult       No
## 485    2nd   Male Adult       No
## 486    2nd   Male Adult       No
## 487    2nd   Male Adult       No
## 488    2nd   Male Adult       No
## 489    2nd   Male Adult       No
## 490    2nd   Male Adult       No
## 491    2nd   Male Adult      Yes
## 492    2nd   Male Adult      Yes
## 493    2nd   Male Adult      Yes
## 494    2nd   Male Adult      Yes
## 495    2nd   Male Adult      Yes
## 496    2nd   Male Adult      Yes
## 497    2nd   Male Adult      Yes
## 498    2nd   Male Adult      Yes
## 499    2nd   Male Adult      Yes
## 500    2nd   Male Adult      Yes
## 501    2nd   Male Adult      Yes
## 502    2nd   Male Adult      Yes
## 503    2nd   Male Adult      Yes
## 504    2nd   Male Adult      Yes
## 505    2nd Female Child      Yes
## 506    2nd Female Child      Yes
## 507    2nd Female Child      Yes
## 508    2nd Female Child      Yes
## 509    2nd Female Child      Yes
## 510    2nd Female Child      Yes
## 511    2nd Female Child      Yes
## 512    2nd Female Child      Yes
## 513    2nd Female Child      Yes
## 514    2nd Female Child      Yes
## 515    2nd Female Child      Yes
## 516    2nd Female Child      Yes
## 517    2nd Female Child      Yes
## 518    2nd Female Adult       No
## 519    2nd Female Adult       No
## 520    2nd Female Adult       No
## 521    2nd Female Adult       No
## 522    2nd Female Adult       No
## 523    2nd Female Adult       No
## 524    2nd Female Adult       No
## 525    2nd Female Adult       No
## 526    2nd Female Adult       No
## 527    2nd Female Adult       No
## 528    2nd Female Adult       No
## 529    2nd Female Adult       No
## 530    2nd Female Adult       No
## 531    2nd Female Adult      Yes
## 532    2nd Female Adult      Yes
## 533    2nd Female Adult      Yes
## 534    2nd Female Adult      Yes
## 535    2nd Female Adult      Yes
## 536    2nd Female Adult      Yes
## 537    2nd Female Adult      Yes
## 538    2nd Female Adult      Yes
## 539    2nd Female Adult      Yes
## 540    2nd Female Adult      Yes
## 541    2nd Female Adult      Yes
## 542    2nd Female Adult      Yes
## 543    2nd Female Adult      Yes
## 544    2nd Female Adult      Yes
## 545    2nd Female Adult      Yes
## 546    2nd Female Adult      Yes
## 547    2nd Female Adult      Yes
## 548    2nd Female Adult      Yes
## 549    2nd Female Adult      Yes
## 550    2nd Female Adult      Yes
## 551    2nd Female Adult      Yes
## 552    2nd Female Adult      Yes
## 553    2nd Female Adult      Yes
## 554    2nd Female Adult      Yes
## 555    2nd Female Adult      Yes
## 556    2nd Female Adult      Yes
## 557    2nd Female Adult      Yes
## 558    2nd Female Adult      Yes
## 559    2nd Female Adult      Yes
## 560    2nd Female Adult      Yes
## 561    2nd Female Adult      Yes
## 562    2nd Female Adult      Yes
## 563    2nd Female Adult      Yes
## 564    2nd Female Adult      Yes
## 565    2nd Female Adult      Yes
## 566    2nd Female Adult      Yes
## 567    2nd Female Adult      Yes
## 568    2nd Female Adult      Yes
## 569    2nd Female Adult      Yes
## 570    2nd Female Adult      Yes
## 571    2nd Female Adult      Yes
## 572    2nd Female Adult      Yes
## 573    2nd Female Adult      Yes
## 574    2nd Female Adult      Yes
## 575    2nd Female Adult      Yes
## 576    2nd Female Adult      Yes
## 577    2nd Female Adult      Yes
## 578    2nd Female Adult      Yes
## 579    2nd Female Adult      Yes
## 580    2nd Female Adult      Yes
## 581    2nd Female Adult      Yes
## 582    2nd Female Adult      Yes
## 583    2nd Female Adult      Yes
## 584    2nd Female Adult      Yes
## 585    2nd Female Adult      Yes
## 586    2nd Female Adult      Yes
## 587    2nd Female Adult      Yes
## 588    2nd Female Adult      Yes
## 589    2nd Female Adult      Yes
## 590    2nd Female Adult      Yes
## 591    2nd Female Adult      Yes
## 592    2nd Female Adult      Yes
## 593    2nd Female Adult      Yes
## 594    2nd Female Adult      Yes
## 595    2nd Female Adult      Yes
## 596    2nd Female Adult      Yes
## 597    2nd Female Adult      Yes
## 598    2nd Female Adult      Yes
## 599    2nd Female Adult      Yes
## 600    2nd Female Adult      Yes
## 601    2nd Female Adult      Yes
## 602    2nd Female Adult      Yes
## 603    2nd Female Adult      Yes
## 604    2nd Female Adult      Yes
## 605    2nd Female Adult      Yes
## 606    2nd Female Adult      Yes
## 607    2nd Female Adult      Yes
## 608    2nd Female Adult      Yes
## 609    2nd Female Adult      Yes
## 610    2nd Female Adult      Yes
## 611    3rd   Male Child       No
## 612    3rd   Male Child       No
## 613    3rd   Male Child       No
## 614    3rd   Male Child       No
## 615    3rd   Male Child       No
## 616    3rd   Male Child       No
## 617    3rd   Male Child       No
## 618    3rd   Male Child       No
## 619    3rd   Male Child       No
## 620    3rd   Male Child       No
## 621    3rd   Male Child       No
## 622    3rd   Male Child       No
## 623    3rd   Male Child       No
## 624    3rd   Male Child       No
## 625    3rd   Male Child       No
## 626    3rd   Male Child       No
## 627    3rd   Male Child       No
## 628    3rd   Male Child       No
## 629    3rd   Male Child       No
## 630    3rd   Male Child       No
## 631    3rd   Male Child       No
## 632    3rd   Male Child       No
## 633    3rd   Male Child       No
## 634    3rd   Male Child       No
## 635    3rd   Male Child       No
## 636    3rd   Male Child       No
## 637    3rd   Male Child       No
## 638    3rd   Male Child       No
## 639    3rd   Male Child       No
## 640    3rd   Male Child       No
## 641    3rd   Male Child       No
## 642    3rd   Male Child       No
## 643    3rd   Male Child       No
## 644    3rd   Male Child       No
## 645    3rd   Male Child       No
## 646    3rd   Male Child      Yes
## 647    3rd   Male Child      Yes
## 648    3rd   Male Child      Yes
## 649    3rd   Male Child      Yes
## 650    3rd   Male Child      Yes
## 651    3rd   Male Child      Yes
## 652    3rd   Male Child      Yes
## 653    3rd   Male Child      Yes
## 654    3rd   Male Child      Yes
## 655    3rd   Male Child      Yes
## 656    3rd   Male Child      Yes
## 657    3rd   Male Child      Yes
## 658    3rd   Male Child      Yes
## 659    3rd   Male Adult       No
## 660    3rd   Male Adult       No
## 661    3rd   Male Adult       No
## 662    3rd   Male Adult       No
## 663    3rd   Male Adult       No
## 664    3rd   Male Adult       No
## 665    3rd   Male Adult       No
## 666    3rd   Male Adult       No
## 667    3rd   Male Adult       No
## 668    3rd   Male Adult       No
## 669    3rd   Male Adult       No
## 670    3rd   Male Adult       No
## 671    3rd   Male Adult       No
## 672    3rd   Male Adult       No
## 673    3rd   Male Adult       No
## 674    3rd   Male Adult       No
## 675    3rd   Male Adult       No
## 676    3rd   Male Adult       No
## 677    3rd   Male Adult       No
## 678    3rd   Male Adult       No
## 679    3rd   Male Adult       No
## 680    3rd   Male Adult       No
## 681    3rd   Male Adult       No
## 682    3rd   Male Adult       No
## 683    3rd   Male Adult       No
## 684    3rd   Male Adult       No
## 685    3rd   Male Adult       No
## 686    3rd   Male Adult       No
## 687    3rd   Male Adult       No
## 688    3rd   Male Adult       No
## 689    3rd   Male Adult       No
## 690    3rd   Male Adult       No
## 691    3rd   Male Adult       No
## 692    3rd   Male Adult       No
## 693    3rd   Male Adult       No
## 694    3rd   Male Adult       No
## 695    3rd   Male Adult       No
## 696    3rd   Male Adult       No
## 697    3rd   Male Adult       No
## 698    3rd   Male Adult       No
## 699    3rd   Male Adult       No
## 700    3rd   Male Adult       No
## 701    3rd   Male Adult       No
## 702    3rd   Male Adult       No
## 703    3rd   Male Adult       No
## 704    3rd   Male Adult       No
## 705    3rd   Male Adult       No
## 706    3rd   Male Adult       No
## 707    3rd   Male Adult       No
## 708    3rd   Male Adult       No
## 709    3rd   Male Adult       No
## 710    3rd   Male Adult       No
## 711    3rd   Male Adult       No
## 712    3rd   Male Adult       No
## 713    3rd   Male Adult       No
## 714    3rd   Male Adult       No
## 715    3rd   Male Adult       No
## 716    3rd   Male Adult       No
## 717    3rd   Male Adult       No
## 718    3rd   Male Adult       No
## 719    3rd   Male Adult       No
## 720    3rd   Male Adult       No
## 721    3rd   Male Adult       No
## 722    3rd   Male Adult       No
## 723    3rd   Male Adult       No
## 724    3rd   Male Adult       No
## 725    3rd   Male Adult       No
## 726    3rd   Male Adult       No
## 727    3rd   Male Adult       No
## 728    3rd   Male Adult       No
## 729    3rd   Male Adult       No
## 730    3rd   Male Adult       No
## 731    3rd   Male Adult       No
## 732    3rd   Male Adult       No
## 733    3rd   Male Adult       No
## 734    3rd   Male Adult       No
## 735    3rd   Male Adult       No
## 736    3rd   Male Adult       No
## 737    3rd   Male Adult       No
## 738    3rd   Male Adult       No
## 739    3rd   Male Adult       No
## 740    3rd   Male Adult       No
## 741    3rd   Male Adult       No
## 742    3rd   Male Adult       No
## 743    3rd   Male Adult       No
## 744    3rd   Male Adult       No
## 745    3rd   Male Adult       No
## 746    3rd   Male Adult       No
## 747    3rd   Male Adult       No
## 748    3rd   Male Adult       No
## 749    3rd   Male Adult       No
## 750    3rd   Male Adult       No
## 751    3rd   Male Adult       No
## 752    3rd   Male Adult       No
## 753    3rd   Male Adult       No
## 754    3rd   Male Adult       No
## 755    3rd   Male Adult       No
## 756    3rd   Male Adult       No
## 757    3rd   Male Adult       No
## 758    3rd   Male Adult       No
## 759    3rd   Male Adult       No
## 760    3rd   Male Adult       No
## 761    3rd   Male Adult       No
## 762    3rd   Male Adult       No
## 763    3rd   Male Adult       No
## 764    3rd   Male Adult       No
## 765    3rd   Male Adult       No
## 766    3rd   Male Adult       No
## 767    3rd   Male Adult       No
## 768    3rd   Male Adult       No
## 769    3rd   Male Adult       No
## 770    3rd   Male Adult       No
## 771    3rd   Male Adult       No
## 772    3rd   Male Adult       No
## 773    3rd   Male Adult       No
## 774    3rd   Male Adult       No
## 775    3rd   Male Adult       No
## 776    3rd   Male Adult       No
## 777    3rd   Male Adult       No
## 778    3rd   Male Adult       No
## 779    3rd   Male Adult       No
## 780    3rd   Male Adult       No
## 781    3rd   Male Adult       No
## 782    3rd   Male Adult       No
## 783    3rd   Male Adult       No
## 784    3rd   Male Adult       No
## 785    3rd   Male Adult       No
## 786    3rd   Male Adult       No
## 787    3rd   Male Adult       No
## 788    3rd   Male Adult       No
## 789    3rd   Male Adult       No
## 790    3rd   Male Adult       No
## 791    3rd   Male Adult       No
## 792    3rd   Male Adult       No
## 793    3rd   Male Adult       No
## 794    3rd   Male Adult       No
## 795    3rd   Male Adult       No
## 796    3rd   Male Adult       No
## 797    3rd   Male Adult       No
## 798    3rd   Male Adult       No
## 799    3rd   Male Adult       No
## 800    3rd   Male Adult       No
## 801    3rd   Male Adult       No
## 802    3rd   Male Adult       No
## 803    3rd   Male Adult       No
## 804    3rd   Male Adult       No
## 805    3rd   Male Adult       No
## 806    3rd   Male Adult       No
## 807    3rd   Male Adult       No
## 808    3rd   Male Adult       No
## 809    3rd   Male Adult       No
## 810    3rd   Male Adult       No
## 811    3rd   Male Adult       No
## 812    3rd   Male Adult       No
## 813    3rd   Male Adult       No
## 814    3rd   Male Adult       No
## 815    3rd   Male Adult       No
## 816    3rd   Male Adult       No
## 817    3rd   Male Adult       No
## 818    3rd   Male Adult       No
## 819    3rd   Male Adult       No
## 820    3rd   Male Adult       No
## 821    3rd   Male Adult       No
## 822    3rd   Male Adult       No
## 823    3rd   Male Adult       No
## 824    3rd   Male Adult       No
## 825    3rd   Male Adult       No
## 826    3rd   Male Adult       No
## 827    3rd   Male Adult       No
## 828    3rd   Male Adult       No
## 829    3rd   Male Adult       No
## 830    3rd   Male Adult       No
## 831    3rd   Male Adult       No
## 832    3rd   Male Adult       No
## 833    3rd   Male Adult       No
## 834    3rd   Male Adult       No
## 835    3rd   Male Adult       No
## 836    3rd   Male Adult       No
## 837    3rd   Male Adult       No
## 838    3rd   Male Adult       No
## 839    3rd   Male Adult       No
## 840    3rd   Male Adult       No
## 841    3rd   Male Adult       No
## 842    3rd   Male Adult       No
## 843    3rd   Male Adult       No
## 844    3rd   Male Adult       No
## 845    3rd   Male Adult       No
## 846    3rd   Male Adult       No
## 847    3rd   Male Adult       No
## 848    3rd   Male Adult       No
## 849    3rd   Male Adult       No
## 850    3rd   Male Adult       No
## 851    3rd   Male Adult       No
## 852    3rd   Male Adult       No
## 853    3rd   Male Adult       No
## 854    3rd   Male Adult       No
## 855    3rd   Male Adult       No
## 856    3rd   Male Adult       No
## 857    3rd   Male Adult       No
## 858    3rd   Male Adult       No
## 859    3rd   Male Adult       No
## 860    3rd   Male Adult       No
## 861    3rd   Male Adult       No
## 862    3rd   Male Adult       No
## 863    3rd   Male Adult       No
## 864    3rd   Male Adult       No
## 865    3rd   Male Adult       No
## 866    3rd   Male Adult       No
## 867    3rd   Male Adult       No
## 868    3rd   Male Adult       No
## 869    3rd   Male Adult       No
## 870    3rd   Male Adult       No
## 871    3rd   Male Adult       No
## 872    3rd   Male Adult       No
## 873    3rd   Male Adult       No
## 874    3rd   Male Adult       No
## 875    3rd   Male Adult       No
## 876    3rd   Male Adult       No
## 877    3rd   Male Adult       No
## 878    3rd   Male Adult       No
## 879    3rd   Male Adult       No
## 880    3rd   Male Adult       No
## 881    3rd   Male Adult       No
## 882    3rd   Male Adult       No
## 883    3rd   Male Adult       No
## 884    3rd   Male Adult       No
## 885    3rd   Male Adult       No
## 886    3rd   Male Adult       No
## 887    3rd   Male Adult       No
## 888    3rd   Male Adult       No
## 889    3rd   Male Adult       No
## 890    3rd   Male Adult       No
## 891    3rd   Male Adult       No
## 892    3rd   Male Adult       No
## 893    3rd   Male Adult       No
## 894    3rd   Male Adult       No
## 895    3rd   Male Adult       No
## 896    3rd   Male Adult       No
## 897    3rd   Male Adult       No
## 898    3rd   Male Adult       No
## 899    3rd   Male Adult       No
## 900    3rd   Male Adult       No
## 901    3rd   Male Adult       No
## 902    3rd   Male Adult       No
## 903    3rd   Male Adult       No
## 904    3rd   Male Adult       No
## 905    3rd   Male Adult       No
## 906    3rd   Male Adult       No
## 907    3rd   Male Adult       No
## 908    3rd   Male Adult       No
## 909    3rd   Male Adult       No
## 910    3rd   Male Adult       No
## 911    3rd   Male Adult       No
## 912    3rd   Male Adult       No
## 913    3rd   Male Adult       No
## 914    3rd   Male Adult       No
## 915    3rd   Male Adult       No
## 916    3rd   Male Adult       No
## 917    3rd   Male Adult       No
## 918    3rd   Male Adult       No
## 919    3rd   Male Adult       No
## 920    3rd   Male Adult       No
## 921    3rd   Male Adult       No
## 922    3rd   Male Adult       No
## 923    3rd   Male Adult       No
## 924    3rd   Male Adult       No
## 925    3rd   Male Adult       No
## 926    3rd   Male Adult       No
## 927    3rd   Male Adult       No
## 928    3rd   Male Adult       No
## 929    3rd   Male Adult       No
## 930    3rd   Male Adult       No
## 931    3rd   Male Adult       No
## 932    3rd   Male Adult       No
## 933    3rd   Male Adult       No
## 934    3rd   Male Adult       No
## 935    3rd   Male Adult       No
## 936    3rd   Male Adult       No
## 937    3rd   Male Adult       No
## 938    3rd   Male Adult       No
## 939    3rd   Male Adult       No
## 940    3rd   Male Adult       No
## 941    3rd   Male Adult       No
## 942    3rd   Male Adult       No
## 943    3rd   Male Adult       No
## 944    3rd   Male Adult       No
## 945    3rd   Male Adult       No
## 946    3rd   Male Adult       No
## 947    3rd   Male Adult       No
## 948    3rd   Male Adult       No
## 949    3rd   Male Adult       No
## 950    3rd   Male Adult       No
## 951    3rd   Male Adult       No
## 952    3rd   Male Adult       No
## 953    3rd   Male Adult       No
## 954    3rd   Male Adult       No
## 955    3rd   Male Adult       No
## 956    3rd   Male Adult       No
## 957    3rd   Male Adult       No
## 958    3rd   Male Adult       No
## 959    3rd   Male Adult       No
## 960    3rd   Male Adult       No
## 961    3rd   Male Adult       No
## 962    3rd   Male Adult       No
## 963    3rd   Male Adult       No
## 964    3rd   Male Adult       No
## 965    3rd   Male Adult       No
## 966    3rd   Male Adult       No
## 967    3rd   Male Adult       No
## 968    3rd   Male Adult       No
## 969    3rd   Male Adult       No
## 970    3rd   Male Adult       No
## 971    3rd   Male Adult       No
## 972    3rd   Male Adult       No
## 973    3rd   Male Adult       No
## 974    3rd   Male Adult       No
## 975    3rd   Male Adult       No
## 976    3rd   Male Adult       No
## 977    3rd   Male Adult       No
## 978    3rd   Male Adult       No
## 979    3rd   Male Adult       No
## 980    3rd   Male Adult       No
## 981    3rd   Male Adult       No
## 982    3rd   Male Adult       No
## 983    3rd   Male Adult       No
## 984    3rd   Male Adult       No
## 985    3rd   Male Adult       No
## 986    3rd   Male Adult       No
## 987    3rd   Male Adult       No
## 988    3rd   Male Adult       No
## 989    3rd   Male Adult       No
## 990    3rd   Male Adult       No
## 991    3rd   Male Adult       No
## 992    3rd   Male Adult       No
## 993    3rd   Male Adult       No
## 994    3rd   Male Adult       No
## 995    3rd   Male Adult       No
## 996    3rd   Male Adult       No
## 997    3rd   Male Adult       No
## 998    3rd   Male Adult       No
## 999    3rd   Male Adult       No
## 1000   3rd   Male Adult       No
## 1001   3rd   Male Adult       No
## 1002   3rd   Male Adult       No
## 1003   3rd   Male Adult       No
## 1004   3rd   Male Adult       No
## 1005   3rd   Male Adult       No
## 1006   3rd   Male Adult       No
## 1007   3rd   Male Adult       No
## 1008   3rd   Male Adult       No
## 1009   3rd   Male Adult       No
## 1010   3rd   Male Adult       No
## 1011   3rd   Male Adult       No
## 1012   3rd   Male Adult       No
## 1013   3rd   Male Adult       No
## 1014   3rd   Male Adult       No
## 1015   3rd   Male Adult       No
## 1016   3rd   Male Adult       No
## 1017   3rd   Male Adult       No
## 1018   3rd   Male Adult       No
## 1019   3rd   Male Adult       No
## 1020   3rd   Male Adult       No
## 1021   3rd   Male Adult       No
## 1022   3rd   Male Adult       No
## 1023   3rd   Male Adult       No
## 1024   3rd   Male Adult       No
## 1025   3rd   Male Adult       No
## 1026   3rd   Male Adult       No
## 1027   3rd   Male Adult       No
## 1028   3rd   Male Adult       No
## 1029   3rd   Male Adult       No
## 1030   3rd   Male Adult       No
## 1031   3rd   Male Adult       No
## 1032   3rd   Male Adult       No
## 1033   3rd   Male Adult       No
## 1034   3rd   Male Adult       No
## 1035   3rd   Male Adult       No
## 1036   3rd   Male Adult       No
## 1037   3rd   Male Adult       No
## 1038   3rd   Male Adult       No
## 1039   3rd   Male Adult       No
## 1040   3rd   Male Adult       No
## 1041   3rd   Male Adult       No
## 1042   3rd   Male Adult       No
## 1043   3rd   Male Adult       No
## 1044   3rd   Male Adult       No
## 1045   3rd   Male Adult       No
## 1046   3rd   Male Adult      Yes
## 1047   3rd   Male Adult      Yes
## 1048   3rd   Male Adult      Yes
## 1049   3rd   Male Adult      Yes
## 1050   3rd   Male Adult      Yes
## 1051   3rd   Male Adult      Yes
## 1052   3rd   Male Adult      Yes
## 1053   3rd   Male Adult      Yes
## 1054   3rd   Male Adult      Yes
## 1055   3rd   Male Adult      Yes
## 1056   3rd   Male Adult      Yes
## 1057   3rd   Male Adult      Yes
## 1058   3rd   Male Adult      Yes
## 1059   3rd   Male Adult      Yes
## 1060   3rd   Male Adult      Yes
## 1061   3rd   Male Adult      Yes
## 1062   3rd   Male Adult      Yes
## 1063   3rd   Male Adult      Yes
## 1064   3rd   Male Adult      Yes
## 1065   3rd   Male Adult      Yes
## 1066   3rd   Male Adult      Yes
## 1067   3rd   Male Adult      Yes
## 1068   3rd   Male Adult      Yes
## 1069   3rd   Male Adult      Yes
## 1070   3rd   Male Adult      Yes
## 1071   3rd   Male Adult      Yes
## 1072   3rd   Male Adult      Yes
## 1073   3rd   Male Adult      Yes
## 1074   3rd   Male Adult      Yes
## 1075   3rd   Male Adult      Yes
## 1076   3rd   Male Adult      Yes
## 1077   3rd   Male Adult      Yes
## 1078   3rd   Male Adult      Yes
## 1079   3rd   Male Adult      Yes
## 1080   3rd   Male Adult      Yes
## 1081   3rd   Male Adult      Yes
## 1082   3rd   Male Adult      Yes
## 1083   3rd   Male Adult      Yes
## 1084   3rd   Male Adult      Yes
## 1085   3rd   Male Adult      Yes
## 1086   3rd   Male Adult      Yes
## 1087   3rd   Male Adult      Yes
## 1088   3rd   Male Adult      Yes
## 1089   3rd   Male Adult      Yes
## 1090   3rd   Male Adult      Yes
## 1091   3rd   Male Adult      Yes
## 1092   3rd   Male Adult      Yes
## 1093   3rd   Male Adult      Yes
## 1094   3rd   Male Adult      Yes
## 1095   3rd   Male Adult      Yes
## 1096   3rd   Male Adult      Yes
## 1097   3rd   Male Adult      Yes
## 1098   3rd   Male Adult      Yes
## 1099   3rd   Male Adult      Yes
## 1100   3rd   Male Adult      Yes
## 1101   3rd   Male Adult      Yes
## 1102   3rd   Male Adult      Yes
## 1103   3rd   Male Adult      Yes
## 1104   3rd   Male Adult      Yes
## 1105   3rd   Male Adult      Yes
## 1106   3rd   Male Adult      Yes
## 1107   3rd   Male Adult      Yes
## 1108   3rd   Male Adult      Yes
## 1109   3rd   Male Adult      Yes
## 1110   3rd   Male Adult      Yes
## 1111   3rd   Male Adult      Yes
## 1112   3rd   Male Adult      Yes
## 1113   3rd   Male Adult      Yes
## 1114   3rd   Male Adult      Yes
## 1115   3rd   Male Adult      Yes
## 1116   3rd   Male Adult      Yes
## 1117   3rd   Male Adult      Yes
## 1118   3rd   Male Adult      Yes
## 1119   3rd   Male Adult      Yes
## 1120   3rd   Male Adult      Yes
## 1121   3rd Female Child       No
## 1122   3rd Female Child       No
## 1123   3rd Female Child       No
## 1124   3rd Female Child       No
## 1125   3rd Female Child       No
## 1126   3rd Female Child       No
## 1127   3rd Female Child       No
## 1128   3rd Female Child       No
## 1129   3rd Female Child       No
## 1130   3rd Female Child       No
## 1131   3rd Female Child       No
## 1132   3rd Female Child       No
## 1133   3rd Female Child       No
## 1134   3rd Female Child       No
## 1135   3rd Female Child       No
## 1136   3rd Female Child       No
## 1137   3rd Female Child       No
## 1138   3rd Female Child      Yes
## 1139   3rd Female Child      Yes
## 1140   3rd Female Child      Yes
## 1141   3rd Female Child      Yes
## 1142   3rd Female Child      Yes
## 1143   3rd Female Child      Yes
## 1144   3rd Female Child      Yes
## 1145   3rd Female Child      Yes
## 1146   3rd Female Child      Yes
## 1147   3rd Female Child      Yes
## 1148   3rd Female Child      Yes
## 1149   3rd Female Child      Yes
## 1150   3rd Female Child      Yes
## 1151   3rd Female Child      Yes
## 1152   3rd Female Adult       No
## 1153   3rd Female Adult       No
## 1154   3rd Female Adult       No
## 1155   3rd Female Adult       No
## 1156   3rd Female Adult       No
## 1157   3rd Female Adult       No
## 1158   3rd Female Adult       No
## 1159   3rd Female Adult       No
## 1160   3rd Female Adult       No
## 1161   3rd Female Adult       No
## 1162   3rd Female Adult       No
## 1163   3rd Female Adult       No
## 1164   3rd Female Adult       No
## 1165   3rd Female Adult       No
## 1166   3rd Female Adult       No
## 1167   3rd Female Adult       No
## 1168   3rd Female Adult       No
## 1169   3rd Female Adult       No
## 1170   3rd Female Adult       No
## 1171   3rd Female Adult       No
## 1172   3rd Female Adult       No
## 1173   3rd Female Adult       No
## 1174   3rd Female Adult       No
## 1175   3rd Female Adult       No
## 1176   3rd Female Adult       No
## 1177   3rd Female Adult       No
## 1178   3rd Female Adult       No
## 1179   3rd Female Adult       No
## 1180   3rd Female Adult       No
## 1181   3rd Female Adult       No
## 1182   3rd Female Adult       No
## 1183   3rd Female Adult       No
## 1184   3rd Female Adult       No
## 1185   3rd Female Adult       No
## 1186   3rd Female Adult       No
## 1187   3rd Female Adult       No
## 1188   3rd Female Adult       No
## 1189   3rd Female Adult       No
## 1190   3rd Female Adult       No
## 1191   3rd Female Adult       No
## 1192   3rd Female Adult       No
## 1193   3rd Female Adult       No
## 1194   3rd Female Adult       No
## 1195   3rd Female Adult       No
## 1196   3rd Female Adult       No
## 1197   3rd Female Adult       No
## 1198   3rd Female Adult       No
## 1199   3rd Female Adult       No
## 1200   3rd Female Adult       No
## 1201   3rd Female Adult       No
## 1202   3rd Female Adult       No
## 1203   3rd Female Adult       No
## 1204   3rd Female Adult       No
## 1205   3rd Female Adult       No
## 1206   3rd Female Adult       No
## 1207   3rd Female Adult       No
## 1208   3rd Female Adult       No
## 1209   3rd Female Adult       No
## 1210   3rd Female Adult       No
## 1211   3rd Female Adult       No
## 1212   3rd Female Adult       No
## 1213   3rd Female Adult       No
## 1214   3rd Female Adult       No
## 1215   3rd Female Adult       No
## 1216   3rd Female Adult       No
## 1217   3rd Female Adult       No
## 1218   3rd Female Adult       No
## 1219   3rd Female Adult       No
## 1220   3rd Female Adult       No
## 1221   3rd Female Adult       No
## 1222   3rd Female Adult       No
## 1223   3rd Female Adult       No
## 1224   3rd Female Adult       No
## 1225   3rd Female Adult       No
## 1226   3rd Female Adult       No
## 1227   3rd Female Adult       No
## 1228   3rd Female Adult       No
## 1229   3rd Female Adult       No
## 1230   3rd Female Adult       No
## 1231   3rd Female Adult       No
## 1232   3rd Female Adult       No
## 1233   3rd Female Adult       No
## 1234   3rd Female Adult       No
## 1235   3rd Female Adult       No
## 1236   3rd Female Adult       No
## 1237   3rd Female Adult       No
## 1238   3rd Female Adult       No
## 1239   3rd Female Adult       No
## 1240   3rd Female Adult       No
## 1241   3rd Female Adult      Yes
## 1242   3rd Female Adult      Yes
## 1243   3rd Female Adult      Yes
## 1244   3rd Female Adult      Yes
## 1245   3rd Female Adult      Yes
## 1246   3rd Female Adult      Yes
## 1247   3rd Female Adult      Yes
## 1248   3rd Female Adult      Yes
## 1249   3rd Female Adult      Yes
## 1250   3rd Female Adult      Yes
## 1251   3rd Female Adult      Yes
## 1252   3rd Female Adult      Yes
## 1253   3rd Female Adult      Yes
## 1254   3rd Female Adult      Yes
## 1255   3rd Female Adult      Yes
## 1256   3rd Female Adult      Yes
## 1257   3rd Female Adult      Yes
## 1258   3rd Female Adult      Yes
## 1259   3rd Female Adult      Yes
## 1260   3rd Female Adult      Yes
## 1261   3rd Female Adult      Yes
## 1262   3rd Female Adult      Yes
## 1263   3rd Female Adult      Yes
## 1264   3rd Female Adult      Yes
## 1265   3rd Female Adult      Yes
## 1266   3rd Female Adult      Yes
## 1267   3rd Female Adult      Yes
## 1268   3rd Female Adult      Yes
## 1269   3rd Female Adult      Yes
## 1270   3rd Female Adult      Yes
## 1271   3rd Female Adult      Yes
## 1272   3rd Female Adult      Yes
## 1273   3rd Female Adult      Yes
## 1274   3rd Female Adult      Yes
## 1275   3rd Female Adult      Yes
## 1276   3rd Female Adult      Yes
## 1277   3rd Female Adult      Yes
## 1278   3rd Female Adult      Yes
## 1279   3rd Female Adult      Yes
## 1280   3rd Female Adult      Yes
## 1281   3rd Female Adult      Yes
## 1282   3rd Female Adult      Yes
## 1283   3rd Female Adult      Yes
## 1284   3rd Female Adult      Yes
## 1285   3rd Female Adult      Yes
## 1286   3rd Female Adult      Yes
## 1287   3rd Female Adult      Yes
## 1288   3rd Female Adult      Yes
## 1289   3rd Female Adult      Yes
## 1290   3rd Female Adult      Yes
## 1291   3rd Female Adult      Yes
## 1292   3rd Female Adult      Yes
## 1293   3rd Female Adult      Yes
## 1294   3rd Female Adult      Yes
## 1295   3rd Female Adult      Yes
## 1296   3rd Female Adult      Yes
## 1297   3rd Female Adult      Yes
## 1298   3rd Female Adult      Yes
## 1299   3rd Female Adult      Yes
## 1300   3rd Female Adult      Yes
## 1301   3rd Female Adult      Yes
## 1302   3rd Female Adult      Yes
## 1303   3rd Female Adult      Yes
## 1304   3rd Female Adult      Yes
## 1305   3rd Female Adult      Yes
## 1306   3rd Female Adult      Yes
## 1307   3rd Female Adult      Yes
## 1308   3rd Female Adult      Yes
## 1309   3rd Female Adult      Yes
## 1310   3rd Female Adult      Yes
## 1311   3rd Female Adult      Yes
## 1312   3rd Female Adult      Yes
## 1313   3rd Female Adult      Yes
## 1314   3rd Female Adult      Yes
## 1315   3rd Female Adult      Yes
## 1316   3rd Female Adult      Yes
## 1317  Crew   Male Adult       No
## 1318  Crew   Male Adult       No
## 1319  Crew   Male Adult       No
## 1320  Crew   Male Adult       No
## 1321  Crew   Male Adult       No
## 1322  Crew   Male Adult       No
## 1323  Crew   Male Adult       No
## 1324  Crew   Male Adult       No
## 1325  Crew   Male Adult       No
## 1326  Crew   Male Adult       No
## 1327  Crew   Male Adult       No
## 1328  Crew   Male Adult       No
## 1329  Crew   Male Adult       No
## 1330  Crew   Male Adult       No
## 1331  Crew   Male Adult       No
## 1332  Crew   Male Adult       No
## 1333  Crew   Male Adult       No
## 1334  Crew   Male Adult       No
## 1335  Crew   Male Adult       No
## 1336  Crew   Male Adult       No
## 1337  Crew   Male Adult       No
## 1338  Crew   Male Adult       No
## 1339  Crew   Male Adult       No
## 1340  Crew   Male Adult       No
## 1341  Crew   Male Adult       No
## 1342  Crew   Male Adult       No
## 1343  Crew   Male Adult       No
## 1344  Crew   Male Adult       No
## 1345  Crew   Male Adult       No
## 1346  Crew   Male Adult       No
## 1347  Crew   Male Adult       No
## 1348  Crew   Male Adult       No
## 1349  Crew   Male Adult       No
## 1350  Crew   Male Adult       No
## 1351  Crew   Male Adult       No
## 1352  Crew   Male Adult       No
## 1353  Crew   Male Adult       No
## 1354  Crew   Male Adult       No
## 1355  Crew   Male Adult       No
## 1356  Crew   Male Adult       No
## 1357  Crew   Male Adult       No
## 1358  Crew   Male Adult       No
## 1359  Crew   Male Adult       No
## 1360  Crew   Male Adult       No
## 1361  Crew   Male Adult       No
## 1362  Crew   Male Adult       No
## 1363  Crew   Male Adult       No
## 1364  Crew   Male Adult       No
## 1365  Crew   Male Adult       No
## 1366  Crew   Male Adult       No
## 1367  Crew   Male Adult       No
## 1368  Crew   Male Adult       No
## 1369  Crew   Male Adult       No
## 1370  Crew   Male Adult       No
## 1371  Crew   Male Adult       No
## 1372  Crew   Male Adult       No
## 1373  Crew   Male Adult       No
## 1374  Crew   Male Adult       No
## 1375  Crew   Male Adult       No
## 1376  Crew   Male Adult       No
## 1377  Crew   Male Adult       No
## 1378  Crew   Male Adult       No
## 1379  Crew   Male Adult       No
## 1380  Crew   Male Adult       No
## 1381  Crew   Male Adult       No
## 1382  Crew   Male Adult       No
## 1383  Crew   Male Adult       No
## 1384  Crew   Male Adult       No
## 1385  Crew   Male Adult       No
## 1386  Crew   Male Adult       No
## 1387  Crew   Male Adult       No
## 1388  Crew   Male Adult       No
## 1389  Crew   Male Adult       No
## 1390  Crew   Male Adult       No
## 1391  Crew   Male Adult       No
## 1392  Crew   Male Adult       No
## 1393  Crew   Male Adult       No
## 1394  Crew   Male Adult       No
## 1395  Crew   Male Adult       No
## 1396  Crew   Male Adult       No
## 1397  Crew   Male Adult       No
## 1398  Crew   Male Adult       No
## 1399  Crew   Male Adult       No
## 1400  Crew   Male Adult       No
## 1401  Crew   Male Adult       No
## 1402  Crew   Male Adult       No
## 1403  Crew   Male Adult       No
## 1404  Crew   Male Adult       No
## 1405  Crew   Male Adult       No
## 1406  Crew   Male Adult       No
## 1407  Crew   Male Adult       No
## 1408  Crew   Male Adult       No
## 1409  Crew   Male Adult       No
## 1410  Crew   Male Adult       No
## 1411  Crew   Male Adult       No
## 1412  Crew   Male Adult       No
## 1413  Crew   Male Adult       No
## 1414  Crew   Male Adult       No
## 1415  Crew   Male Adult       No
## 1416  Crew   Male Adult       No
## 1417  Crew   Male Adult       No
## 1418  Crew   Male Adult       No
## 1419  Crew   Male Adult       No
## 1420  Crew   Male Adult       No
## 1421  Crew   Male Adult       No
## 1422  Crew   Male Adult       No
## 1423  Crew   Male Adult       No
## 1424  Crew   Male Adult       No
## 1425  Crew   Male Adult       No
## 1426  Crew   Male Adult       No
## 1427  Crew   Male Adult       No
## 1428  Crew   Male Adult       No
## 1429  Crew   Male Adult       No
## 1430  Crew   Male Adult       No
## 1431  Crew   Male Adult       No
## 1432  Crew   Male Adult       No
## 1433  Crew   Male Adult       No
## 1434  Crew   Male Adult       No
## 1435  Crew   Male Adult       No
## 1436  Crew   Male Adult       No
## 1437  Crew   Male Adult       No
## 1438  Crew   Male Adult       No
## 1439  Crew   Male Adult       No
## 1440  Crew   Male Adult       No
## 1441  Crew   Male Adult       No
## 1442  Crew   Male Adult       No
## 1443  Crew   Male Adult       No
## 1444  Crew   Male Adult       No
## 1445  Crew   Male Adult       No
## 1446  Crew   Male Adult       No
## 1447  Crew   Male Adult       No
## 1448  Crew   Male Adult       No
## 1449  Crew   Male Adult       No
## 1450  Crew   Male Adult       No
## 1451  Crew   Male Adult       No
## 1452  Crew   Male Adult       No
## 1453  Crew   Male Adult       No
## 1454  Crew   Male Adult       No
## 1455  Crew   Male Adult       No
## 1456  Crew   Male Adult       No
## 1457  Crew   Male Adult       No
## 1458  Crew   Male Adult       No
## 1459  Crew   Male Adult       No
## 1460  Crew   Male Adult       No
## 1461  Crew   Male Adult       No
## 1462  Crew   Male Adult       No
## 1463  Crew   Male Adult       No
## 1464  Crew   Male Adult       No
## 1465  Crew   Male Adult       No
## 1466  Crew   Male Adult       No
## 1467  Crew   Male Adult       No
## 1468  Crew   Male Adult       No
## 1469  Crew   Male Adult       No
## 1470  Crew   Male Adult       No
## 1471  Crew   Male Adult       No
## 1472  Crew   Male Adult       No
## 1473  Crew   Male Adult       No
## 1474  Crew   Male Adult       No
## 1475  Crew   Male Adult       No
## 1476  Crew   Male Adult       No
## 1477  Crew   Male Adult       No
## 1478  Crew   Male Adult       No
## 1479  Crew   Male Adult       No
## 1480  Crew   Male Adult       No
## 1481  Crew   Male Adult       No
## 1482  Crew   Male Adult       No
## 1483  Crew   Male Adult       No
## 1484  Crew   Male Adult       No
## 1485  Crew   Male Adult       No
## 1486  Crew   Male Adult       No
## 1487  Crew   Male Adult       No
## 1488  Crew   Male Adult       No
## 1489  Crew   Male Adult       No
## 1490  Crew   Male Adult       No
## 1491  Crew   Male Adult       No
## 1492  Crew   Male Adult       No
## 1493  Crew   Male Adult       No
## 1494  Crew   Male Adult       No
## 1495  Crew   Male Adult       No
## 1496  Crew   Male Adult       No
## 1497  Crew   Male Adult       No
## 1498  Crew   Male Adult       No
## 1499  Crew   Male Adult       No
## 1500  Crew   Male Adult       No
## 1501  Crew   Male Adult       No
## 1502  Crew   Male Adult       No
## 1503  Crew   Male Adult       No
## 1504  Crew   Male Adult       No
## 1505  Crew   Male Adult       No
## 1506  Crew   Male Adult       No
## 1507  Crew   Male Adult       No
## 1508  Crew   Male Adult       No
## 1509  Crew   Male Adult       No
## 1510  Crew   Male Adult       No
## 1511  Crew   Male Adult       No
## 1512  Crew   Male Adult       No
## 1513  Crew   Male Adult       No
## 1514  Crew   Male Adult       No
## 1515  Crew   Male Adult       No
## 1516  Crew   Male Adult       No
## 1517  Crew   Male Adult       No
## 1518  Crew   Male Adult       No
## 1519  Crew   Male Adult       No
## 1520  Crew   Male Adult       No
## 1521  Crew   Male Adult       No
## 1522  Crew   Male Adult       No
## 1523  Crew   Male Adult       No
## 1524  Crew   Male Adult       No
## 1525  Crew   Male Adult       No
## 1526  Crew   Male Adult       No
## 1527  Crew   Male Adult       No
## 1528  Crew   Male Adult       No
## 1529  Crew   Male Adult       No
## 1530  Crew   Male Adult       No
## 1531  Crew   Male Adult       No
## 1532  Crew   Male Adult       No
## 1533  Crew   Male Adult       No
## 1534  Crew   Male Adult       No
## 1535  Crew   Male Adult       No
## 1536  Crew   Male Adult       No
## 1537  Crew   Male Adult       No
## 1538  Crew   Male Adult       No
## 1539  Crew   Male Adult       No
## 1540  Crew   Male Adult       No
## 1541  Crew   Male Adult       No
## 1542  Crew   Male Adult       No
## 1543  Crew   Male Adult       No
## 1544  Crew   Male Adult       No
## 1545  Crew   Male Adult       No
## 1546  Crew   Male Adult       No
## 1547  Crew   Male Adult       No
## 1548  Crew   Male Adult       No
## 1549  Crew   Male Adult       No
## 1550  Crew   Male Adult       No
## 1551  Crew   Male Adult       No
## 1552  Crew   Male Adult       No
## 1553  Crew   Male Adult       No
## 1554  Crew   Male Adult       No
## 1555  Crew   Male Adult       No
## 1556  Crew   Male Adult       No
## 1557  Crew   Male Adult       No
## 1558  Crew   Male Adult       No
## 1559  Crew   Male Adult       No
## 1560  Crew   Male Adult       No
## 1561  Crew   Male Adult       No
## 1562  Crew   Male Adult       No
## 1563  Crew   Male Adult       No
## 1564  Crew   Male Adult       No
## 1565  Crew   Male Adult       No
## 1566  Crew   Male Adult       No
## 1567  Crew   Male Adult       No
## 1568  Crew   Male Adult       No
## 1569  Crew   Male Adult       No
## 1570  Crew   Male Adult       No
## 1571  Crew   Male Adult       No
## 1572  Crew   Male Adult       No
## 1573  Crew   Male Adult       No
## 1574  Crew   Male Adult       No
## 1575  Crew   Male Adult       No
## 1576  Crew   Male Adult       No
## 1577  Crew   Male Adult       No
## 1578  Crew   Male Adult       No
## 1579  Crew   Male Adult       No
## 1580  Crew   Male Adult       No
## 1581  Crew   Male Adult       No
## 1582  Crew   Male Adult       No
## 1583  Crew   Male Adult       No
## 1584  Crew   Male Adult       No
## 1585  Crew   Male Adult       No
## 1586  Crew   Male Adult       No
## 1587  Crew   Male Adult       No
## 1588  Crew   Male Adult       No
## 1589  Crew   Male Adult       No
## 1590  Crew   Male Adult       No
## 1591  Crew   Male Adult       No
## 1592  Crew   Male Adult       No
## 1593  Crew   Male Adult       No
## 1594  Crew   Male Adult       No
## 1595  Crew   Male Adult       No
## 1596  Crew   Male Adult       No
## 1597  Crew   Male Adult       No
## 1598  Crew   Male Adult       No
## 1599  Crew   Male Adult       No
## 1600  Crew   Male Adult       No
## 1601  Crew   Male Adult       No
## 1602  Crew   Male Adult       No
## 1603  Crew   Male Adult       No
## 1604  Crew   Male Adult       No
## 1605  Crew   Male Adult       No
## 1606  Crew   Male Adult       No
## 1607  Crew   Male Adult       No
## 1608  Crew   Male Adult       No
## 1609  Crew   Male Adult       No
## 1610  Crew   Male Adult       No
## 1611  Crew   Male Adult       No
## 1612  Crew   Male Adult       No
## 1613  Crew   Male Adult       No
## 1614  Crew   Male Adult       No
## 1615  Crew   Male Adult       No
## 1616  Crew   Male Adult       No
## 1617  Crew   Male Adult       No
## 1618  Crew   Male Adult       No
## 1619  Crew   Male Adult       No
## 1620  Crew   Male Adult       No
## 1621  Crew   Male Adult       No
## 1622  Crew   Male Adult       No
## 1623  Crew   Male Adult       No
## 1624  Crew   Male Adult       No
## 1625  Crew   Male Adult       No
## 1626  Crew   Male Adult       No
## 1627  Crew   Male Adult       No
## 1628  Crew   Male Adult       No
## 1629  Crew   Male Adult       No
## 1630  Crew   Male Adult       No
## 1631  Crew   Male Adult       No
## 1632  Crew   Male Adult       No
## 1633  Crew   Male Adult       No
## 1634  Crew   Male Adult       No
## 1635  Crew   Male Adult       No
## 1636  Crew   Male Adult       No
## 1637  Crew   Male Adult       No
## 1638  Crew   Male Adult       No
## 1639  Crew   Male Adult       No
## 1640  Crew   Male Adult       No
## 1641  Crew   Male Adult       No
## 1642  Crew   Male Adult       No
## 1643  Crew   Male Adult       No
## 1644  Crew   Male Adult       No
## 1645  Crew   Male Adult       No
## 1646  Crew   Male Adult       No
## 1647  Crew   Male Adult       No
## 1648  Crew   Male Adult       No
## 1649  Crew   Male Adult       No
## 1650  Crew   Male Adult       No
## 1651  Crew   Male Adult       No
## 1652  Crew   Male Adult       No
## 1653  Crew   Male Adult       No
## 1654  Crew   Male Adult       No
## 1655  Crew   Male Adult       No
## 1656  Crew   Male Adult       No
## 1657  Crew   Male Adult       No
## 1658  Crew   Male Adult       No
## 1659  Crew   Male Adult       No
## 1660  Crew   Male Adult       No
## 1661  Crew   Male Adult       No
## 1662  Crew   Male Adult       No
## 1663  Crew   Male Adult       No
## 1664  Crew   Male Adult       No
## 1665  Crew   Male Adult       No
## 1666  Crew   Male Adult       No
## 1667  Crew   Male Adult       No
## 1668  Crew   Male Adult       No
## 1669  Crew   Male Adult       No
## 1670  Crew   Male Adult       No
## 1671  Crew   Male Adult       No
## 1672  Crew   Male Adult       No
## 1673  Crew   Male Adult       No
## 1674  Crew   Male Adult       No
## 1675  Crew   Male Adult       No
## 1676  Crew   Male Adult       No
## 1677  Crew   Male Adult       No
## 1678  Crew   Male Adult       No
## 1679  Crew   Male Adult       No
## 1680  Crew   Male Adult       No
## 1681  Crew   Male Adult       No
## 1682  Crew   Male Adult       No
## 1683  Crew   Male Adult       No
## 1684  Crew   Male Adult       No
## 1685  Crew   Male Adult       No
## 1686  Crew   Male Adult       No
## 1687  Crew   Male Adult       No
## 1688  Crew   Male Adult       No
## 1689  Crew   Male Adult       No
## 1690  Crew   Male Adult       No
## 1691  Crew   Male Adult       No
## 1692  Crew   Male Adult       No
## 1693  Crew   Male Adult       No
## 1694  Crew   Male Adult       No
## 1695  Crew   Male Adult       No
## 1696  Crew   Male Adult       No
## 1697  Crew   Male Adult       No
## 1698  Crew   Male Adult       No
## 1699  Crew   Male Adult       No
## 1700  Crew   Male Adult       No
## 1701  Crew   Male Adult       No
## 1702  Crew   Male Adult       No
## 1703  Crew   Male Adult       No
## 1704  Crew   Male Adult       No
## 1705  Crew   Male Adult       No
## 1706  Crew   Male Adult       No
## 1707  Crew   Male Adult       No
## 1708  Crew   Male Adult       No
## 1709  Crew   Male Adult       No
## 1710  Crew   Male Adult       No
## 1711  Crew   Male Adult       No
## 1712  Crew   Male Adult       No
## 1713  Crew   Male Adult       No
## 1714  Crew   Male Adult       No
## 1715  Crew   Male Adult       No
## 1716  Crew   Male Adult       No
## 1717  Crew   Male Adult       No
## 1718  Crew   Male Adult       No
## 1719  Crew   Male Adult       No
## 1720  Crew   Male Adult       No
## 1721  Crew   Male Adult       No
## 1722  Crew   Male Adult       No
## 1723  Crew   Male Adult       No
## 1724  Crew   Male Adult       No
## 1725  Crew   Male Adult       No
## 1726  Crew   Male Adult       No
## 1727  Crew   Male Adult       No
## 1728  Crew   Male Adult       No
## 1729  Crew   Male Adult       No
## 1730  Crew   Male Adult       No
## 1731  Crew   Male Adult       No
## 1732  Crew   Male Adult       No
## 1733  Crew   Male Adult       No
## 1734  Crew   Male Adult       No
## 1735  Crew   Male Adult       No
## 1736  Crew   Male Adult       No
## 1737  Crew   Male Adult       No
## 1738  Crew   Male Adult       No
## 1739  Crew   Male Adult       No
## 1740  Crew   Male Adult       No
## 1741  Crew   Male Adult       No
## 1742  Crew   Male Adult       No
## 1743  Crew   Male Adult       No
## 1744  Crew   Male Adult       No
## 1745  Crew   Male Adult       No
## 1746  Crew   Male Adult       No
## 1747  Crew   Male Adult       No
## 1748  Crew   Male Adult       No
## 1749  Crew   Male Adult       No
## 1750  Crew   Male Adult       No
## 1751  Crew   Male Adult       No
## 1752  Crew   Male Adult       No
## 1753  Crew   Male Adult       No
## 1754  Crew   Male Adult       No
## 1755  Crew   Male Adult       No
## 1756  Crew   Male Adult       No
## 1757  Crew   Male Adult       No
## 1758  Crew   Male Adult       No
## 1759  Crew   Male Adult       No
## 1760  Crew   Male Adult       No
## 1761  Crew   Male Adult       No
## 1762  Crew   Male Adult       No
## 1763  Crew   Male Adult       No
## 1764  Crew   Male Adult       No
## 1765  Crew   Male Adult       No
## 1766  Crew   Male Adult       No
## 1767  Crew   Male Adult       No
## 1768  Crew   Male Adult       No
## 1769  Crew   Male Adult       No
## 1770  Crew   Male Adult       No
## 1771  Crew   Male Adult       No
## 1772  Crew   Male Adult       No
## 1773  Crew   Male Adult       No
## 1774  Crew   Male Adult       No
## 1775  Crew   Male Adult       No
## 1776  Crew   Male Adult       No
## 1777  Crew   Male Adult       No
## 1778  Crew   Male Adult       No
## 1779  Crew   Male Adult       No
## 1780  Crew   Male Adult       No
## 1781  Crew   Male Adult       No
## 1782  Crew   Male Adult       No
## 1783  Crew   Male Adult       No
## 1784  Crew   Male Adult       No
## 1785  Crew   Male Adult       No
## 1786  Crew   Male Adult       No
## 1787  Crew   Male Adult       No
## 1788  Crew   Male Adult       No
## 1789  Crew   Male Adult       No
## 1790  Crew   Male Adult       No
## 1791  Crew   Male Adult       No
## 1792  Crew   Male Adult       No
## 1793  Crew   Male Adult       No
## 1794  Crew   Male Adult       No
## 1795  Crew   Male Adult       No
## 1796  Crew   Male Adult       No
## 1797  Crew   Male Adult       No
## 1798  Crew   Male Adult       No
## 1799  Crew   Male Adult       No
## 1800  Crew   Male Adult       No
## 1801  Crew   Male Adult       No
## 1802  Crew   Male Adult       No
## 1803  Crew   Male Adult       No
## 1804  Crew   Male Adult       No
## 1805  Crew   Male Adult       No
## 1806  Crew   Male Adult       No
## 1807  Crew   Male Adult       No
## 1808  Crew   Male Adult       No
## 1809  Crew   Male Adult       No
## 1810  Crew   Male Adult       No
## 1811  Crew   Male Adult       No
## 1812  Crew   Male Adult       No
## 1813  Crew   Male Adult       No
## 1814  Crew   Male Adult       No
## 1815  Crew   Male Adult       No
## 1816  Crew   Male Adult       No
## 1817  Crew   Male Adult       No
## 1818  Crew   Male Adult       No
## 1819  Crew   Male Adult       No
## 1820  Crew   Male Adult       No
## 1821  Crew   Male Adult       No
## 1822  Crew   Male Adult       No
## 1823  Crew   Male Adult       No
## 1824  Crew   Male Adult       No
## 1825  Crew   Male Adult       No
## 1826  Crew   Male Adult       No
## 1827  Crew   Male Adult       No
## 1828  Crew   Male Adult       No
## 1829  Crew   Male Adult       No
## 1830  Crew   Male Adult       No
## 1831  Crew   Male Adult       No
## 1832  Crew   Male Adult       No
## 1833  Crew   Male Adult       No
## 1834  Crew   Male Adult       No
## 1835  Crew   Male Adult       No
## 1836  Crew   Male Adult       No
## 1837  Crew   Male Adult       No
## 1838  Crew   Male Adult       No
## 1839  Crew   Male Adult       No
## 1840  Crew   Male Adult       No
## 1841  Crew   Male Adult       No
## 1842  Crew   Male Adult       No
## 1843  Crew   Male Adult       No
## 1844  Crew   Male Adult       No
## 1845  Crew   Male Adult       No
## 1846  Crew   Male Adult       No
## 1847  Crew   Male Adult       No
## 1848  Crew   Male Adult       No
## 1849  Crew   Male Adult       No
## 1850  Crew   Male Adult       No
## 1851  Crew   Male Adult       No
## 1852  Crew   Male Adult       No
## 1853  Crew   Male Adult       No
## 1854  Crew   Male Adult       No
## 1855  Crew   Male Adult       No
## 1856  Crew   Male Adult       No
## 1857  Crew   Male Adult       No
## 1858  Crew   Male Adult       No
## 1859  Crew   Male Adult       No
## 1860  Crew   Male Adult       No
## 1861  Crew   Male Adult       No
## 1862  Crew   Male Adult       No
## 1863  Crew   Male Adult       No
## 1864  Crew   Male Adult       No
## 1865  Crew   Male Adult       No
## 1866  Crew   Male Adult       No
## 1867  Crew   Male Adult       No
## 1868  Crew   Male Adult       No
## 1869  Crew   Male Adult       No
## 1870  Crew   Male Adult       No
## 1871  Crew   Male Adult       No
## 1872  Crew   Male Adult       No
## 1873  Crew   Male Adult       No
## 1874  Crew   Male Adult       No
## 1875  Crew   Male Adult       No
## 1876  Crew   Male Adult       No
## 1877  Crew   Male Adult       No
## 1878  Crew   Male Adult       No
## 1879  Crew   Male Adult       No
## 1880  Crew   Male Adult       No
## 1881  Crew   Male Adult       No
## 1882  Crew   Male Adult       No
## 1883  Crew   Male Adult       No
## 1884  Crew   Male Adult       No
## 1885  Crew   Male Adult       No
## 1886  Crew   Male Adult       No
## 1887  Crew   Male Adult       No
## 1888  Crew   Male Adult       No
## 1889  Crew   Male Adult       No
## 1890  Crew   Male Adult       No
## 1891  Crew   Male Adult       No
## 1892  Crew   Male Adult       No
## 1893  Crew   Male Adult       No
## 1894  Crew   Male Adult       No
## 1895  Crew   Male Adult       No
## 1896  Crew   Male Adult       No
## 1897  Crew   Male Adult       No
## 1898  Crew   Male Adult       No
## 1899  Crew   Male Adult       No
## 1900  Crew   Male Adult       No
## 1901  Crew   Male Adult       No
## 1902  Crew   Male Adult       No
## 1903  Crew   Male Adult       No
## 1904  Crew   Male Adult       No
## 1905  Crew   Male Adult       No
## 1906  Crew   Male Adult       No
## 1907  Crew   Male Adult       No
## 1908  Crew   Male Adult       No
## 1909  Crew   Male Adult       No
## 1910  Crew   Male Adult       No
## 1911  Crew   Male Adult       No
## 1912  Crew   Male Adult       No
## 1913  Crew   Male Adult       No
## 1914  Crew   Male Adult       No
## 1915  Crew   Male Adult       No
## 1916  Crew   Male Adult       No
## 1917  Crew   Male Adult       No
## 1918  Crew   Male Adult       No
## 1919  Crew   Male Adult       No
## 1920  Crew   Male Adult       No
## 1921  Crew   Male Adult       No
## 1922  Crew   Male Adult       No
## 1923  Crew   Male Adult       No
## 1924  Crew   Male Adult       No
## 1925  Crew   Male Adult       No
## 1926  Crew   Male Adult       No
## 1927  Crew   Male Adult       No
## 1928  Crew   Male Adult       No
## 1929  Crew   Male Adult       No
## 1930  Crew   Male Adult       No
## 1931  Crew   Male Adult       No
## 1932  Crew   Male Adult       No
## 1933  Crew   Male Adult       No
## 1934  Crew   Male Adult       No
## 1935  Crew   Male Adult       No
## 1936  Crew   Male Adult       No
## 1937  Crew   Male Adult       No
## 1938  Crew   Male Adult       No
## 1939  Crew   Male Adult       No
## 1940  Crew   Male Adult       No
## 1941  Crew   Male Adult       No
## 1942  Crew   Male Adult       No
## 1943  Crew   Male Adult       No
## 1944  Crew   Male Adult       No
## 1945  Crew   Male Adult       No
## 1946  Crew   Male Adult       No
## 1947  Crew   Male Adult       No
## 1948  Crew   Male Adult       No
## 1949  Crew   Male Adult       No
## 1950  Crew   Male Adult       No
## 1951  Crew   Male Adult       No
## 1952  Crew   Male Adult       No
## 1953  Crew   Male Adult       No
## 1954  Crew   Male Adult       No
## 1955  Crew   Male Adult       No
## 1956  Crew   Male Adult       No
## 1957  Crew   Male Adult       No
## 1958  Crew   Male Adult       No
## 1959  Crew   Male Adult       No
## 1960  Crew   Male Adult       No
## 1961  Crew   Male Adult       No
## 1962  Crew   Male Adult       No
## 1963  Crew   Male Adult       No
## 1964  Crew   Male Adult       No
## 1965  Crew   Male Adult       No
## 1966  Crew   Male Adult       No
## 1967  Crew   Male Adult       No
## 1968  Crew   Male Adult       No
## 1969  Crew   Male Adult       No
## 1970  Crew   Male Adult       No
## 1971  Crew   Male Adult       No
## 1972  Crew   Male Adult       No
## 1973  Crew   Male Adult       No
## 1974  Crew   Male Adult       No
## 1975  Crew   Male Adult       No
## 1976  Crew   Male Adult       No
## 1977  Crew   Male Adult       No
## 1978  Crew   Male Adult       No
## 1979  Crew   Male Adult       No
## 1980  Crew   Male Adult       No
## 1981  Crew   Male Adult       No
## 1982  Crew   Male Adult       No
## 1983  Crew   Male Adult       No
## 1984  Crew   Male Adult       No
## 1985  Crew   Male Adult       No
## 1986  Crew   Male Adult       No
## 1987  Crew   Male Adult      Yes
## 1988  Crew   Male Adult      Yes
## 1989  Crew   Male Adult      Yes
## 1990  Crew   Male Adult      Yes
## 1991  Crew   Male Adult      Yes
## 1992  Crew   Male Adult      Yes
## 1993  Crew   Male Adult      Yes
## 1994  Crew   Male Adult      Yes
## 1995  Crew   Male Adult      Yes
## 1996  Crew   Male Adult      Yes
## 1997  Crew   Male Adult      Yes
## 1998  Crew   Male Adult      Yes
## 1999  Crew   Male Adult      Yes
## 2000  Crew   Male Adult      Yes
## 2001  Crew   Male Adult      Yes
## 2002  Crew   Male Adult      Yes
## 2003  Crew   Male Adult      Yes
## 2004  Crew   Male Adult      Yes
## 2005  Crew   Male Adult      Yes
## 2006  Crew   Male Adult      Yes
## 2007  Crew   Male Adult      Yes
## 2008  Crew   Male Adult      Yes
## 2009  Crew   Male Adult      Yes
## 2010  Crew   Male Adult      Yes
## 2011  Crew   Male Adult      Yes
## 2012  Crew   Male Adult      Yes
## 2013  Crew   Male Adult      Yes
## 2014  Crew   Male Adult      Yes
## 2015  Crew   Male Adult      Yes
## 2016  Crew   Male Adult      Yes
## 2017  Crew   Male Adult      Yes
## 2018  Crew   Male Adult      Yes
## 2019  Crew   Male Adult      Yes
## 2020  Crew   Male Adult      Yes
## 2021  Crew   Male Adult      Yes
## 2022  Crew   Male Adult      Yes
## 2023  Crew   Male Adult      Yes
## 2024  Crew   Male Adult      Yes
## 2025  Crew   Male Adult      Yes
## 2026  Crew   Male Adult      Yes
## 2027  Crew   Male Adult      Yes
## 2028  Crew   Male Adult      Yes
## 2029  Crew   Male Adult      Yes
## 2030  Crew   Male Adult      Yes
## 2031  Crew   Male Adult      Yes
## 2032  Crew   Male Adult      Yes
## 2033  Crew   Male Adult      Yes
## 2034  Crew   Male Adult      Yes
## 2035  Crew   Male Adult      Yes
## 2036  Crew   Male Adult      Yes
## 2037  Crew   Male Adult      Yes
## 2038  Crew   Male Adult      Yes
## 2039  Crew   Male Adult      Yes
## 2040  Crew   Male Adult      Yes
## 2041  Crew   Male Adult      Yes
## 2042  Crew   Male Adult      Yes
## 2043  Crew   Male Adult      Yes
## 2044  Crew   Male Adult      Yes
## 2045  Crew   Male Adult      Yes
## 2046  Crew   Male Adult      Yes
## 2047  Crew   Male Adult      Yes
## 2048  Crew   Male Adult      Yes
## 2049  Crew   Male Adult      Yes
## 2050  Crew   Male Adult      Yes
## 2051  Crew   Male Adult      Yes
## 2052  Crew   Male Adult      Yes
## 2053  Crew   Male Adult      Yes
## 2054  Crew   Male Adult      Yes
## 2055  Crew   Male Adult      Yes
## 2056  Crew   Male Adult      Yes
## 2057  Crew   Male Adult      Yes
## 2058  Crew   Male Adult      Yes
## 2059  Crew   Male Adult      Yes
## 2060  Crew   Male Adult      Yes
## 2061  Crew   Male Adult      Yes
## 2062  Crew   Male Adult      Yes
## 2063  Crew   Male Adult      Yes
## 2064  Crew   Male Adult      Yes
## 2065  Crew   Male Adult      Yes
## 2066  Crew   Male Adult      Yes
## 2067  Crew   Male Adult      Yes
## 2068  Crew   Male Adult      Yes
## 2069  Crew   Male Adult      Yes
## 2070  Crew   Male Adult      Yes
## 2071  Crew   Male Adult      Yes
## 2072  Crew   Male Adult      Yes
## 2073  Crew   Male Adult      Yes
## 2074  Crew   Male Adult      Yes
## 2075  Crew   Male Adult      Yes
## 2076  Crew   Male Adult      Yes
## 2077  Crew   Male Adult      Yes
## 2078  Crew   Male Adult      Yes
## 2079  Crew   Male Adult      Yes
## 2080  Crew   Male Adult      Yes
## 2081  Crew   Male Adult      Yes
## 2082  Crew   Male Adult      Yes
## 2083  Crew   Male Adult      Yes
## 2084  Crew   Male Adult      Yes
## 2085  Crew   Male Adult      Yes
## 2086  Crew   Male Adult      Yes
## 2087  Crew   Male Adult      Yes
## 2088  Crew   Male Adult      Yes
## 2089  Crew   Male Adult      Yes
## 2090  Crew   Male Adult      Yes
## 2091  Crew   Male Adult      Yes
## 2092  Crew   Male Adult      Yes
## 2093  Crew   Male Adult      Yes
## 2094  Crew   Male Adult      Yes
## 2095  Crew   Male Adult      Yes
## 2096  Crew   Male Adult      Yes
## 2097  Crew   Male Adult      Yes
## 2098  Crew   Male Adult      Yes
## 2099  Crew   Male Adult      Yes
## 2100  Crew   Male Adult      Yes
## 2101  Crew   Male Adult      Yes
## 2102  Crew   Male Adult      Yes
## 2103  Crew   Male Adult      Yes
## 2104  Crew   Male Adult      Yes
## 2105  Crew   Male Adult      Yes
## 2106  Crew   Male Adult      Yes
## 2107  Crew   Male Adult      Yes
## 2108  Crew   Male Adult      Yes
## 2109  Crew   Male Adult      Yes
## 2110  Crew   Male Adult      Yes
## 2111  Crew   Male Adult      Yes
## 2112  Crew   Male Adult      Yes
## 2113  Crew   Male Adult      Yes
## 2114  Crew   Male Adult      Yes
## 2115  Crew   Male Adult      Yes
## 2116  Crew   Male Adult      Yes
## 2117  Crew   Male Adult      Yes
## 2118  Crew   Male Adult      Yes
## 2119  Crew   Male Adult      Yes
## 2120  Crew   Male Adult      Yes
## 2121  Crew   Male Adult      Yes
## 2122  Crew   Male Adult      Yes
## 2123  Crew   Male Adult      Yes
## 2124  Crew   Male Adult      Yes
## 2125  Crew   Male Adult      Yes
## 2126  Crew   Male Adult      Yes
## 2127  Crew   Male Adult      Yes
## 2128  Crew   Male Adult      Yes
## 2129  Crew   Male Adult      Yes
## 2130  Crew   Male Adult      Yes
## 2131  Crew   Male Adult      Yes
## 2132  Crew   Male Adult      Yes
## 2133  Crew   Male Adult      Yes
## 2134  Crew   Male Adult      Yes
## 2135  Crew   Male Adult      Yes
## 2136  Crew   Male Adult      Yes
## 2137  Crew   Male Adult      Yes
## 2138  Crew   Male Adult      Yes
## 2139  Crew   Male Adult      Yes
## 2140  Crew   Male Adult      Yes
## 2141  Crew   Male Adult      Yes
## 2142  Crew   Male Adult      Yes
## 2143  Crew   Male Adult      Yes
## 2144  Crew   Male Adult      Yes
## 2145  Crew   Male Adult      Yes
## 2146  Crew   Male Adult      Yes
## 2147  Crew   Male Adult      Yes
## 2148  Crew   Male Adult      Yes
## 2149  Crew   Male Adult      Yes
## 2150  Crew   Male Adult      Yes
## 2151  Crew   Male Adult      Yes
## 2152  Crew   Male Adult      Yes
## 2153  Crew   Male Adult      Yes
## 2154  Crew   Male Adult      Yes
## 2155  Crew   Male Adult      Yes
## 2156  Crew   Male Adult      Yes
## 2157  Crew   Male Adult      Yes
## 2158  Crew   Male Adult      Yes
## 2159  Crew   Male Adult      Yes
## 2160  Crew   Male Adult      Yes
## 2161  Crew   Male Adult      Yes
## 2162  Crew   Male Adult      Yes
## 2163  Crew   Male Adult      Yes
## 2164  Crew   Male Adult      Yes
## 2165  Crew   Male Adult      Yes
## 2166  Crew   Male Adult      Yes
## 2167  Crew   Male Adult      Yes
## 2168  Crew   Male Adult      Yes
## 2169  Crew   Male Adult      Yes
## 2170  Crew   Male Adult      Yes
## 2171  Crew   Male Adult      Yes
## 2172  Crew   Male Adult      Yes
## 2173  Crew   Male Adult      Yes
## 2174  Crew   Male Adult      Yes
## 2175  Crew   Male Adult      Yes
## 2176  Crew   Male Adult      Yes
## 2177  Crew   Male Adult      Yes
## 2178  Crew   Male Adult      Yes
## 2179  Crew Female Adult       No
## 2180  Crew Female Adult       No
## 2181  Crew Female Adult       No
## 2182  Crew Female Adult      Yes
## 2183  Crew Female Adult      Yes
## 2184  Crew Female Adult      Yes
## 2185  Crew Female Adult      Yes
## 2186  Crew Female Adult      Yes
## 2187  Crew Female Adult      Yes
## 2188  Crew Female Adult      Yes
## 2189  Crew Female Adult      Yes
## 2190  Crew Female Adult      Yes
## 2191  Crew Female Adult      Yes
## 2192  Crew Female Adult      Yes
## 2193  Crew Female Adult      Yes
## 2194  Crew Female Adult      Yes
## 2195  Crew Female Adult      Yes
## 2196  Crew Female Adult      Yes
## 2197  Crew Female Adult      Yes
## 2198  Crew Female Adult      Yes
## 2199  Crew Female Adult      Yes
## 2200  Crew Female Adult      Yes
## 2201  Crew Female Adult      Yes
Titanic1$Survived <- as.integer(Titanic1$Survived)
pred = predict(Titanic.glm,Titanic1)
print(pred)
##          1          2          3          4          5          6          7 
##  0.6853195  0.6853195  0.6853195  0.6853195  0.6853195 -0.3762229 -0.3762229 
##          8          9         10         11         12         13         14 
## -0.3762229 -0.3762229 -0.3762229 -0.3762229 -0.3762229 -0.3762229 -0.3762229 
##         15         16         17         18         19         20         21 
## -0.3762229 -0.3762229 -0.3762229 -0.3762229 -0.3762229 -0.3762229 -0.3762229 
##         22         23         24         25         26         27         28 
## -0.3762229 -0.3762229 -0.3762229 -0.3762229 -0.3762229 -0.3762229 -0.3762229 
##         29         30         31         32         33         34         35 
## -0.3762229 -0.3762229 -0.3762229 -0.3762229 -0.3762229 -0.3762229 -0.3762229 
##         36         37         38         39         40         41         42 
## -0.3762229 -0.3762229 -0.3762229 -0.3762229 -0.3762229 -0.3762229 -0.3762229 
##         43         44         45         46         47         48         49 
## -0.3762229 -0.3762229 -0.3762229 -0.3762229 -0.3762229 -0.3762229 -0.3762229 
##         50         51         52         53         54         55         56 
## -0.3762229 -0.3762229 -0.3762229 -0.3762229 -0.3762229 -0.3762229 -0.3762229 
##         57         58         59         60         61         62         63 
## -0.3762229 -0.3762229 -0.3762229 -0.3762229 -0.3762229 -0.3762229 -0.3762229 
##         64         65         66         67         68         69         70 
## -0.3762229 -0.3762229 -0.3762229 -0.3762229 -0.3762229 -0.3762229 -0.3762229 
##         71         72         73         74         75         76         77 
## -0.3762229 -0.3762229 -0.3762229 -0.3762229 -0.3762229 -0.3762229 -0.3762229 
##         78         79         80         81         82         83         84 
## -0.3762229 -0.3762229 -0.3762229 -0.3762229 -0.3762229 -0.3762229 -0.3762229 
##         85         86         87         88         89         90         91 
## -0.3762229 -0.3762229 -0.3762229 -0.3762229 -0.3762229 -0.3762229 -0.3762229 
##         92         93         94         95         96         97         98 
## -0.3762229 -0.3762229 -0.3762229 -0.3762229 -0.3762229 -0.3762229 -0.3762229 
##         99        100        101        102        103        104        105 
## -0.3762229 -0.3762229 -0.3762229 -0.3762229 -0.3762229 -0.3762229 -0.3762229 
##        106        107        108        109        110        111        112 
## -0.3762229 -0.3762229 -0.3762229 -0.3762229 -0.3762229 -0.3762229 -0.3762229 
##        113        114        115        116        117        118        119 
## -0.3762229 -0.3762229 -0.3762229 -0.3762229 -0.3762229 -0.3762229 -0.3762229 
##        120        121        122        123        124        125        126 
## -0.3762229 -0.3762229 -0.3762229 -0.3762229 -0.3762229 -0.3762229 -0.3762229 
##        127        128        129        130        131        132        133 
## -0.3762229 -0.3762229 -0.3762229 -0.3762229 -0.3762229 -0.3762229 -0.3762229 
##        134        135        136        137        138        139        140 
## -0.3762229 -0.3762229 -0.3762229 -0.3762229 -0.3762229 -0.3762229 -0.3762229 
##        141        142        143        144        145        146        147 
## -0.3762229 -0.3762229 -0.3762229 -0.3762229 -0.3762229 -0.3762229 -0.3762229 
##        148        149        150        151        152        153        154 
## -0.3762229 -0.3762229 -0.3762229 -0.3762229 -0.3762229 -0.3762229 -0.3762229 
##        155        156        157        158        159        160        161 
## -0.3762229 -0.3762229 -0.3762229 -0.3762229 -0.3762229 -0.3762229 -0.3762229 
##        162        163        164        165        166        167        168 
## -0.3762229 -0.3762229 -0.3762229 -0.3762229 -0.3762229 -0.3762229 -0.3762229 
##        169        170        171        172        173        174        175 
## -0.3762229 -0.3762229 -0.3762229 -0.3762229 -0.3762229 -0.3762229 -0.3762229 
##        176        177        178        179        180        181        182 
## -0.3762229 -0.3762229 -0.3762229 -0.3762229 -0.3762229  3.1053798  2.0438374 
##        183        184        185        186        187        188        189 
##  2.0438374  2.0438374  2.0438374  2.0438374  2.0438374  2.0438374  2.0438374 
##        190        191        192        193        194        195        196 
##  2.0438374  2.0438374  2.0438374  2.0438374  2.0438374  2.0438374  2.0438374 
##        197        198        199        200        201        202        203 
##  2.0438374  2.0438374  2.0438374  2.0438374  2.0438374  2.0438374  2.0438374 
##        204        205        206        207        208        209        210 
##  2.0438374  2.0438374  2.0438374  2.0438374  2.0438374  2.0438374  2.0438374 
##        211        212        213        214        215        216        217 
##  2.0438374  2.0438374  2.0438374  2.0438374  2.0438374  2.0438374  2.0438374 
##        218        219        220        221        222        223        224 
##  2.0438374  2.0438374  2.0438374  2.0438374  2.0438374  2.0438374  2.0438374 
##        225        226        227        228        229        230        231 
##  2.0438374  2.0438374  2.0438374  2.0438374  2.0438374  2.0438374  2.0438374 
##        232        233        234        235        236        237        238 
##  2.0438374  2.0438374  2.0438374  2.0438374  2.0438374  2.0438374  2.0438374 
##        239        240        241        242        243        244        245 
##  2.0438374  2.0438374  2.0438374  2.0438374  2.0438374  2.0438374  2.0438374 
##        246        247        248        249        250        251        252 
##  2.0438374  2.0438374  2.0438374  2.0438374  2.0438374  2.0438374  2.0438374 
##        253        254        255        256        257        258        259 
##  2.0438374  2.0438374  2.0438374  2.0438374  2.0438374  2.0438374  2.0438374 
##        260        261        262        263        264        265        266 
##  2.0438374  2.0438374  2.0438374  2.0438374  2.0438374  2.0438374  2.0438374 
##        267        268        269        270        271        272        273 
##  2.0438374  2.0438374  2.0438374  2.0438374  2.0438374  2.0438374  2.0438374 
##        274        275        276        277        278        279        280 
##  2.0438374  2.0438374  2.0438374  2.0438374  2.0438374  2.0438374  2.0438374 
##        281        282        283        284        285        286        287 
##  2.0438374  2.0438374  2.0438374  2.0438374  2.0438374  2.0438374  2.0438374 
##        288        289        290        291        292        293        294 
##  2.0438374  2.0438374  2.0438374  2.0438374  2.0438374  2.0438374  2.0438374 
##        295        296        297        298        299        300        301 
##  2.0438374  2.0438374  2.0438374  2.0438374  2.0438374  2.0438374  2.0438374 
##        302        303        304        305        306        307        308 
##  2.0438374  2.0438374  2.0438374  2.0438374  2.0438374  2.0438374  2.0438374 
##        309        310        311        312        313        314        315 
##  2.0438374  2.0438374  2.0438374  2.0438374  2.0438374  2.0438374  2.0438374 
##        316        317        318        319        320        321        322 
##  2.0438374  2.0438374  2.0438374  2.0438374  2.0438374  2.0438374  2.0438374 
##        323        324        325        326        327        328        329 
##  2.0438374  2.0438374  2.0438374 -0.3327755 -0.3327755 -0.3327755 -0.3327755 
##        330        331        332        333        334        335        336 
## -0.3327755 -0.3327755 -0.3327755 -0.3327755 -0.3327755 -0.3327755 -0.3327755 
##        337        338        339        340        341        342        343 
## -1.3943179 -1.3943179 -1.3943179 -1.3943179 -1.3943179 -1.3943179 -1.3943179 
##        344        345        346        347        348        349        350 
## -1.3943179 -1.3943179 -1.3943179 -1.3943179 -1.3943179 -1.3943179 -1.3943179 
##        351        352        353        354        355        356        357 
## -1.3943179 -1.3943179 -1.3943179 -1.3943179 -1.3943179 -1.3943179 -1.3943179 
##        358        359        360        361        362        363        364 
## -1.3943179 -1.3943179 -1.3943179 -1.3943179 -1.3943179 -1.3943179 -1.3943179 
##        365        366        367        368        369        370        371 
## -1.3943179 -1.3943179 -1.3943179 -1.3943179 -1.3943179 -1.3943179 -1.3943179 
##        372        373        374        375        376        377        378 
## -1.3943179 -1.3943179 -1.3943179 -1.3943179 -1.3943179 -1.3943179 -1.3943179 
##        379        380        381        382        383        384        385 
## -1.3943179 -1.3943179 -1.3943179 -1.3943179 -1.3943179 -1.3943179 -1.3943179 
##        386        387        388        389        390        391        392 
## -1.3943179 -1.3943179 -1.3943179 -1.3943179 -1.3943179 -1.3943179 -1.3943179 
##        393        394        395        396        397        398        399 
## -1.3943179 -1.3943179 -1.3943179 -1.3943179 -1.3943179 -1.3943179 -1.3943179 
##        400        401        402        403        404        405        406 
## -1.3943179 -1.3943179 -1.3943179 -1.3943179 -1.3943179 -1.3943179 -1.3943179 
##        407        408        409        410        411        412        413 
## -1.3943179 -1.3943179 -1.3943179 -1.3943179 -1.3943179 -1.3943179 -1.3943179 
##        414        415        416        417        418        419        420 
## -1.3943179 -1.3943179 -1.3943179 -1.3943179 -1.3943179 -1.3943179 -1.3943179 
##        421        422        423        424        425        426        427 
## -1.3943179 -1.3943179 -1.3943179 -1.3943179 -1.3943179 -1.3943179 -1.3943179 
##        428        429        430        431        432        433        434 
## -1.3943179 -1.3943179 -1.3943179 -1.3943179 -1.3943179 -1.3943179 -1.3943179 
##        435        436        437        438        439        440        441 
## -1.3943179 -1.3943179 -1.3943179 -1.3943179 -1.3943179 -1.3943179 -1.3943179 
##        442        443        444        445        446        447        448 
## -1.3943179 -1.3943179 -1.3943179 -1.3943179 -1.3943179 -1.3943179 -1.3943179 
##        449        450        451        452        453        454        455 
## -1.3943179 -1.3943179 -1.3943179 -1.3943179 -1.3943179 -1.3943179 -1.3943179 
##        456        457        458        459        460        461        462 
## -1.3943179 -1.3943179 -1.3943179 -1.3943179 -1.3943179 -1.3943179 -1.3943179 
##        463        464        465        466        467        468        469 
## -1.3943179 -1.3943179 -1.3943179 -1.3943179 -1.3943179 -1.3943179 -1.3943179 
##        470        471        472        473        474        475        476 
## -1.3943179 -1.3943179 -1.3943179 -1.3943179 -1.3943179 -1.3943179 -1.3943179 
##        477        478        479        480        481        482        483 
## -1.3943179 -1.3943179 -1.3943179 -1.3943179 -1.3943179 -1.3943179 -1.3943179 
##        484        485        486        487        488        489        490 
## -1.3943179 -1.3943179 -1.3943179 -1.3943179 -1.3943179 -1.3943179 -1.3943179 
##        491        492        493        494        495        496        497 
## -1.3943179 -1.3943179 -1.3943179 -1.3943179 -1.3943179 -1.3943179 -1.3943179 
##        498        499        500        501        502        503        504 
## -1.3943179 -1.3943179 -1.3943179 -1.3943179 -1.3943179 -1.3943179 -1.3943179 
##        505        506        507        508        509        510        511 
##  2.0872848  2.0872848  2.0872848  2.0872848  2.0872848  2.0872848  2.0872848 
##        512        513        514        515        516        517        518 
##  2.0872848  2.0872848  2.0872848  2.0872848  2.0872848  2.0872848  1.0257425 
##        519        520        521        522        523        524        525 
##  1.0257425  1.0257425  1.0257425  1.0257425  1.0257425  1.0257425  1.0257425 
##        526        527        528        529        530        531        532 
##  1.0257425  1.0257425  1.0257425  1.0257425  1.0257425  1.0257425  1.0257425 
##        533        534        535        536        537        538        539 
##  1.0257425  1.0257425  1.0257425  1.0257425  1.0257425  1.0257425  1.0257425 
##        540        541        542        543        544        545        546 
##  1.0257425  1.0257425  1.0257425  1.0257425  1.0257425  1.0257425  1.0257425 
##        547        548        549        550        551        552        553 
##  1.0257425  1.0257425  1.0257425  1.0257425  1.0257425  1.0257425  1.0257425 
##        554        555        556        557        558        559        560 
##  1.0257425  1.0257425  1.0257425  1.0257425  1.0257425  1.0257425  1.0257425 
##        561        562        563        564        565        566        567 
##  1.0257425  1.0257425  1.0257425  1.0257425  1.0257425  1.0257425  1.0257425 
##        568        569        570        571        572        573        574 
##  1.0257425  1.0257425  1.0257425  1.0257425  1.0257425  1.0257425  1.0257425 
##        575        576        577        578        579        580        581 
##  1.0257425  1.0257425  1.0257425  1.0257425  1.0257425  1.0257425  1.0257425 
##        582        583        584        585        586        587        588 
##  1.0257425  1.0257425  1.0257425  1.0257425  1.0257425  1.0257425  1.0257425 
##        589        590        591        592        593        594        595 
##  1.0257425  1.0257425  1.0257425  1.0257425  1.0257425  1.0257425  1.0257425 
##        596        597        598        599        600        601        602 
##  1.0257425  1.0257425  1.0257425  1.0257425  1.0257425  1.0257425  1.0257425 
##        603        604        605        606        607        608        609 
##  1.0257425  1.0257425  1.0257425  1.0257425  1.0257425  1.0257425  1.0257425 
##        610        611        612        613        614        615        616 
##  1.0257425 -1.0924428 -1.0924428 -1.0924428 -1.0924428 -1.0924428 -1.0924428 
##        617        618        619        620        621        622        623 
## -1.0924428 -1.0924428 -1.0924428 -1.0924428 -1.0924428 -1.0924428 -1.0924428 
##        624        625        626        627        628        629        630 
## -1.0924428 -1.0924428 -1.0924428 -1.0924428 -1.0924428 -1.0924428 -1.0924428 
##        631        632        633        634        635        636        637 
## -1.0924428 -1.0924428 -1.0924428 -1.0924428 -1.0924428 -1.0924428 -1.0924428 
##        638        639        640        641        642        643        644 
## -1.0924428 -1.0924428 -1.0924428 -1.0924428 -1.0924428 -1.0924428 -1.0924428 
##        645        646        647        648        649        650        651 
## -1.0924428 -1.0924428 -1.0924428 -1.0924428 -1.0924428 -1.0924428 -1.0924428 
##        652        653        654        655        656        657        658 
## -1.0924428 -1.0924428 -1.0924428 -1.0924428 -1.0924428 -1.0924428 -1.0924428 
##        659        660        661        662        663        664        665 
## -2.1539851 -2.1539851 -2.1539851 -2.1539851 -2.1539851 -2.1539851 -2.1539851 
##        666        667        668        669        670        671        672 
## -2.1539851 -2.1539851 -2.1539851 -2.1539851 -2.1539851 -2.1539851 -2.1539851 
##        673        674        675        676        677        678        679 
## -2.1539851 -2.1539851 -2.1539851 -2.1539851 -2.1539851 -2.1539851 -2.1539851 
##        680        681        682        683        684        685        686 
## -2.1539851 -2.1539851 -2.1539851 -2.1539851 -2.1539851 -2.1539851 -2.1539851 
##        687        688        689        690        691        692        693 
## -2.1539851 -2.1539851 -2.1539851 -2.1539851 -2.1539851 -2.1539851 -2.1539851 
##        694        695        696        697        698        699        700 
## -2.1539851 -2.1539851 -2.1539851 -2.1539851 -2.1539851 -2.1539851 -2.1539851 
##        701        702        703        704        705        706        707 
## -2.1539851 -2.1539851 -2.1539851 -2.1539851 -2.1539851 -2.1539851 -2.1539851 
##        708        709        710        711        712        713        714 
## -2.1539851 -2.1539851 -2.1539851 -2.1539851 -2.1539851 -2.1539851 -2.1539851 
##        715        716        717        718        719        720        721 
## -2.1539851 -2.1539851 -2.1539851 -2.1539851 -2.1539851 -2.1539851 -2.1539851 
##        722        723        724        725        726        727        728 
## -2.1539851 -2.1539851 -2.1539851 -2.1539851 -2.1539851 -2.1539851 -2.1539851 
##        729        730        731        732        733        734        735 
## -2.1539851 -2.1539851 -2.1539851 -2.1539851 -2.1539851 -2.1539851 -2.1539851 
##        736        737        738        739        740        741        742 
## -2.1539851 -2.1539851 -2.1539851 -2.1539851 -2.1539851 -2.1539851 -2.1539851 
##        743        744        745        746        747        748        749 
## -2.1539851 -2.1539851 -2.1539851 -2.1539851 -2.1539851 -2.1539851 -2.1539851 
##        750        751        752        753        754        755        756 
## -2.1539851 -2.1539851 -2.1539851 -2.1539851 -2.1539851 -2.1539851 -2.1539851 
##        757        758        759        760        761        762        763 
## -2.1539851 -2.1539851 -2.1539851 -2.1539851 -2.1539851 -2.1539851 -2.1539851 
##        764        765        766        767        768        769        770 
## -2.1539851 -2.1539851 -2.1539851 -2.1539851 -2.1539851 -2.1539851 -2.1539851 
##        771        772        773        774        775        776        777 
## -2.1539851 -2.1539851 -2.1539851 -2.1539851 -2.1539851 -2.1539851 -2.1539851 
##        778        779        780        781        782        783        784 
## -2.1539851 -2.1539851 -2.1539851 -2.1539851 -2.1539851 -2.1539851 -2.1539851 
##        785        786        787        788        789        790        791 
## -2.1539851 -2.1539851 -2.1539851 -2.1539851 -2.1539851 -2.1539851 -2.1539851 
##        792        793        794        795        796        797        798 
## -2.1539851 -2.1539851 -2.1539851 -2.1539851 -2.1539851 -2.1539851 -2.1539851 
##        799        800        801        802        803        804        805 
## -2.1539851 -2.1539851 -2.1539851 -2.1539851 -2.1539851 -2.1539851 -2.1539851 
##        806        807        808        809        810        811        812 
## -2.1539851 -2.1539851 -2.1539851 -2.1539851 -2.1539851 -2.1539851 -2.1539851 
##        813        814        815        816        817        818        819 
## -2.1539851 -2.1539851 -2.1539851 -2.1539851 -2.1539851 -2.1539851 -2.1539851 
##        820        821        822        823        824        825        826 
## -2.1539851 -2.1539851 -2.1539851 -2.1539851 -2.1539851 -2.1539851 -2.1539851 
##        827        828        829        830        831        832        833 
## -2.1539851 -2.1539851 -2.1539851 -2.1539851 -2.1539851 -2.1539851 -2.1539851 
##        834        835        836        837        838        839        840 
## -2.1539851 -2.1539851 -2.1539851 -2.1539851 -2.1539851 -2.1539851 -2.1539851 
##        841        842        843        844        845        846        847 
## -2.1539851 -2.1539851 -2.1539851 -2.1539851 -2.1539851 -2.1539851 -2.1539851 
##        848        849        850        851        852        853        854 
## -2.1539851 -2.1539851 -2.1539851 -2.1539851 -2.1539851 -2.1539851 -2.1539851 
##        855        856        857        858        859        860        861 
## -2.1539851 -2.1539851 -2.1539851 -2.1539851 -2.1539851 -2.1539851 -2.1539851 
##        862        863        864        865        866        867        868 
## -2.1539851 -2.1539851 -2.1539851 -2.1539851 -2.1539851 -2.1539851 -2.1539851 
##        869        870        871        872        873        874        875 
## -2.1539851 -2.1539851 -2.1539851 -2.1539851 -2.1539851 -2.1539851 -2.1539851 
##        876        877        878        879        880        881        882 
## -2.1539851 -2.1539851 -2.1539851 -2.1539851 -2.1539851 -2.1539851 -2.1539851 
##        883        884        885        886        887        888        889 
## -2.1539851 -2.1539851 -2.1539851 -2.1539851 -2.1539851 -2.1539851 -2.1539851 
##        890        891        892        893        894        895        896 
## -2.1539851 -2.1539851 -2.1539851 -2.1539851 -2.1539851 -2.1539851 -2.1539851 
##        897        898        899        900        901        902        903 
## -2.1539851 -2.1539851 -2.1539851 -2.1539851 -2.1539851 -2.1539851 -2.1539851 
##        904        905        906        907        908        909        910 
## -2.1539851 -2.1539851 -2.1539851 -2.1539851 -2.1539851 -2.1539851 -2.1539851 
##        911        912        913        914        915        916        917 
## -2.1539851 -2.1539851 -2.1539851 -2.1539851 -2.1539851 -2.1539851 -2.1539851 
##        918        919        920        921        922        923        924 
## -2.1539851 -2.1539851 -2.1539851 -2.1539851 -2.1539851 -2.1539851 -2.1539851 
##        925        926        927        928        929        930        931 
## -2.1539851 -2.1539851 -2.1539851 -2.1539851 -2.1539851 -2.1539851 -2.1539851 
##        932        933        934        935        936        937        938 
## -2.1539851 -2.1539851 -2.1539851 -2.1539851 -2.1539851 -2.1539851 -2.1539851 
##        939        940        941        942        943        944        945 
## -2.1539851 -2.1539851 -2.1539851 -2.1539851 -2.1539851 -2.1539851 -2.1539851 
##        946        947        948        949        950        951        952 
## -2.1539851 -2.1539851 -2.1539851 -2.1539851 -2.1539851 -2.1539851 -2.1539851 
##        953        954        955        956        957        958        959 
## -2.1539851 -2.1539851 -2.1539851 -2.1539851 -2.1539851 -2.1539851 -2.1539851 
##        960        961        962        963        964        965        966 
## -2.1539851 -2.1539851 -2.1539851 -2.1539851 -2.1539851 -2.1539851 -2.1539851 
##        967        968        969        970        971        972        973 
## -2.1539851 -2.1539851 -2.1539851 -2.1539851 -2.1539851 -2.1539851 -2.1539851 
##        974        975        976        977        978        979        980 
## -2.1539851 -2.1539851 -2.1539851 -2.1539851 -2.1539851 -2.1539851 -2.1539851 
##        981        982        983        984        985        986        987 
## -2.1539851 -2.1539851 -2.1539851 -2.1539851 -2.1539851 -2.1539851 -2.1539851 
##        988        989        990        991        992        993        994 
## -2.1539851 -2.1539851 -2.1539851 -2.1539851 -2.1539851 -2.1539851 -2.1539851 
##        995        996        997        998        999       1000       1001 
## -2.1539851 -2.1539851 -2.1539851 -2.1539851 -2.1539851 -2.1539851 -2.1539851 
##       1002       1003       1004       1005       1006       1007       1008 
## -2.1539851 -2.1539851 -2.1539851 -2.1539851 -2.1539851 -2.1539851 -2.1539851 
##       1009       1010       1011       1012       1013       1014       1015 
## -2.1539851 -2.1539851 -2.1539851 -2.1539851 -2.1539851 -2.1539851 -2.1539851 
##       1016       1017       1018       1019       1020       1021       1022 
## -2.1539851 -2.1539851 -2.1539851 -2.1539851 -2.1539851 -2.1539851 -2.1539851 
##       1023       1024       1025       1026       1027       1028       1029 
## -2.1539851 -2.1539851 -2.1539851 -2.1539851 -2.1539851 -2.1539851 -2.1539851 
##       1030       1031       1032       1033       1034       1035       1036 
## -2.1539851 -2.1539851 -2.1539851 -2.1539851 -2.1539851 -2.1539851 -2.1539851 
##       1037       1038       1039       1040       1041       1042       1043 
## -2.1539851 -2.1539851 -2.1539851 -2.1539851 -2.1539851 -2.1539851 -2.1539851 
##       1044       1045       1046       1047       1048       1049       1050 
## -2.1539851 -2.1539851 -2.1539851 -2.1539851 -2.1539851 -2.1539851 -2.1539851 
##       1051       1052       1053       1054       1055       1056       1057 
## -2.1539851 -2.1539851 -2.1539851 -2.1539851 -2.1539851 -2.1539851 -2.1539851 
##       1058       1059       1060       1061       1062       1063       1064 
## -2.1539851 -2.1539851 -2.1539851 -2.1539851 -2.1539851 -2.1539851 -2.1539851 
##       1065       1066       1067       1068       1069       1070       1071 
## -2.1539851 -2.1539851 -2.1539851 -2.1539851 -2.1539851 -2.1539851 -2.1539851 
##       1072       1073       1074       1075       1076       1077       1078 
## -2.1539851 -2.1539851 -2.1539851 -2.1539851 -2.1539851 -2.1539851 -2.1539851 
##       1079       1080       1081       1082       1083       1084       1085 
## -2.1539851 -2.1539851 -2.1539851 -2.1539851 -2.1539851 -2.1539851 -2.1539851 
##       1086       1087       1088       1089       1090       1091       1092 
## -2.1539851 -2.1539851 -2.1539851 -2.1539851 -2.1539851 -2.1539851 -2.1539851 
##       1093       1094       1095       1096       1097       1098       1099 
## -2.1539851 -2.1539851 -2.1539851 -2.1539851 -2.1539851 -2.1539851 -2.1539851 
##       1100       1101       1102       1103       1104       1105       1106 
## -2.1539851 -2.1539851 -2.1539851 -2.1539851 -2.1539851 -2.1539851 -2.1539851 
##       1107       1108       1109       1110       1111       1112       1113 
## -2.1539851 -2.1539851 -2.1539851 -2.1539851 -2.1539851 -2.1539851 -2.1539851 
##       1114       1115       1116       1117       1118       1119       1120 
## -2.1539851 -2.1539851 -2.1539851 -2.1539851 -2.1539851 -2.1539851 -2.1539851 
##       1121       1122       1123       1124       1125       1126       1127 
##  1.3276176  1.3276176  1.3276176  1.3276176  1.3276176  1.3276176  1.3276176 
##       1128       1129       1130       1131       1132       1133       1134 
##  1.3276176  1.3276176  1.3276176  1.3276176  1.3276176  1.3276176  1.3276176 
##       1135       1136       1137       1138       1139       1140       1141 
##  1.3276176  1.3276176  1.3276176  1.3276176  1.3276176  1.3276176  1.3276176 
##       1142       1143       1144       1145       1146       1147       1148 
##  1.3276176  1.3276176  1.3276176  1.3276176  1.3276176  1.3276176  1.3276176 
##       1149       1150       1151       1152       1153       1154       1155 
##  1.3276176  1.3276176  1.3276176  0.2660752  0.2660752  0.2660752  0.2660752 
##       1156       1157       1158       1159       1160       1161       1162 
##  0.2660752  0.2660752  0.2660752  0.2660752  0.2660752  0.2660752  0.2660752 
##       1163       1164       1165       1166       1167       1168       1169 
##  0.2660752  0.2660752  0.2660752  0.2660752  0.2660752  0.2660752  0.2660752 
##       1170       1171       1172       1173       1174       1175       1176 
##  0.2660752  0.2660752  0.2660752  0.2660752  0.2660752  0.2660752  0.2660752 
##       1177       1178       1179       1180       1181       1182       1183 
##  0.2660752  0.2660752  0.2660752  0.2660752  0.2660752  0.2660752  0.2660752 
##       1184       1185       1186       1187       1188       1189       1190 
##  0.2660752  0.2660752  0.2660752  0.2660752  0.2660752  0.2660752  0.2660752 
##       1191       1192       1193       1194       1195       1196       1197 
##  0.2660752  0.2660752  0.2660752  0.2660752  0.2660752  0.2660752  0.2660752 
##       1198       1199       1200       1201       1202       1203       1204 
##  0.2660752  0.2660752  0.2660752  0.2660752  0.2660752  0.2660752  0.2660752 
##       1205       1206       1207       1208       1209       1210       1211 
##  0.2660752  0.2660752  0.2660752  0.2660752  0.2660752  0.2660752  0.2660752 
##       1212       1213       1214       1215       1216       1217       1218 
##  0.2660752  0.2660752  0.2660752  0.2660752  0.2660752  0.2660752  0.2660752 
##       1219       1220       1221       1222       1223       1224       1225 
##  0.2660752  0.2660752  0.2660752  0.2660752  0.2660752  0.2660752  0.2660752 
##       1226       1227       1228       1229       1230       1231       1232 
##  0.2660752  0.2660752  0.2660752  0.2660752  0.2660752  0.2660752  0.2660752 
##       1233       1234       1235       1236       1237       1238       1239 
##  0.2660752  0.2660752  0.2660752  0.2660752  0.2660752  0.2660752  0.2660752 
##       1240       1241       1242       1243       1244       1245       1246 
##  0.2660752  0.2660752  0.2660752  0.2660752  0.2660752  0.2660752  0.2660752 
##       1247       1248       1249       1250       1251       1252       1253 
##  0.2660752  0.2660752  0.2660752  0.2660752  0.2660752  0.2660752  0.2660752 
##       1254       1255       1256       1257       1258       1259       1260 
##  0.2660752  0.2660752  0.2660752  0.2660752  0.2660752  0.2660752  0.2660752 
##       1261       1262       1263       1264       1265       1266       1267 
##  0.2660752  0.2660752  0.2660752  0.2660752  0.2660752  0.2660752  0.2660752 
##       1268       1269       1270       1271       1272       1273       1274 
##  0.2660752  0.2660752  0.2660752  0.2660752  0.2660752  0.2660752  0.2660752 
##       1275       1276       1277       1278       1279       1280       1281 
##  0.2660752  0.2660752  0.2660752  0.2660752  0.2660752  0.2660752  0.2660752 
##       1282       1283       1284       1285       1286       1287       1288 
##  0.2660752  0.2660752  0.2660752  0.2660752  0.2660752  0.2660752  0.2660752 
##       1289       1290       1291       1292       1293       1294       1295 
##  0.2660752  0.2660752  0.2660752  0.2660752  0.2660752  0.2660752  0.2660752 
##       1296       1297       1298       1299       1300       1301       1302 
##  0.2660752  0.2660752  0.2660752  0.2660752  0.2660752  0.2660752  0.2660752 
##       1303       1304       1305       1306       1307       1308       1309 
##  0.2660752  0.2660752  0.2660752  0.2660752  0.2660752  0.2660752  0.2660752 
##       1310       1311       1312       1313       1314       1315       1316 
##  0.2660752  0.2660752  0.2660752  0.2660752  0.2660752  0.2660752  0.2660752 
##       1317       1318       1319       1320       1321       1322       1323 
## -1.2338991 -1.2338991 -1.2338991 -1.2338991 -1.2338991 -1.2338991 -1.2338991 
##       1324       1325       1326       1327       1328       1329       1330 
## -1.2338991 -1.2338991 -1.2338991 -1.2338991 -1.2338991 -1.2338991 -1.2338991 
##       1331       1332       1333       1334       1335       1336       1337 
## -1.2338991 -1.2338991 -1.2338991 -1.2338991 -1.2338991 -1.2338991 -1.2338991 
##       1338       1339       1340       1341       1342       1343       1344 
## -1.2338991 -1.2338991 -1.2338991 -1.2338991 -1.2338991 -1.2338991 -1.2338991 
##       1345       1346       1347       1348       1349       1350       1351 
## -1.2338991 -1.2338991 -1.2338991 -1.2338991 -1.2338991 -1.2338991 -1.2338991 
##       1352       1353       1354       1355       1356       1357       1358 
## -1.2338991 -1.2338991 -1.2338991 -1.2338991 -1.2338991 -1.2338991 -1.2338991 
##       1359       1360       1361       1362       1363       1364       1365 
## -1.2338991 -1.2338991 -1.2338991 -1.2338991 -1.2338991 -1.2338991 -1.2338991 
##       1366       1367       1368       1369       1370       1371       1372 
## -1.2338991 -1.2338991 -1.2338991 -1.2338991 -1.2338991 -1.2338991 -1.2338991 
##       1373       1374       1375       1376       1377       1378       1379 
## -1.2338991 -1.2338991 -1.2338991 -1.2338991 -1.2338991 -1.2338991 -1.2338991 
##       1380       1381       1382       1383       1384       1385       1386 
## -1.2338991 -1.2338991 -1.2338991 -1.2338991 -1.2338991 -1.2338991 -1.2338991 
##       1387       1388       1389       1390       1391       1392       1393 
## -1.2338991 -1.2338991 -1.2338991 -1.2338991 -1.2338991 -1.2338991 -1.2338991 
##       1394       1395       1396       1397       1398       1399       1400 
## -1.2338991 -1.2338991 -1.2338991 -1.2338991 -1.2338991 -1.2338991 -1.2338991 
##       1401       1402       1403       1404       1405       1406       1407 
## -1.2338991 -1.2338991 -1.2338991 -1.2338991 -1.2338991 -1.2338991 -1.2338991 
##       1408       1409       1410       1411       1412       1413       1414 
## -1.2338991 -1.2338991 -1.2338991 -1.2338991 -1.2338991 -1.2338991 -1.2338991 
##       1415       1416       1417       1418       1419       1420       1421 
## -1.2338991 -1.2338991 -1.2338991 -1.2338991 -1.2338991 -1.2338991 -1.2338991 
##       1422       1423       1424       1425       1426       1427       1428 
## -1.2338991 -1.2338991 -1.2338991 -1.2338991 -1.2338991 -1.2338991 -1.2338991 
##       1429       1430       1431       1432       1433       1434       1435 
## -1.2338991 -1.2338991 -1.2338991 -1.2338991 -1.2338991 -1.2338991 -1.2338991 
##       1436       1437       1438       1439       1440       1441       1442 
## -1.2338991 -1.2338991 -1.2338991 -1.2338991 -1.2338991 -1.2338991 -1.2338991 
##       1443       1444       1445       1446       1447       1448       1449 
## -1.2338991 -1.2338991 -1.2338991 -1.2338991 -1.2338991 -1.2338991 -1.2338991 
##       1450       1451       1452       1453       1454       1455       1456 
## -1.2338991 -1.2338991 -1.2338991 -1.2338991 -1.2338991 -1.2338991 -1.2338991 
##       1457       1458       1459       1460       1461       1462       1463 
## -1.2338991 -1.2338991 -1.2338991 -1.2338991 -1.2338991 -1.2338991 -1.2338991 
##       1464       1465       1466       1467       1468       1469       1470 
## -1.2338991 -1.2338991 -1.2338991 -1.2338991 -1.2338991 -1.2338991 -1.2338991 
##       1471       1472       1473       1474       1475       1476       1477 
## -1.2338991 -1.2338991 -1.2338991 -1.2338991 -1.2338991 -1.2338991 -1.2338991 
##       1478       1479       1480       1481       1482       1483       1484 
## -1.2338991 -1.2338991 -1.2338991 -1.2338991 -1.2338991 -1.2338991 -1.2338991 
##       1485       1486       1487       1488       1489       1490       1491 
## -1.2338991 -1.2338991 -1.2338991 -1.2338991 -1.2338991 -1.2338991 -1.2338991 
##       1492       1493       1494       1495       1496       1497       1498 
## -1.2338991 -1.2338991 -1.2338991 -1.2338991 -1.2338991 -1.2338991 -1.2338991 
##       1499       1500       1501       1502       1503       1504       1505 
## -1.2338991 -1.2338991 -1.2338991 -1.2338991 -1.2338991 -1.2338991 -1.2338991 
##       1506       1507       1508       1509       1510       1511       1512 
## -1.2338991 -1.2338991 -1.2338991 -1.2338991 -1.2338991 -1.2338991 -1.2338991 
##       1513       1514       1515       1516       1517       1518       1519 
## -1.2338991 -1.2338991 -1.2338991 -1.2338991 -1.2338991 -1.2338991 -1.2338991 
##       1520       1521       1522       1523       1524       1525       1526 
## -1.2338991 -1.2338991 -1.2338991 -1.2338991 -1.2338991 -1.2338991 -1.2338991 
##       1527       1528       1529       1530       1531       1532       1533 
## -1.2338991 -1.2338991 -1.2338991 -1.2338991 -1.2338991 -1.2338991 -1.2338991 
##       1534       1535       1536       1537       1538       1539       1540 
## -1.2338991 -1.2338991 -1.2338991 -1.2338991 -1.2338991 -1.2338991 -1.2338991 
##       1541       1542       1543       1544       1545       1546       1547 
## -1.2338991 -1.2338991 -1.2338991 -1.2338991 -1.2338991 -1.2338991 -1.2338991 
##       1548       1549       1550       1551       1552       1553       1554 
## -1.2338991 -1.2338991 -1.2338991 -1.2338991 -1.2338991 -1.2338991 -1.2338991 
##       1555       1556       1557       1558       1559       1560       1561 
## -1.2338991 -1.2338991 -1.2338991 -1.2338991 -1.2338991 -1.2338991 -1.2338991 
##       1562       1563       1564       1565       1566       1567       1568 
## -1.2338991 -1.2338991 -1.2338991 -1.2338991 -1.2338991 -1.2338991 -1.2338991 
##       1569       1570       1571       1572       1573       1574       1575 
## -1.2338991 -1.2338991 -1.2338991 -1.2338991 -1.2338991 -1.2338991 -1.2338991 
##       1576       1577       1578       1579       1580       1581       1582 
## -1.2338991 -1.2338991 -1.2338991 -1.2338991 -1.2338991 -1.2338991 -1.2338991 
##       1583       1584       1585       1586       1587       1588       1589 
## -1.2338991 -1.2338991 -1.2338991 -1.2338991 -1.2338991 -1.2338991 -1.2338991 
##       1590       1591       1592       1593       1594       1595       1596 
## -1.2338991 -1.2338991 -1.2338991 -1.2338991 -1.2338991 -1.2338991 -1.2338991 
##       1597       1598       1599       1600       1601       1602       1603 
## -1.2338991 -1.2338991 -1.2338991 -1.2338991 -1.2338991 -1.2338991 -1.2338991 
##       1604       1605       1606       1607       1608       1609       1610 
## -1.2338991 -1.2338991 -1.2338991 -1.2338991 -1.2338991 -1.2338991 -1.2338991 
##       1611       1612       1613       1614       1615       1616       1617 
## -1.2338991 -1.2338991 -1.2338991 -1.2338991 -1.2338991 -1.2338991 -1.2338991 
##       1618       1619       1620       1621       1622       1623       1624 
## -1.2338991 -1.2338991 -1.2338991 -1.2338991 -1.2338991 -1.2338991 -1.2338991 
##       1625       1626       1627       1628       1629       1630       1631 
## -1.2338991 -1.2338991 -1.2338991 -1.2338991 -1.2338991 -1.2338991 -1.2338991 
##       1632       1633       1634       1635       1636       1637       1638 
## -1.2338991 -1.2338991 -1.2338991 -1.2338991 -1.2338991 -1.2338991 -1.2338991 
##       1639       1640       1641       1642       1643       1644       1645 
## -1.2338991 -1.2338991 -1.2338991 -1.2338991 -1.2338991 -1.2338991 -1.2338991 
##       1646       1647       1648       1649       1650       1651       1652 
## -1.2338991 -1.2338991 -1.2338991 -1.2338991 -1.2338991 -1.2338991 -1.2338991 
##       1653       1654       1655       1656       1657       1658       1659 
## -1.2338991 -1.2338991 -1.2338991 -1.2338991 -1.2338991 -1.2338991 -1.2338991 
##       1660       1661       1662       1663       1664       1665       1666 
## -1.2338991 -1.2338991 -1.2338991 -1.2338991 -1.2338991 -1.2338991 -1.2338991 
##       1667       1668       1669       1670       1671       1672       1673 
## -1.2338991 -1.2338991 -1.2338991 -1.2338991 -1.2338991 -1.2338991 -1.2338991 
##       1674       1675       1676       1677       1678       1679       1680 
## -1.2338991 -1.2338991 -1.2338991 -1.2338991 -1.2338991 -1.2338991 -1.2338991 
##       1681       1682       1683       1684       1685       1686       1687 
## -1.2338991 -1.2338991 -1.2338991 -1.2338991 -1.2338991 -1.2338991 -1.2338991 
##       1688       1689       1690       1691       1692       1693       1694 
## -1.2338991 -1.2338991 -1.2338991 -1.2338991 -1.2338991 -1.2338991 -1.2338991 
##       1695       1696       1697       1698       1699       1700       1701 
## -1.2338991 -1.2338991 -1.2338991 -1.2338991 -1.2338991 -1.2338991 -1.2338991 
##       1702       1703       1704       1705       1706       1707       1708 
## -1.2338991 -1.2338991 -1.2338991 -1.2338991 -1.2338991 -1.2338991 -1.2338991 
##       1709       1710       1711       1712       1713       1714       1715 
## -1.2338991 -1.2338991 -1.2338991 -1.2338991 -1.2338991 -1.2338991 -1.2338991 
##       1716       1717       1718       1719       1720       1721       1722 
## -1.2338991 -1.2338991 -1.2338991 -1.2338991 -1.2338991 -1.2338991 -1.2338991 
##       1723       1724       1725       1726       1727       1728       1729 
## -1.2338991 -1.2338991 -1.2338991 -1.2338991 -1.2338991 -1.2338991 -1.2338991 
##       1730       1731       1732       1733       1734       1735       1736 
## -1.2338991 -1.2338991 -1.2338991 -1.2338991 -1.2338991 -1.2338991 -1.2338991 
##       1737       1738       1739       1740       1741       1742       1743 
## -1.2338991 -1.2338991 -1.2338991 -1.2338991 -1.2338991 -1.2338991 -1.2338991 
##       1744       1745       1746       1747       1748       1749       1750 
## -1.2338991 -1.2338991 -1.2338991 -1.2338991 -1.2338991 -1.2338991 -1.2338991 
##       1751       1752       1753       1754       1755       1756       1757 
## -1.2338991 -1.2338991 -1.2338991 -1.2338991 -1.2338991 -1.2338991 -1.2338991 
##       1758       1759       1760       1761       1762       1763       1764 
## -1.2338991 -1.2338991 -1.2338991 -1.2338991 -1.2338991 -1.2338991 -1.2338991 
##       1765       1766       1767       1768       1769       1770       1771 
## -1.2338991 -1.2338991 -1.2338991 -1.2338991 -1.2338991 -1.2338991 -1.2338991 
##       1772       1773       1774       1775       1776       1777       1778 
## -1.2338991 -1.2338991 -1.2338991 -1.2338991 -1.2338991 -1.2338991 -1.2338991 
##       1779       1780       1781       1782       1783       1784       1785 
## -1.2338991 -1.2338991 -1.2338991 -1.2338991 -1.2338991 -1.2338991 -1.2338991 
##       1786       1787       1788       1789       1790       1791       1792 
## -1.2338991 -1.2338991 -1.2338991 -1.2338991 -1.2338991 -1.2338991 -1.2338991 
##       1793       1794       1795       1796       1797       1798       1799 
## -1.2338991 -1.2338991 -1.2338991 -1.2338991 -1.2338991 -1.2338991 -1.2338991 
##       1800       1801       1802       1803       1804       1805       1806 
## -1.2338991 -1.2338991 -1.2338991 -1.2338991 -1.2338991 -1.2338991 -1.2338991 
##       1807       1808       1809       1810       1811       1812       1813 
## -1.2338991 -1.2338991 -1.2338991 -1.2338991 -1.2338991 -1.2338991 -1.2338991 
##       1814       1815       1816       1817       1818       1819       1820 
## -1.2338991 -1.2338991 -1.2338991 -1.2338991 -1.2338991 -1.2338991 -1.2338991 
##       1821       1822       1823       1824       1825       1826       1827 
## -1.2338991 -1.2338991 -1.2338991 -1.2338991 -1.2338991 -1.2338991 -1.2338991 
##       1828       1829       1830       1831       1832       1833       1834 
## -1.2338991 -1.2338991 -1.2338991 -1.2338991 -1.2338991 -1.2338991 -1.2338991 
##       1835       1836       1837       1838       1839       1840       1841 
## -1.2338991 -1.2338991 -1.2338991 -1.2338991 -1.2338991 -1.2338991 -1.2338991 
##       1842       1843       1844       1845       1846       1847       1848 
## -1.2338991 -1.2338991 -1.2338991 -1.2338991 -1.2338991 -1.2338991 -1.2338991 
##       1849       1850       1851       1852       1853       1854       1855 
## -1.2338991 -1.2338991 -1.2338991 -1.2338991 -1.2338991 -1.2338991 -1.2338991 
##       1856       1857       1858       1859       1860       1861       1862 
## -1.2338991 -1.2338991 -1.2338991 -1.2338991 -1.2338991 -1.2338991 -1.2338991 
##       1863       1864       1865       1866       1867       1868       1869 
## -1.2338991 -1.2338991 -1.2338991 -1.2338991 -1.2338991 -1.2338991 -1.2338991 
##       1870       1871       1872       1873       1874       1875       1876 
## -1.2338991 -1.2338991 -1.2338991 -1.2338991 -1.2338991 -1.2338991 -1.2338991 
##       1877       1878       1879       1880       1881       1882       1883 
## -1.2338991 -1.2338991 -1.2338991 -1.2338991 -1.2338991 -1.2338991 -1.2338991 
##       1884       1885       1886       1887       1888       1889       1890 
## -1.2338991 -1.2338991 -1.2338991 -1.2338991 -1.2338991 -1.2338991 -1.2338991 
##       1891       1892       1893       1894       1895       1896       1897 
## -1.2338991 -1.2338991 -1.2338991 -1.2338991 -1.2338991 -1.2338991 -1.2338991 
##       1898       1899       1900       1901       1902       1903       1904 
## -1.2338991 -1.2338991 -1.2338991 -1.2338991 -1.2338991 -1.2338991 -1.2338991 
##       1905       1906       1907       1908       1909       1910       1911 
## -1.2338991 -1.2338991 -1.2338991 -1.2338991 -1.2338991 -1.2338991 -1.2338991 
##       1912       1913       1914       1915       1916       1917       1918 
## -1.2338991 -1.2338991 -1.2338991 -1.2338991 -1.2338991 -1.2338991 -1.2338991 
##       1919       1920       1921       1922       1923       1924       1925 
## -1.2338991 -1.2338991 -1.2338991 -1.2338991 -1.2338991 -1.2338991 -1.2338991 
##       1926       1927       1928       1929       1930       1931       1932 
## -1.2338991 -1.2338991 -1.2338991 -1.2338991 -1.2338991 -1.2338991 -1.2338991 
##       1933       1934       1935       1936       1937       1938       1939 
## -1.2338991 -1.2338991 -1.2338991 -1.2338991 -1.2338991 -1.2338991 -1.2338991 
##       1940       1941       1942       1943       1944       1945       1946 
## -1.2338991 -1.2338991 -1.2338991 -1.2338991 -1.2338991 -1.2338991 -1.2338991 
##       1947       1948       1949       1950       1951       1952       1953 
## -1.2338991 -1.2338991 -1.2338991 -1.2338991 -1.2338991 -1.2338991 -1.2338991 
##       1954       1955       1956       1957       1958       1959       1960 
## -1.2338991 -1.2338991 -1.2338991 -1.2338991 -1.2338991 -1.2338991 -1.2338991 
##       1961       1962       1963       1964       1965       1966       1967 
## -1.2338991 -1.2338991 -1.2338991 -1.2338991 -1.2338991 -1.2338991 -1.2338991 
##       1968       1969       1970       1971       1972       1973       1974 
## -1.2338991 -1.2338991 -1.2338991 -1.2338991 -1.2338991 -1.2338991 -1.2338991 
##       1975       1976       1977       1978       1979       1980       1981 
## -1.2338991 -1.2338991 -1.2338991 -1.2338991 -1.2338991 -1.2338991 -1.2338991 
##       1982       1983       1984       1985       1986       1987       1988 
## -1.2338991 -1.2338991 -1.2338991 -1.2338991 -1.2338991 -1.2338991 -1.2338991 
##       1989       1990       1991       1992       1993       1994       1995 
## -1.2338991 -1.2338991 -1.2338991 -1.2338991 -1.2338991 -1.2338991 -1.2338991 
##       1996       1997       1998       1999       2000       2001       2002 
## -1.2338991 -1.2338991 -1.2338991 -1.2338991 -1.2338991 -1.2338991 -1.2338991 
##       2003       2004       2005       2006       2007       2008       2009 
## -1.2338991 -1.2338991 -1.2338991 -1.2338991 -1.2338991 -1.2338991 -1.2338991 
##       2010       2011       2012       2013       2014       2015       2016 
## -1.2338991 -1.2338991 -1.2338991 -1.2338991 -1.2338991 -1.2338991 -1.2338991 
##       2017       2018       2019       2020       2021       2022       2023 
## -1.2338991 -1.2338991 -1.2338991 -1.2338991 -1.2338991 -1.2338991 -1.2338991 
##       2024       2025       2026       2027       2028       2029       2030 
## -1.2338991 -1.2338991 -1.2338991 -1.2338991 -1.2338991 -1.2338991 -1.2338991 
##       2031       2032       2033       2034       2035       2036       2037 
## -1.2338991 -1.2338991 -1.2338991 -1.2338991 -1.2338991 -1.2338991 -1.2338991 
##       2038       2039       2040       2041       2042       2043       2044 
## -1.2338991 -1.2338991 -1.2338991 -1.2338991 -1.2338991 -1.2338991 -1.2338991 
##       2045       2046       2047       2048       2049       2050       2051 
## -1.2338991 -1.2338991 -1.2338991 -1.2338991 -1.2338991 -1.2338991 -1.2338991 
##       2052       2053       2054       2055       2056       2057       2058 
## -1.2338991 -1.2338991 -1.2338991 -1.2338991 -1.2338991 -1.2338991 -1.2338991 
##       2059       2060       2061       2062       2063       2064       2065 
## -1.2338991 -1.2338991 -1.2338991 -1.2338991 -1.2338991 -1.2338991 -1.2338991 
##       2066       2067       2068       2069       2070       2071       2072 
## -1.2338991 -1.2338991 -1.2338991 -1.2338991 -1.2338991 -1.2338991 -1.2338991 
##       2073       2074       2075       2076       2077       2078       2079 
## -1.2338991 -1.2338991 -1.2338991 -1.2338991 -1.2338991 -1.2338991 -1.2338991 
##       2080       2081       2082       2083       2084       2085       2086 
## -1.2338991 -1.2338991 -1.2338991 -1.2338991 -1.2338991 -1.2338991 -1.2338991 
##       2087       2088       2089       2090       2091       2092       2093 
## -1.2338991 -1.2338991 -1.2338991 -1.2338991 -1.2338991 -1.2338991 -1.2338991 
##       2094       2095       2096       2097       2098       2099       2100 
## -1.2338991 -1.2338991 -1.2338991 -1.2338991 -1.2338991 -1.2338991 -1.2338991 
##       2101       2102       2103       2104       2105       2106       2107 
## -1.2338991 -1.2338991 -1.2338991 -1.2338991 -1.2338991 -1.2338991 -1.2338991 
##       2108       2109       2110       2111       2112       2113       2114 
## -1.2338991 -1.2338991 -1.2338991 -1.2338991 -1.2338991 -1.2338991 -1.2338991 
##       2115       2116       2117       2118       2119       2120       2121 
## -1.2338991 -1.2338991 -1.2338991 -1.2338991 -1.2338991 -1.2338991 -1.2338991 
##       2122       2123       2124       2125       2126       2127       2128 
## -1.2338991 -1.2338991 -1.2338991 -1.2338991 -1.2338991 -1.2338991 -1.2338991 
##       2129       2130       2131       2132       2133       2134       2135 
## -1.2338991 -1.2338991 -1.2338991 -1.2338991 -1.2338991 -1.2338991 -1.2338991 
##       2136       2137       2138       2139       2140       2141       2142 
## -1.2338991 -1.2338991 -1.2338991 -1.2338991 -1.2338991 -1.2338991 -1.2338991 
##       2143       2144       2145       2146       2147       2148       2149 
## -1.2338991 -1.2338991 -1.2338991 -1.2338991 -1.2338991 -1.2338991 -1.2338991 
##       2150       2151       2152       2153       2154       2155       2156 
## -1.2338991 -1.2338991 -1.2338991 -1.2338991 -1.2338991 -1.2338991 -1.2338991 
##       2157       2158       2159       2160       2161       2162       2163 
## -1.2338991 -1.2338991 -1.2338991 -1.2338991 -1.2338991 -1.2338991 -1.2338991 
##       2164       2165       2166       2167       2168       2169       2170 
## -1.2338991 -1.2338991 -1.2338991 -1.2338991 -1.2338991 -1.2338991 -1.2338991 
##       2171       2172       2173       2174       2175       2176       2177 
## -1.2338991 -1.2338991 -1.2338991 -1.2338991 -1.2338991 -1.2338991 -1.2338991 
##       2178       2179       2180       2181       2182       2183       2184 
## -1.2338991  1.1861613  1.1861613  1.1861613  1.1861613  1.1861613  1.1861613 
##       2185       2186       2187       2188       2189       2190       2191 
##  1.1861613  1.1861613  1.1861613  1.1861613  1.1861613  1.1861613  1.1861613 
##       2192       2193       2194       2195       2196       2197       2198 
##  1.1861613  1.1861613  1.1861613  1.1861613  1.1861613  1.1861613  1.1861613 
##       2199       2200       2201 
##  1.1861613  1.1861613  1.1861613
pred1 <- ifelse(pred >0, 1, 0)
pred_b <- ifelse(pred > 0.5, 1, 0)

#dummy_tai <- makedummies(Titanic1, basal_level = FALSE) #
#glimpse(dummy_tai)

#table(Titanic1$survived, pred_b)

(result <- table(pred, Titanic1$Survived))
##                     
## pred                   1   2
##   -2.15398514125875  387  75
##   -1.3943178751055   154  14
##   -1.23389907889122  670 192
##   -1.09244276499858   35  13
##   -0.376222923517137 118  57
##   -0.33277549884534    0  11
##   0.266075204547286   89  76
##   0.685319452743026    0   5
##   1.02574247070053    13  80
##   1.18616126691481     3  20
##   1.32761758080745    17  14
##   2.0438374222889      4 140
##   2.08728484696069     0  13
##   3.10537979854906     0   1

##############################################いったん終了し、決定木へ

ロジスティック回帰分析と決定木を構築するアルゴリズム(rの中でセットアップされているTitanicデータを使用.(train)と異なる)

data(Titanic)
head(Titanic)
## [1]  0  0 35  0  0  0
Titanic1 <- expand.table(Titanic)
Titanic.glm <- glm(Survived ~ +Sex + Age+ Class, data = Titanic1, family = "binomial")
summary (Titanic.glm)
## 
## Call:
## glm(formula = Survived ~ +Sex + Age + Class, family = "binomial", 
##     data = Titanic1)
## 
## Deviance Residuals: 
##     Min       1Q   Median       3Q      Max  
## -2.0812  -0.7149  -0.6656   0.6858   2.1278  
## 
## Coefficients:
##             Estimate Std. Error z value Pr(>|z|)    
## (Intercept)   0.6853     0.2730   2.510   0.0121 *  
## SexFemale     2.4201     0.1404  17.236  < 2e-16 ***
## AgeAdult     -1.0615     0.2440  -4.350 1.36e-05 ***
## Class2nd     -1.0181     0.1960  -5.194 2.05e-07 ***
## Class3rd     -1.7778     0.1716 -10.362  < 2e-16 ***
## ClassCrew    -0.8577     0.1573  -5.451 5.00e-08 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## (Dispersion parameter for binomial family taken to be 1)
## 
##     Null deviance: 2769.5  on 2200  degrees of freedom
## Residual deviance: 2210.1  on 2195  degrees of freedom
## AIC: 2222.1
## 
## Number of Fisher Scoring iterations: 4
newData <-  data.frame (Sex = "Male", Age = "Child", Class = "1st" )
predict(Titanic.glm, newdata = newData)
##         1 
## 0.6853195
Titanics.rpart <- rpart (Survived ~ Sex + Age+ Class, data = Titanic1)
Titanics.rpart
## n= 2201 
## 
## node), split, n, loss, yval, (yprob)
##       * denotes terminal node
## 
##  1) root 2201 711 No (0.6769650 0.3230350)  
##    2) Sex=Male 1731 367 No (0.7879838 0.2120162)  
##      4) Age=Adult 1667 338 No (0.7972406 0.2027594) *
##      5) Age=Child 64  29 No (0.5468750 0.4531250)  
##       10) Class=3rd 48  13 No (0.7291667 0.2708333) *
##       11) Class=1st,2nd 16   0 Yes (0.0000000 1.0000000) *
##    3) Sex=Female 470 126 Yes (0.2680851 0.7319149)  
##      6) Class=3rd 196  90 No (0.5408163 0.4591837) *
##      7) Class=1st,2nd,Crew 274  20 Yes (0.0729927 0.9270073) *
prp(Titanics.rpart, type=2, extra=101,
    nn=TRUE, fallen.leaves=TRUE, faclen=0, varlen=0,
    shadow.col="grey", branch.lty=3, cex = 1.2, split.cex=1.2,
    under.cex = 1.2)

-この図を出す事の別の方法が次に示されている - http://yuranhiko.hatenablog.com/entry/DataAnalysis_R_caret_DecisionTree - https://books.google.co.jp/books?id=eYlZDAAAQBAJ&pg=PT220&lpg=PT220&dq=titanic.rp&source=bl&ots=POQR9RPZYf&sig=ACfU3U0r5QrlXWctZY64-ElwIrNEk6m6hA&hl=ja&sa=X&ved=2ahUKEwi1r9Gw8_XmAhUHfXAKHRIxBywQ6AEwDXoECAkQAQ#v=onepage&q=titanic.rp&f=false - どちらも肝心な所が抜けている。(故意に抜いてある。)

rpart.plot(Titanics.rpart)

元に戻ってロジスティック回帰分析予測モデルの構築

Titanic1$Survived <- as.factor(Titanic1$Survived) #integer型をファクター型に変換
train_acc_ver2 = glm(Survived ~ ., data = Titanic1, family = "binomial")#①
#glmは一般化線形モデルの事https://www.marketechlabo.com/r-glm-libraries/
summary(train_acc_ver2)
## 
## Call:
## glm(formula = Survived ~ ., family = "binomial", data = Titanic1)
## 
## Deviance Residuals: 
##     Min       1Q   Median       3Q      Max  
## -2.0812  -0.7149  -0.6656   0.6858   2.1278  
## 
## Coefficients:
##             Estimate Std. Error z value Pr(>|z|)    
## (Intercept)   0.6853     0.2730   2.510   0.0121 *  
## Class2nd     -1.0181     0.1960  -5.194 2.05e-07 ***
## Class3rd     -1.7778     0.1716 -10.362  < 2e-16 ***
## ClassCrew    -0.8577     0.1573  -5.451 5.00e-08 ***
## SexFemale     2.4201     0.1404  17.236  < 2e-16 ***
## AgeAdult     -1.0615     0.2440  -4.350 1.36e-05 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## (Dispersion parameter for binomial family taken to be 1)
## 
##     Null deviance: 2769.5  on 2200  degrees of freedom
## Residual deviance: 2210.1  on 2195  degrees of freedom
## AIC: 2222.1
## 
## Number of Fisher Scoring iterations: 4
train_acc_ver2 <- train(data = Titanic1,Survived  ~ .,method = "glm", family = binomial())#②
# ①② どちらの文法でも良いみたいだ。
summary(train_acc_ver2)
## 
## Call:
## NULL
## 
## Deviance Residuals: 
##     Min       1Q   Median       3Q      Max  
## -2.0812  -0.7149  -0.6656   0.6858   2.1278  
## 
## Coefficients:
##             Estimate Std. Error z value Pr(>|z|)    
## (Intercept)   0.6853     0.2730   2.510   0.0121 *  
## Class2nd     -1.0181     0.1960  -5.194 2.05e-07 ***
## Class3rd     -1.7778     0.1716 -10.362  < 2e-16 ***
## ClassCrew    -0.8577     0.1573  -5.451 5.00e-08 ***
## SexFemale     2.4201     0.1404  17.236  < 2e-16 ***
## AgeAdult     -1.0615     0.2440  -4.350 1.36e-05 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## (Dispersion parameter for binomial family taken to be 1)
## 
##     Null deviance: 2769.5  on 2200  degrees of freedom
## Residual deviance: 2210.1  on 2195  degrees of freedom
## AIC: 2222.1
## 
## Number of Fisher Scoring iterations: 4
# ブートストラップ法による予測精度の検証(caret::train()を使用)
train_acc_ver2
## Generalized Linear Model 
## 
## 2201 samples
##    3 predictor
##    2 classes: 'No', 'Yes' 
## 
## No pre-processing
## Resampling: Bootstrapped (25 reps) 
## Summary of sample sizes: 2201, 2201, 2201, 2201, 2201, 2201, ... 
## Resampling results:
## 
##   Accuracy  Kappa    
##   0.771475  0.4319736
#この方法の制度では、Accuracyは、0.8139758になり、ランダムフォレスト法より落ちる
# 提出2
logit_ver2 <- glm(Survived ~ ., data = Titanic1, family = "binomial")
#fitted_ver2 <- predict(logit_ver2, newdata=test,type='response')
#fitted_ver2 <- ifelse(fitted_ver2 > 0.5,1,0)
#solution_ver2 <- data.frame(PassengerId = test$PassengerId, Survived = fitted_ver2)
#write.csv(solution_ver2, file = 'submit_ver2.csv', row.names = F)
#Titanic1

SVM(Support Vector Machine)サポートベクターマシンによる回帰分析予測モデルの構築

#http://smrmkt.hatenablog.jp/entry/2012/12/20/232113

サポートベクターマシーンの参考サイト https://qiita.com/koshian2/items/baa51826147c3d538652 https://5ch.pub/cache/view/sim/1152969662?from_media=feed_atom

#R言語でSVMを利用するにはkernlabというパッケージを必要:http://yut.hatenablog.com/entry/20120827/1346024147
library(kernlab)
## 
## Attaching package: 'kernlab'
## The following object is masked from 'package:purrr':
## 
##     cross
## The following object is masked from 'package:ggplot2':
## 
##     alpha
dum <- select(.data = alldata,Survived, Pclass,Sex, Embarked, DFamsize, Title, Group, Wom_chd,PassengerId)
#CabinやNamen等分析に使用しないデータの除外は、
#exclude_cols = c("Cabin", "Name")として、dum = alldata[ !names(alldata) %in% exclude_cols ]としても良いようだ
not_dum  <- select(.data = alldata, Age, SibSp, Parch, Fare, Famsize)
train2 <- cbind(dum, not_dum)[1:891,]#train2作成,892以降はSurvivedデータがないので削除
test <- cbind(dum, not_dum)[892:1309,]
head(train2)
##   Survived Pclass    Sex Embarked DFamsize Title Group Wom_chd PassengerId Age
## 1        0      3   male        S    Small    Mr    No      No           1  22
## 2        1      1 female        C    Small   Mrs    No     Yes           2  38
## 3        1      3 female        S   Single  Miss    No     Yes           3  26
## 4        1      1 female        S    Small   Mrs    No     Yes           4  35
## 5        0      3   male        S   Single    Mr    No      No           5  35
## 6        0      3   male        Q   Single    Mr    No      No           6  29
##   SibSp Parch    Fare Famsize
## 1     1     0  7.2500       2
## 2     1     0 71.2833       2
## 3     0     0  7.9250       1
## 4     1     0 53.1000       2
## 5     0     0  8.0500       1
## 6     0     0  8.4583       1
head(test)
##     Survived Pclass    Sex Embarked DFamsize Title Group Wom_chd PassengerId
## 892     <NA>      3   male        Q   Single    Mr    No      No         892
## 893     <NA>      3 female        S    Small   Mrs    No     Yes         893
## 894     <NA>      2   male        Q   Single    Mr    No      No         894
## 895     <NA>      3   male        S   Single    Mr    No      No         895
## 896     <NA>      3 female        S    Small   Mrs    No     Yes         896
## 897     <NA>      3   male        S   Single    Mr    No     Yes         897
##      Age SibSp Parch    Fare Famsize
## 892 34.5     0     0  7.8292       1
## 893 47.0     1     0  7.0000       2
## 894 62.0     0     0  9.6875       1
## 895 27.0     0     0  8.6625       1
## 896 22.0     1     1 12.2875       3
## 897 14.0     0     0  9.2250       1
sapply(train2, class)
##    Survived      Pclass         Sex    Embarked    DFamsize       Title 
##    "factor"    "factor"    "factor"    "factor"    "factor"    "factor" 
##       Group     Wom_chd PassengerId         Age       SibSp       Parch 
##    "factor"    "factor"   "integer"   "numeric"   "integer"   "integer" 
##        Fare     Famsize 
##   "numeric"   "numeric"
#方法0:http://yut.hatenablog.com/entry/20120827/1346024147
model <- ksvm(Survived ~ ., data=train)
model
## Support Vector Machine object of class "ksvm" 
## 
## SV type: eps-svr  (regression) 
##  parameter : epsilon = 0.1  cost C = 1 
## 
## Gaussian Radial Basis kernel function. 
##  Hyperparameter : sigma =  0.0364785576784555 
## 
## Number of Support Vectors : 152 
## 
## Objective Function Value : -78.1619 
## Training error : 0.443059
#方法1https://data-science.gr.jp/implementation/iml_r_svm.html
classifier=svm(Survived ~ ., data=train, method="C-classification", kernel="radial", gamma=0.1258925,cost=2.511886)
#prediction<-predict(classifier,train)
#table(predict(classifier, train), train$Survived)
#方法2:https://qiita.com/stkdev/items/f79af90db4799370e3aa
#model2 <- ksvm(formula, data=train, kernel ="rbfdot", kpar=list(sigma = 0.1), type=NULL, cross = 0,)
#predict関数で予測データを評価:
#prediction<-predict(model,train2)
#prediction
#方法3:http://kefism.hatenablog.com/entry/2017/04/22/203740:わかりやすい説明→次節に詳述
#予測結果と正解との比較
#table(prediction,train2$Survived)
#solution <- data.frame(PassengerID = test$PassengerId, Survived = prediction)
#solution
#write.csv(solution, file = 'test_Solution.csv', row.names = F)
#prediction2 = predict(model,train2)
#(result <- table(prediction2, train2$Survived))# ()で括って内容表示
#(accuracy_prediction = sum(diag(result)) / sum(result))

SVM(Support Vector Machine)サポートベクターマシンによ機械学習予測モデルの構築その2-1

-1)前処理 http://kefism.hatenablog.com/entry/2017/04/22/203740

# Survivedと変数xのクロス集計の右側に
# 変数x内のカテゴリー比率を加えたものを表示する関数
S_table <- function(x, survived){
  tbl <- table(x, survived)
  row_sum <- apply(tbl, 1, sum)
  s_ratio <- tbl[,2]/row_sum
  
  return(cbind(tbl, s_ratio))
}
# クロス割合を表示する関数
# (クロス集計表の要素が割合)
rate_table <- function(x, y){
  tbl <- table(x, y)
  row_sum <- apply(tbl, 1, sum)
  s_ratio <- tbl/row_sum
  
  return(s_ratio)
}
d <- read.csv("train.csv")
d_t <- read.csv("test.csv")
# Cabinの処理
train <- d %>% 
  separate("Cabin", into=c("Cabin1", "Cabin2", "Cabin3", "Cabin4"), sep=" ") %>% 
  mutate(Cabin1 = substr(Cabin1, 1, 1),
         Cabin2 = substr(Cabin2, 1, 1),
         Cabin3 = substr(Cabin3, 1, 1),
         Cabin4 = substr(Cabin4, 1, 1)) %>% 
  mutate(Cabin1 = if_else(Cabin1=="", "U", Cabin1),
         Cabin2 = if_else(is.na(Cabin2), "U", Cabin2),
         Cabin3 = if_else(is.na(Cabin3), "U", Cabin3),
         Cabin4 = if_else(is.na(Cabin4), "U", Cabin4))
## Warning: Expected 4 pieces. Missing pieces filled with `NA` in 889 rows [1, 2,
## 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, ...].
# Nameの処理
train <- train %>% 
  separate("Name", into=c("Last_Name", "Title"), sep=",") %>% 
  mutate(Title = gsub("\\..+$", "", Title)) %>% 
  mutate(Title = gsub(" ", "", Title))

sum(train$Survived)/nrow(train)
## [1] 0.3838384
library(ggplot2)

# 2変数の関係の確認
# 対 Survived
# Pclass
S_table(train$Pclass, train$Survived)
##     0   1   s_ratio
## 1  80 136 0.6296296
## 2  97  87 0.4728261
## 3 372 119 0.2423625
# Sex
S_table(train$Sex, train$Survived)
##          0   1   s_ratio
## female  81 233 0.7420382
## male   468 109 0.1889081
# Title
S_table(train$Title, train$Survived)
##               0   1   s_ratio
## Capt          1   0 0.0000000
## Col           1   1 0.5000000
## Don           1   0 0.0000000
## Dr            4   3 0.4285714
## Jonkheer      1   0 0.0000000
## Lady          0   1 1.0000000
## Major         1   1 0.5000000
## Master       17  23 0.5750000
## Miss         55 127 0.6978022
## Mlle          0   2 1.0000000
## Mme           0   1 1.0000000
## Mr          436  81 0.1566731
## Mrs          26  99 0.7920000
## Ms            0   1 1.0000000
## Rev           6   0 0.0000000
## Sir           0   1 1.0000000
## theCountess   0   1 1.0000000
# Embarked
S_table(train$Embarked, train$Survived)
##     0   1   s_ratio
##     0   2 1.0000000
## C  75  93 0.5535714
## Q  47  30 0.3896104
## S 427 217 0.3369565
# SibSp
S_table(train$SibSp, train$Survived)
##     0   1   s_ratio
## 0 398 210 0.3453947
## 1  97 112 0.5358852
## 2  15  13 0.4642857
## 3  12   4 0.2500000
## 4  15   3 0.1666667
## 5   5   0 0.0000000
## 8   7   0 0.0000000
# Parch
S_table(train$Parch, train$Survived)
##     0   1   s_ratio
## 0 445 233 0.3436578
## 1  53  65 0.5508475
## 2  40  40 0.5000000
## 3   2   3 0.6000000
## 4   4   0 0.0000000
## 5   4   1 0.2000000
## 6   1   0 0.0000000
# Cabin1
S_table(train$Cabin1, train$Survived)
##     0   1   s_ratio
## A   8   7 0.4666667
## B  12  35 0.7446809
## C  24  35 0.5932203
## D   8  25 0.7575758
## E   8  24 0.7500000
## F   5   8 0.6153846
## G   2   2 0.5000000
## T   1   0 0.0000000
## U 481 206 0.2998544
#S_table(train$Family_size, train$Survived)#Family_sizem未定義

# 気になった変数
table(train$Cabin1, train$Pclass)
##    
##       1   2   3
##   A  15   0   0
##   B  47   0   0
##   C  59   0   0
##   D  29   4   0
##   E  25   4   3
##   F   0   8   5
##   G   0   0   4
##   T   1   0   0
##   U  40 168 479
rate_table(train$Embarked, train$Pclass)
##    y
## x            1          2          3
##     1.00000000 0.00000000 0.00000000
##   C 0.50595238 0.10119048 0.39285714
##   Q 0.02597403 0.03896104 0.93506494
##   S 0.19720497 0.25465839 0.54813665
rate_table(train$Embarked, train$Cabin1)        
##    y
## x             A           B           C           D           E           F
##     0.000000000 1.000000000 0.000000000 0.000000000 0.000000000 0.000000000
##   C 0.041666667 0.130952381 0.125000000 0.077380952 0.029761905 0.005952381
##   Q 0.000000000 0.000000000 0.025974026 0.000000000 0.012987013 0.012987013
##   S 0.012422360 0.035714286 0.055900621 0.031055901 0.040372671 0.017080745
##    y
## x             G           T           U
##     0.000000000 0.000000000 0.000000000
##   C 0.000000000 0.000000000 0.589285714
##   Q 0.000000000 0.000000000 0.948051948
##   S 0.006211180 0.001552795 0.799689441
#Age (散布図)
plot(train$Age, train$Survived+runif(nrow(train), -0.3, 0.3))

# Age (密度トレース)
dat <- train %>% 
  select(Survived, Age) %>% 
  mutate(Survived = as.factor(Survived))
g <- ggplot(dat, aes(Age, colour=Survived, fill=Survived, alpha=0.5)) +
  geom_density()
plot(g)
## Warning: Removed 177 rows containing non-finite values (stat_density).

# Fare (散布図)
plot(train$Fare, train$Survived+runif(nrow(train), -0.3, 0.3))

# Fare (密度トレース)
dat <- train %>% 
  select(Survived, Fare) %>% 
  mutate(Survived = as.factor(Survived))
g <- ggplot(dat, aes(Fare, colour=Survived, fill=Survived, alpha=0.5)) +
  geom_density()
plot(g)

# PclassとFareの密度トレース
dat <- train %>% 
  select(Pclass, Fare) %>% 
  mutate(Pclass = as.factor(Pclass))
g <- ggplot(dat, aes(Fare, colour=Pclass, fill=Pclass, alpha=0.5)) +
  geom_density()
plot(g)

# 3変数の関係の確認
# SurvivedとFareとPclass
plot(train$Fare, train$Pclass+runif(nrow(train), -0.3, 0.3),col=ifelse(train$Survived == 1, "red", "blue"))

#nrow(train) trainの行数

# SurvivedとFareとSex
train$Sex <- as.integer(train$Sex)
train$Sex <- ifelse(train$Sex >1, 2, 1)
#sex2値化#train$Sex+runif...の所はsexをinteger型にしないと演算ができない。
plot(train$Fare, train$Sex+runif(nrow(train), -0.3, 0.3),col=ifelse(train$Survived == 1, "red", "blue"))

# SurvivedとFareとPclass
dat <- train %>% 
  select(Survived, Pclass, Fare) %>% 
  mutate(Survived = as.factor(Survived),
         Pclass = as.factor(Pclass))
g <- ggplot(dat, aes(Fare, colour=Pclass, fill=Pclass, alpha=0.5)) +
  geom_density() +
  facet_wrap(~Survived, nrow=2) 
plot(g)

SVM(Support Vector Machine)サポートベクターマシンによる機械学習予測モデルの構築その2-2

-2)データフレームを渡すとすべてのカラムについてダミー変数化してくれる関数、convDummies http://kefism.hatenablog.com/entry/2017/04/22/203740 http://kefism.hatenablog.com/entry/2017/02/12/120858

convDummies <- function(data, is.drop = FALSE){
  library(dummies)
  
  N <- ncol(data)
  row_names <- names(data)
  
  names_list <- c()
  new_data <- rep(NA, nrow(data))
  for(n in 1:N){
    unique_value <- sort(unique(data[,n]))
    dummied_data <- dummy(data[,n])
    
    if(is.drop == TRUE){
      new_data <- cbind(new_data, dummied_data[,-ncol(dummied_data)])
      names_list <- c(names_list, 
                      paste(row_names[n], unique_value, sep = ".")[-ncol(dummied_data)])
    } else {
      new_data <- cbind(new_data, dummied_data)
      names_list <- c(names_list, paste(row_names[n], unique_value, sep = "."))
    }
  }
  
  new_data <- as.data.frame(new_data)
  names(new_data) <- c("temp", names_list)
  
  return(new_data[,-1])
}
# データ整形関数
createData <- function(){
  library(dplyr)
  library(tidyr)
  library(ranger)
  
  train <- read.csv("train.csv")
  test <- read.csv("test.csv")
  
  train$Embarked[train$Embarked == ""] <- "S"
  
  Survived <- train$Survived
  
  X <- train %>% 
    select(-Survived) %>% 
    bind_rows(test) %>% 
    select(-PassengerId, -Ticket)
  
  # Cabinの処理
  X <- X %>% 
    separate("Cabin", into=c("Cabin1", "Cabin2", "Cabin3", "Cabin4"), sep=" ") %>% 
    mutate(Cabin1 = substr(Cabin1, 1, 1),
           Cabin2 = substr(Cabin2, 1, 1),
           Cabin3 = substr(Cabin3, 1, 1),
           Cabin4 = substr(Cabin4, 1, 1)) %>% 
    mutate(Cabin1 = if_else(Cabin1=="", "U", Cabin1),
           Cabin2 = if_else(is.na(Cabin2), "U", Cabin2),
           Cabin3 = if_else(is.na(Cabin3), "U", Cabin3),
           Cabin4 = if_else(is.na(Cabin4), "U", Cabin4)) %>% 
    select(-c(Cabin2, Cabin3, Cabin4))
  
  X <- X %>% 
    mutate(is_Cabin = if_else(Cabin1 == "U", "No", "Yes"))
  
  # Nameの処理
  Name_list <- c("Master", "Miss", "Mr", "Mrs", "Rev")
  X <- X %>% 
    separate("Name", into=c("Last_Name", "Title"), sep=",") %>% 
    mutate(Title = gsub("\\..+$", "", Title)) %>% 
    mutate(Title = gsub(" ", "", Title)) %>% 
    mutate(Title = if_else(Title %in% Name_list, Title, "Otherwise"))
  
  # Family_sizeの追加
  X <- X %>% 
    mutate(Family_size = SibSp + Parch +1)
  
  # Familly_sizeで家族をカテゴリー分け
  X <- X %>% 
    mutate(Family_type = if_else(Family_size == 1, "singleton",
                                 if_else(2 <= Family_size & Family_size <= 4, "middle", "large")))
  
  # Ageの欠損値補完
  age_for_na <- 
    na.omit(X) %>% 
    group_by(Pclass, Title) %>% 
    summarise(age_ave = mean(Age))
  
  X <- X %>% 
    left_join(age_for_na) %>% 
    mutate(Age = if_else(is.na(Age), age_ave, Age)) %>% 
    select(-age_ave)
  
  X$Age[is.na(X$Age)] <- mean(X$Age[!is.na(X$Age) & X$SibSp == 0 & X$Parch == 0])
  
  X <- X %>%
    mutate(Age_desc = if_else(0 <= Age & Age <= 6, "0_6",
                              if_else(7 <= Age & Age <=10, "7_10",
                                      if_else(11 <= Age & Age <= 15, "11_15",
                                              if_else(16 <= Age & 20 <= Age, "16_20",
                                                      if_else(21 <= Age & Age <= 30, "21_30", "30_"))))))
  
  # Fareの欠損値補完と正規化
  X$Fare[is.na(X$Fare)] <- 0.0
  X$Fare <- (X$Fare - mean(X$Fare))/sd(X$Fare)
  
  # カテゴリー変数のダミー化
  df_category <- X %>% 
    select(Sex, Title, Pclass, Cabin1, is_Cabin, Family_type, Age_desc, Embarked)
  X_continuous <- X %>% 
    select(-c(Sex, Title, Pclass, Cabin1, is_Cabin, Family_type, Age_desc, Embarked))
  
  X_dummy <- convDummies(df_category, is.drop = TRUE)
  
  X <- cbind(X_continuous, X_dummy)
  
  
  # trainデータとtestデータに分割
  train_new <- X[1:891,]
  train_new <- data.frame(Survived = Survived) %>% 
    cbind(train_new)
  test_new <- X[892:1309,]
  
  # 自分以外の家族の生存割合を追加
  fam_suv <- train_new %>% 
    group_by(Last_Name) %>% 
    summarise(f_n = n(), s_n = sum(Survived))
  
  train_new <- train_new %>% 
    left_join(fam_suv) %>% 
    mutate(fam_suv_rate = if_else(f_n==1, 0, (s_n-Survived)/(f_n-1))) %>% 
    select(-f_n, -s_n, -Last_Name)
  
  test_new <- test_new %>% 
    left_join(fam_suv) %>% 
    mutate(fam_suv_rate = if_else(Family_size==1, 0, s_n/f_n)) %>% 
    select(-f_n, -s_n, -Last_Name)
  
  fam_suv_df <- train_new %>% 
    select(-Survived)
  fam_suv_df_na <- test_new[is.na(test_new$fam_suv_rate),] %>% 
    select(-fam_suv_rate)
  fam_suv.fit <- ranger(fam_suv_rate~., fam_suv_df[,29:31])
  pred_fam_suv <- predict(fam_suv.fit, fam_suv_df_na)
  test_new$fam_suv_rate[is.na(test_new$fam_suv_rate)] <- pred_fam_suv$predictions

  train_test <- list()
  train_test[[1]] <- train_new
  train_test[[2]] <- test_new
  
  return(train_test)
}

-2:あらたに追加したfam_suv_rateが乗客の生存に影響を与えていそうかをちょっと確認

# 先程作成したデータ前処理関数で前処理をする。
data <- createData()
## Warning in bind_rows_(x, .id): Unequal factor levels: coercing to character
## Warning in bind_rows_(x, .id): binding character and factor vector, coercing
## into character vector

## Warning in bind_rows_(x, .id): binding character and factor vector, coercing
## into character vector
## Warning in bind_rows_(x, .id): Unequal factor levels: coercing to character
## Warning in bind_rows_(x, .id): binding character and factor vector, coercing
## into character vector

## Warning in bind_rows_(x, .id): binding character and factor vector, coercing
## into character vector
## Warning in bind_rows_(x, .id): Unequal factor levels: coercing to character
## Warning in bind_rows_(x, .id): binding character and factor vector, coercing
## into character vector

## Warning in bind_rows_(x, .id): binding character and factor vector, coercing
## into character vector
## Warning in bind_rows_(x, .id): Unequal factor levels: coercing to character
## Warning in bind_rows_(x, .id): binding character and factor vector, coercing
## into character vector

## Warning in bind_rows_(x, .id): binding character and factor vector, coercing
## into character vector
## Warning: Expected 4 pieces. Missing pieces filled with `NA` in 1304 rows [1, 2,
## 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, ...].
## Joining, by = c("Pclass", "Title")
## Warning in model.matrix.default(~x - 1, model.frame(~x - 1), contrasts = FALSE):
## non-list contrasts argument ignored
## Warning in model.matrix.default(~x - 1, model.frame(~x - 1), contrasts = FALSE):
## non-list contrasts argument ignored

## Warning in model.matrix.default(~x - 1, model.frame(~x - 1), contrasts = FALSE):
## non-list contrasts argument ignored

## Warning in model.matrix.default(~x - 1, model.frame(~x - 1), contrasts = FALSE):
## non-list contrasts argument ignored

## Warning in model.matrix.default(~x - 1, model.frame(~x - 1), contrasts = FALSE):
## non-list contrasts argument ignored

## Warning in model.matrix.default(~x - 1, model.frame(~x - 1), contrasts = FALSE):
## non-list contrasts argument ignored

## Warning in model.matrix.default(~x - 1, model.frame(~x - 1), contrasts = FALSE):
## non-list contrasts argument ignored

## Warning in model.matrix.default(~x - 1, model.frame(~x - 1), contrasts = FALSE):
## non-list contrasts argument ignored
## Joining, by = "Last_Name"Joining, by = "Last_Name"
train <- data[[1]]
test <- data[[2]]


# Surviveとfam_sv_rateの散布図
plot(train$fam_suv_rate+runif(nrow(train), -0.02, 0.02),
     train$Survived+runif(nrow(train), -0.3, 0.3))

# Surviveとfam_sv_rateの密度トレース
dat <- train %>% 
  select(Survived, fam_suv_rate) %>% 
  mutate(Survived = as.factor(Survived))
g <- ggplot(dat, aes(fam_suv_rate, colour=Survived, fill=Survived, alpha=0.5)) +
  geom_density()
plot(g)

-3:予測モデルの構築

# SVMモデルを構築するためのライブラリ
library(e1071)

# 先程作成したデータ前処理関数で前処理をする。
data <- createData()
## Warning in bind_rows_(x, .id): Unequal factor levels: coercing to character
## Warning in bind_rows_(x, .id): binding character and factor vector, coercing
## into character vector

## Warning in bind_rows_(x, .id): binding character and factor vector, coercing
## into character vector
## Warning in bind_rows_(x, .id): Unequal factor levels: coercing to character
## Warning in bind_rows_(x, .id): binding character and factor vector, coercing
## into character vector

## Warning in bind_rows_(x, .id): binding character and factor vector, coercing
## into character vector
## Warning in bind_rows_(x, .id): Unequal factor levels: coercing to character
## Warning in bind_rows_(x, .id): binding character and factor vector, coercing
## into character vector

## Warning in bind_rows_(x, .id): binding character and factor vector, coercing
## into character vector
## Warning in bind_rows_(x, .id): Unequal factor levels: coercing to character
## Warning in bind_rows_(x, .id): binding character and factor vector, coercing
## into character vector

## Warning in bind_rows_(x, .id): binding character and factor vector, coercing
## into character vector
## Warning: Expected 4 pieces. Missing pieces filled with `NA` in 1304 rows [1, 2,
## 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, ...].
## Joining, by = c("Pclass", "Title")
## Warning in model.matrix.default(~x - 1, model.frame(~x - 1), contrasts = FALSE):
## non-list contrasts argument ignored
## Warning in model.matrix.default(~x - 1, model.frame(~x - 1), contrasts = FALSE):
## non-list contrasts argument ignored

## Warning in model.matrix.default(~x - 1, model.frame(~x - 1), contrasts = FALSE):
## non-list contrasts argument ignored

## Warning in model.matrix.default(~x - 1, model.frame(~x - 1), contrasts = FALSE):
## non-list contrasts argument ignored

## Warning in model.matrix.default(~x - 1, model.frame(~x - 1), contrasts = FALSE):
## non-list contrasts argument ignored

## Warning in model.matrix.default(~x - 1, model.frame(~x - 1), contrasts = FALSE):
## non-list contrasts argument ignored

## Warning in model.matrix.default(~x - 1, model.frame(~x - 1), contrasts = FALSE):
## non-list contrasts argument ignored

## Warning in model.matrix.default(~x - 1, model.frame(~x - 1), contrasts = FALSE):
## non-list contrasts argument ignored
## Joining, by = "Last_Name"Joining, by = "Last_Name"
train <- data[[1]]
test <- data[[2]]


# 変数の重要度をみる
rf.fit <- ranger(as.factor(Survived)~., train, num.trees=4000,
                 importance = 'impurity')

# 変数の重要度を可視化
pd <- data.frame(Variable = names(rf.fit$variable.importance),
                 Importance = as.numeric(rf.fit$variable.importance)) %>% 
  arrange(Importance)
p <- ggplot(pd, aes(x=factor(Variable, levels=unique(Variable)), y=Importance)) +
  geom_bar(stat="identity") +
  xlab("Variables") + 
  coord_flip()
plot(p)

-4:ハイパーパラメータのチューニング SVMのハイパーパラメータcostとgammaをチューニングします。

# パラメータチューニング
# Cross Validation
svm.df <- train[(c("Survived", as.character(pd$Variable[17:31])))]
svm.df_t <- test[as.character(pd$Variable[17:31])]


tune_res <- tune.svm(as.factor(Survived)~., data=svm.df)
tune_res$best.model
## 
## Call:
## best.svm(x = as.factor(Survived) ~ ., data = svm.df)
## 
## 
## Parameters:
##    SVM-Type:  C-classification 
##  SVM-Kernel:  radial 
##        cost:  1 
## 
## Number of Support Vectors:  391

-5:予測:cost: 1,gamma: 0.06666667が良いことが分かった

svm.fit <- svm(as.factor(Survived)~., data=svm.df, cost=1, gamma=0.06666667)

# 予測
pred <- predict(svm.fit, svm.df_t)
prediction <- data.frame(PassengerId = 892:1309,
                         Survived = pred)

write.csv(prediction, "prediction.csv", row.names = FALSE)

※余談:runif関数について http://www.f.waseda.jp/sakas/R/ROR/orSimulation.html runif(10)を実行するといつも同じ値になる。(擬似乱数)初期状態が同じならば、生成される関数値は同じになるのは当然 初期状態を変えるために set.seed()という関数が用意されています。任意の整数を引数として指定して関数を実行すると、初期状態が違う乱数が生成されます。

set.seed(2)
runif(nrow(train), -0.3,0.3)
##   [1] -0.1890706440  0.1214244216  0.0439958009 -0.1991688478  0.2663036033
##   [6]  0.2660849752 -0.2225046140  0.2000692894 -0.0191888907  0.0299902450
##  [11]  0.0316044402 -0.1566631443  0.1563079879 -0.1915079396 -0.0568306913
##  [16]  0.2121290718  0.2858390937 -0.1645047233 -0.0331144625 -0.2550123452
##  [21]  0.0971392551 -0.0674702744  0.2021335061 -0.2096991356 -0.0916366506
##  [26] -0.0067360612 -0.2104518823 -0.0857624460  0.2775864290 -0.2205767980
##  [31] -0.2937512848 -0.2012146548  0.1861152867  0.2213166221  0.0085690578
##  [36]  0.0763177719  0.2066574018 -0.1290776554  0.1003353886 -0.2097181488
##  [41]  0.2890367174 -0.1217935589 -0.2309495548 -0.2020794769  0.2664250849
##  [46]  0.1769182941  0.2848127386 -0.0905469536  0.0011819285  0.1862383576
##  [51] -0.2957345772 -0.2911836534  0.1100420537  0.2578321331 -0.1347592809
##  [56]  0.1871158173  0.1715273477  0.2933412933  0.0683717458  0.1261114381
##  [61]  0.1620167139  0.2321904943  0.0750730378 -0.1438199788  0.2154438707
##  [66] -0.0375071988 -0.0671131454 -0.0230993369 -0.1687948840 -0.2604386937
##  [71] -0.1345793840 -0.1137713415 -0.2746946844 -0.1891959221 -0.1899760631
##  [76]  0.1532774499 -0.1271641607  0.2207067974 -0.0584143584  0.0436110021
##  [81] -0.0896144550  0.1031993570 -0.2849697861 -0.0593393773 -0.1800140820
##  [86]  0.2139150005  0.2829092571 -0.1057665379  0.1399148600 -0.0959590559
##  [91]  0.2860531108 -0.0617901529 -0.0720006724  0.0362325781 -0.0217150925
##  [96] -0.1819339040 -0.0438339584 -0.2441848875 -0.2308145239 -0.0359810075
## [101] -0.1794391623 -0.0434165563  0.2883599890  0.1973532753 -0.1278156870
## [106]  0.0575501381  0.2393831677 -0.0279737998 -0.2115493324 -0.2227938104
## [111] -0.2852061974  0.1417868250 -0.0759848613  0.0446261643  0.1951968080
## [116]  0.1882174043  0.2236178042 -0.2336670603  0.2716201421  0.0414012486
## [121] -0.2778789176 -0.1528254502  0.2873308795  0.2314423394 -0.1554102613
## [126]  0.1543269421  0.0377019112 -0.1169381429  0.1161924521 -0.0984326377
## [131] -0.1763343334  0.2515657535 -0.2863125301  0.2782558467 -0.1104808539
## [136]  0.0993650505  0.0201259820  0.1906780317 -0.1888418941 -0.0602894691
## [141] -0.1929280438 -0.1287394736  0.0776818962 -0.1199398310 -0.0337956231
## [146]  0.1381205640  0.1008981219 -0.1130057992 -0.0128531502 -0.1251539094
## [151] -0.1906954719 -0.0835424501  0.2422800186 -0.0635714295  0.1679283164
## [156] -0.1295046321  0.2122324602 -0.1966545189 -0.2524414907 -0.1247610136
## [161]  0.2042227067  0.2671608483 -0.2730208799  0.1550297446 -0.1218672012
## [166]  0.0906326633 -0.2490061294  0.2852886450 -0.2918250411  0.0233216710
## [171]  0.2794690810 -0.2393559335 -0.1459491944  0.2370883327 -0.0672334855
## [176]  0.1765712669 -0.0903619441 -0.2167534159  0.0903053901  0.0264025847
## [181]  0.2671464284  0.0430474479  0.2721801535  0.1681517992 -0.2290293274
## [186]  0.2022670853 -0.2477044094  0.1491599775 -0.2608910057 -0.2533826584
## [191] -0.2369497389 -0.0559881869  0.2849787079 -0.2010999025  0.0018301413
## [196] -0.1790674777 -0.1801668910 -0.1931189333 -0.1356799909 -0.2216278556
## [201]  0.2152149518  0.0870962171  0.0616791995  0.2831884271 -0.0740056599
## [206]  0.1914686923 -0.1639567443 -0.1760948986 -0.1834264835 -0.1556590767
## [211]  0.2878331832  0.0145500905  0.1958224325  0.1025312975  0.2866289021
## [216] -0.2654109289 -0.0979553056 -0.2924357942 -0.0822862286 -0.1741834198
## [221] -0.2087276186  0.2614874458 -0.0593442252 -0.0084981326  0.1088918677
## [226]  0.2124212919  0.2477503031 -0.0144854352  0.1282081798  0.1978520882
## [231]  0.1054787127 -0.0961790083  0.2344979410  0.0172975556  0.2246024824
## [236] -0.1448058433  0.0254676396 -0.1703992768 -0.1699676459 -0.0155755246
## [241]  0.2356404170 -0.1189698240  0.0331313878  0.1531297300  0.2738552545
## [246]  0.2725868915 -0.0999811659  0.0100104634 -0.2110862453 -0.0859082406
## [251]  0.1227397890 -0.2517566155 -0.1490634745 -0.2691388071  0.1431151816
## [256] -0.2917448956 -0.2745870976 -0.1309079228 -0.2755700339  0.0793683135
## [261]  0.1529048000 -0.2694320956  0.0777983122 -0.0857346324  0.1848848440
## [266]  0.1029985449 -0.2868677091  0.1137233801  0.2324127652  0.0223255588
## [271]  0.2310158151  0.2485047065  0.2093879683 -0.1238944585  0.1705118470
## [276] -0.0037788056  0.2895443960 -0.1540793516 -0.2562002883 -0.1610060421
## [281] -0.1320529851  0.2825761913  0.0953974689  0.1020672807 -0.1740968835
## [286]  0.2943734713  0.0204528603  0.0446236366  0.1633438419 -0.0857463415
## [291] -0.1460032609 -0.1101324742  0.1466661677 -0.0002004147  0.1252855112
## [296] -0.0510621287 -0.1740532704 -0.2514824109 -0.2044259290  0.0024537646
## [301]  0.2012644033 -0.0075300103 -0.0403608651  0.2284149508  0.1589470284
## [306] -0.2670834081 -0.1804693436  0.1120948132  0.2395504290 -0.2725567861
## [311] -0.2462291446 -0.0354739144  0.1667793886 -0.2159489438  0.1072492156
## [316] -0.2714411942  0.0633886535 -0.0299133348  0.1486685046 -0.1937102862
## [321]  0.0929142694 -0.2015349298 -0.1429717668 -0.2429775688 -0.0633239024
## [326] -0.1720690610  0.0843188403 -0.1454282062 -0.2432315743 -0.2577609952
## [331] -0.1869862181  0.2238830924  0.2886621566 -0.0654481794 -0.2892608933
## [336] -0.2732732377 -0.2353414480  0.0421805697  0.2034112556  0.1890178956
## [341]  0.2171090904  0.2119000912  0.1797026309 -0.2881609064  0.0136026578
## [346] -0.0818928993  0.0761908899  0.2495507437 -0.1903077181 -0.0308458089
## [351] -0.1457152285  0.0564711386 -0.0621087138  0.2241626448 -0.1950113758
## [356]  0.1857062396  0.1765336662  0.0629305563 -0.2687038487  0.1147933690
## [361] -0.2091538313 -0.1796556069 -0.2379077311 -0.2924028852  0.0915234620
## [366] -0.1547761502 -0.2226387978 -0.2650062163  0.1240973872 -0.2816685678
## [371]  0.2281945146 -0.2902133260  0.0060382026  0.0866016262  0.1180620108
## [376]  0.0947599331 -0.1460876753  0.2986634491  0.1156461068 -0.2696097999
## [381] -0.2390007702 -0.0119002858 -0.0183583206 -0.1402824573 -0.2464433639
## [386]  0.0668764409 -0.0630016064  0.0237714558  0.2169635748  0.1514445524
## [391]  0.1549281623  0.2543376319 -0.1026180916 -0.2061744521 -0.1708822089
## [396] -0.2323058822 -0.1825293452  0.2145966166 -0.1633757021  0.1602125610
## [401]  0.0702852979  0.0414384765 -0.2076177307 -0.2791000708  0.2987720741
## [406]  0.2013442101  0.0519372162 -0.0965299945 -0.1998699371  0.1844460906
## [411]  0.0896704813  0.1233673445 -0.0291055987 -0.2566695525 -0.0822216623
## [416]  0.0882255414  0.1353408708 -0.0465199835  0.0548694350  0.1787397342
## [421]  0.2085673390 -0.2996020672 -0.1200100830  0.1163321359  0.2782614869
## [426] -0.2221412205 -0.2545451348  0.0405277080  0.0330905586 -0.2630354761
## [431]  0.1045033875  0.2484104334  0.2326643231 -0.1051181733 -0.2443970076
## [436]  0.1986693744 -0.2236675791  0.2212167327  0.2718578864 -0.0005141676
## [441]  0.0928432783 -0.1837243399  0.1577135017  0.0284499298 -0.1717007599
## [446]  0.1150601621  0.2836880457  0.0336870548  0.0168469619 -0.1700435960
## [451]  0.1083391540  0.1476101001 -0.0214785731 -0.2175491625  0.1886277675
## [456]  0.1992967555 -0.0874139516  0.2872397021  0.2928210134  0.0807954007
## [461]  0.2652914269 -0.2915955225 -0.2848010459 -0.0082088082 -0.1392888113
## [466]  0.1584474343 -0.0071673805  0.1481384077 -0.2744605767 -0.0356143034
## [471] -0.2123604937 -0.0348340228 -0.1295314616 -0.2558254539  0.1112104347
## [476]  0.1768910756  0.0229256972 -0.2852473036 -0.1330080519  0.2045679503
## [481] -0.0195535117  0.1561268457  0.2988384456  0.1666984503  0.2277402474
## [486] -0.0038845717  0.1252307672 -0.0074570433  0.1692245498  0.2470868248
## [491] -0.1284046534  0.0650226833  0.0246002199  0.2978700672  0.0665068705
## [496] -0.1737649446 -0.1094422619  0.2435162312 -0.1059151753  0.0365436673
## [501]  0.1152033279  0.0359741505 -0.0943852758 -0.1593014999 -0.0422383457
## [506]  0.1420203969 -0.0752059186 -0.0067925003  0.1803070205  0.1098257740
## [511]  0.1114111322 -0.2432111329 -0.0715862396 -0.0558164409 -0.0673288455
## [516]  0.0551562019  0.2019388166  0.0123086661 -0.0408082282  0.2308376522
## [521]  0.2462196853 -0.2678759521 -0.0235056971  0.1303968131 -0.0757631608
## [526] -0.2820546411 -0.2833420912  0.1193726332 -0.1447184537  0.2344085336
## [531] -0.2514953960  0.2733831445  0.2839615507 -0.2159054293  0.1066835771
## [536]  0.1747184118  0.1206333193 -0.1368288889 -0.0087806513  0.2262811436
## [541] -0.2980425392  0.2748733391 -0.0112760432  0.2760915484  0.0011337443
## [546] -0.2865889200 -0.2338617596  0.1485396636  0.0594384194  0.1682578103
## [551]  0.2674650550 -0.0852622446 -0.0085004393  0.0158583669  0.2090150254
## [556]  0.0006967514 -0.0932625290  0.0497394817  0.0160835755  0.2441993960
## [561]  0.2874691049 -0.2911982474  0.1451990719 -0.0135248513  0.2397680135
## [566] -0.1127263305 -0.1410379906  0.0311277159  0.2469271524 -0.2355446008
## [571]  0.2716775863  0.0485354758  0.2277287163  0.1840785263  0.0014790128
## [576]  0.2016153135  0.2424844551 -0.2984926205 -0.0222257939 -0.1837024505
## [581] -0.2222989821 -0.2204269190  0.1329086701  0.0530459813  0.0213144969
## [586]  0.1542241232 -0.0552632878 -0.2476510167  0.2589569977  0.1339092473
## [591] -0.0830193012 -0.0367285298  0.0973580726 -0.2807823805 -0.2892134918
## [596]  0.1434717500 -0.2488388836 -0.1619192700 -0.1518951176 -0.2838120463
## [601] -0.0748817888 -0.2468426969 -0.0742831655 -0.1651150113  0.1870433275
## [606] -0.2150638415 -0.2821881057 -0.1651025060  0.1607822641  0.0826344185
## [611]  0.1712370771 -0.0998331440  0.0463476299 -0.1472040262  0.1929127500
## [616] -0.1382123896  0.2356688193  0.0990696701 -0.1512709738  0.2901268777
## [621]  0.1181033647  0.1001589430 -0.1081099078 -0.0933729455 -0.1153118384
## [626] -0.2851534281 -0.2854851998  0.1862859966 -0.1292839250 -0.1644206752
## [631]  0.1096345848 -0.0720058382  0.2329435792  0.0881624054  0.0281059074
## [636]  0.0990836370  0.0211244374 -0.1951137580 -0.0477006014 -0.0048005829
## [641] -0.1145781659  0.2458241716  0.2172421165 -0.1335653284  0.1929836400
## [646]  0.0716354230  0.0853665928  0.1489561717  0.0696357891 -0.1860674185
## [651]  0.1211556919 -0.0448999977  0.2002049788 -0.1064510709  0.2831061083
## [656] -0.0204656067  0.2601323033  0.0792053367 -0.0734486128 -0.2255976560
## [661]  0.1970640179  0.0073148672 -0.0209589704  0.2541606400 -0.0460829433
## [666] -0.2863643581  0.1602436738 -0.2820543719  0.2088721750 -0.2400570162
## [671] -0.0723904506 -0.0605929359  0.1668509786 -0.2843727688 -0.0051341701
## [676]  0.2065824433  0.2593317533  0.2190019950  0.1036843367 -0.1804090559
## [681]  0.0416706499 -0.2003143708  0.0904267101 -0.0944777376 -0.2407695647
## [686] -0.1725943761  0.0549236760  0.0104496516  0.1585696247  0.1023349789
## [691] -0.0595559394 -0.2619509366 -0.0750811096 -0.2632771133  0.2023832286
## [696] -0.1281735599  0.1777397814  0.0733246836  0.0894382178  0.0143962255
## [701]  0.2563539885  0.2395265318  0.1484649599  0.0330876026 -0.0865868730
## [706] -0.2669484854  0.2635314537 -0.0522737059  0.2940464768 -0.2956182340
## [711]  0.2514942921 -0.2043645458 -0.1960263296 -0.1209975920  0.1785974795
## [716] -0.1737054585  0.1612774299  0.0213460905  0.0294196987 -0.1379250818
## [721]  0.2640421454  0.2334450867  0.2536015957 -0.1188679925 -0.0840669740
## [726]  0.1714424296 -0.1144004926  0.2995619662 -0.2821705624 -0.1167444434
## [731] -0.2236673907  0.0627975589 -0.1056402539  0.2652025571  0.2278013835
## [736] -0.1112495920 -0.0753520971  0.0028333389  0.0099722482 -0.1799233365
## [741] -0.0421435200 -0.0664708673  0.2933015338  0.1125254754 -0.1735134093
## [746] -0.0309378189  0.2344620547  0.0757687412 -0.0082432066 -0.1259318206
## [751] -0.1476933827 -0.0652792328 -0.0591310329  0.2852489325  0.2966083776
## [756] -0.0541752726  0.0376911629 -0.2813151794  0.1643917494  0.2909411590
## [761] -0.0993443796 -0.0246176046 -0.1619820493  0.2526240780  0.0342663154
## [766]  0.0677026969 -0.1576213407 -0.0191056482  0.2435966724  0.0505414566
## [771] -0.2653723009 -0.1900502410  0.0110454412 -0.0633438871 -0.0068314721
## [776] -0.2091202939  0.2527146405  0.1299421156  0.1779014417 -0.0784092918
## [781]  0.0436434675 -0.0664656139  0.2458831773  0.0856466908  0.2312291910
## [786] -0.2585672912  0.1850105734 -0.2595106067 -0.0278057184 -0.1919364480
## [791]  0.0804817472  0.1579425146 -0.2026822182 -0.2060639053  0.2221674653
## [796] -0.1687693267  0.0545328016  0.1205038589  0.1925039290  0.1303872050
## [801] -0.0508535673  0.0188632546 -0.2980522715 -0.1487401660 -0.2068626480
## [806]  0.2273038748 -0.1778933023  0.0501170425  0.1826840318 -0.1411700506
## [811] -0.0565543630 -0.0717849308 -0.1554292375  0.2052418226 -0.2957403871
## [816] -0.0141507807  0.2247094297  0.0401271912  0.0004947703  0.2247126899
## [821]  0.0145763744 -0.2444693387 -0.2192570978 -0.2741874450  0.0477163587
## [826] -0.2550485609 -0.2344557425 -0.2838116993 -0.0302056655  0.1816674925
## [831] -0.2432275336 -0.2869640152  0.2195980376  0.0493223644 -0.2059258566
## [836]  0.0086421057  0.2654784174  0.2154439696  0.0686830020  0.0727376918
## [841]  0.1621244155  0.0355340781 -0.2372189110 -0.2035629782  0.2526106919
## [846]  0.2152976308  0.1610215763 -0.2870440645  0.2400178852 -0.0467666420
## [851]  0.1893723168 -0.2004057457  0.1213977266 -0.2120497143  0.1701905304
## [856] -0.1666168068 -0.2292200984  0.2703756181  0.0811964471 -0.0177397768
## [861] -0.2277463670 -0.0118830853 -0.0791761067  0.2454015871 -0.2082764195
## [866]  0.2133254907  0.2444288203  0.2399153521  0.0089673033 -0.0499317866
## [871] -0.0184947308 -0.1816461455 -0.1021323158  0.2732335354  0.0508950157
## [876]  0.0711406654 -0.0028270637  0.0109117570 -0.1048551772  0.0316904319
## [881] -0.2893301361 -0.2658164094 -0.0667593932 -0.2339644711 -0.2651434111
## [886] -0.1844370855  0.0699131310  0.0561750791  0.0586114075  0.2439574598
## [891] -0.0326856384

————————————————————————-

ランダムフォレストでデータを分析するアルゴリズム

#ランダムフォレストで使用するデータ - Titanics.rpart - Titanic - Titanichはtraingが統計処理されたデータでありこの演習には不向き - cordataは、グラフィック用に処理されたデータでありtrainのPclasswを3区分したり、sexを2区分するなど一部質的化したが、Fareh・年齢は量的データのままであり、氏名はそのままであり、欠落のあるデータは補完してある。 - ダミー変数ummy_varn等はカテゴリーデータをintegerデータに置き換えたものであり以下の論点に合わないらしいので使わない - lldataを使っても良いが、(makedummies()を使用してダミー変数)を実施する前のdumとnot_dum結合した、 - train2を使用する

dum <- select(.data = alldata,Survived, Pclass,Sex, Embarked, DFamsize, Title, Group, Wom_chd,PassengerId)
#CabinやNamen等分析に使用しないデータの除外は、
#exclude_cols = c("Cabin", "Name")として、dum = alldata[ !names(alldata) %in% exclude_cols ]としても良いようだ
not_dum  <- select(.data = alldata, Age, SibSp, Parch, Fare, Famsize)
train2 <- cbind(dum, not_dum)[1:891,]#train2作成,892以降はSurvivedデータがないので削除
test <- cbind(dum, not_dum)[892:1309,]
#sapply(train2, class)

#■トレーニングデータ(Survivedgが分かっているものを訓練用とモデル検証テストデータにランダムに分ける)
#割合は適当に訓練用70%、テスト用30%としておこう。
#乱数の再現:set.seed()
#set.seed(100)
#runif(5) 
#runif(5) 
#df.rows = nrow(iris) # 150
#train.rate = 0.7 # 訓練データの比率
#train.index <- sample(df.rows, df.rows * train.rate)
#df.train = iris[train.index,] # 訓練データ
#df.test = iris[-train.index,] # テストデータ
#cat("train=", nrow(df.train), " test=", nrow(df.test))

sapply(train2, class)
##    Survived      Pclass         Sex    Embarked    DFamsize       Title 
##    "factor"    "factor"    "factor"    "factor"    "factor"    "factor" 
##       Group     Wom_chd PassengerId         Age       SibSp       Parch 
##    "factor"    "factor"   "integer"   "numeric"   "integer"   "integer" 
##        Fare     Famsize 
##   "numeric"   "numeric"
head(train2)
##   Survived Pclass    Sex Embarked DFamsize Title Group Wom_chd PassengerId Age
## 1        0      3   male        S    Small    Mr    No      No           1  22
## 2        1      1 female        C    Small   Mrs    No     Yes           2  38
## 3        1      3 female        S   Single  Miss    No     Yes           3  26
## 4        1      1 female        S    Small   Mrs    No     Yes           4  35
## 5        0      3   male        S   Single    Mr    No      No           5  35
## 6        0      3   male        Q   Single    Mr    No      No           6  29
##   SibSp Parch    Fare Famsize
## 1     1     0  7.2500       2
## 2     1     0 71.2833       2
## 3     0     0  7.9250       1
## 4     1     0 53.1000       2
## 5     0     0  8.0500       1
## 6     0     0  8.4583       1
head(test)
##     Survived Pclass    Sex Embarked DFamsize Title Group Wom_chd PassengerId
## 892     <NA>      3   male        Q   Single    Mr    No      No         892
## 893     <NA>      3 female        S    Small   Mrs    No     Yes         893
## 894     <NA>      2   male        Q   Single    Mr    No      No         894
## 895     <NA>      3   male        S   Single    Mr    No      No         895
## 896     <NA>      3 female        S    Small   Mrs    No     Yes         896
## 897     <NA>      3   male        S   Single    Mr    No     Yes         897
##      Age SibSp Parch    Fare Famsize
## 892 34.5     0     0  7.8292       1
## 893 47.0     1     0  7.0000       2
## 894 62.0     0     0  9.6875       1
## 895 27.0     0     0  8.6625       1
## 896 22.0     1     1 12.2875       3
## 897 14.0     0     0  9.2250       1
#ランダムフォーレストにかける。引数はhttps://www1.doshisha.ac.jp/~mjin/R/Chap_32/32.html参照
model = randomForest(Survived ~ ., data = train2)
#分析がうまくいったら、作成した予測モデル(model)の精度をまず確認してみます。
#randomForest()は与えられたデータフレームから学習データを自動的にサンプリング(ランダムに選択)して学習をおこない
#ます。このとき、最終的に学習に使われなかったデータが残存するため、このデータを使って答え合わせをすることができます。その答え合わせの結果で簡易的に予測モデルの精度を確認することができるわけです。

model
## 
## Call:
##  randomForest(formula = Survived ~ ., data = train2) 
##                Type of random forest: classification
##                      Number of trees: 500
## No. of variables tried at each split: 3
## 
##         OOB estimate of  error rate: 16.5%
## Confusion matrix:
##     0   1 class.error
## 0 493  56   0.1020036
## 1  91 251   0.2660819
model$importance
##             MeanDecreaseGini
## Pclass             28.566202
## Sex                37.939797
## Embarked            8.646572
## DFamsize           13.395351
## Title              56.628547
## Group               4.941077
## Wom_chd            35.584599
## PassengerId        41.471730
## Age                35.823323
## SibSp               9.548199
## Parch               5.772066
## Fare               50.672617
## Famsize            15.648935
varImpPlot(model)

予測結果

prediction = predict(model,test)
solution <- data.frame(PassengerID = test$PassengerId, Survived = prediction)
#solution
write.csv(solution, file = 'test_Solution.csv', row.names = F)

train2データを予測値と実測値に分けた精度の検証を行う

#prediction2は文字列行列であるため、interger型変換しなしと、pred_b <- ifelse(pred > 0.5, 1, 0)の演算ができない。

prediction2 = predict(model,train2)
(result <- table(prediction2, train2$Survived))# ()で括って内容表示
##            
## prediction2   0   1
##           0 538  43
##           1  11 299
(accuracy_prediction = sum(diag(result)) / sum(result))
## [1] 0.9393939

提出用に予測値と実測値一つの表にまとめ,精度の検証結果をPassengerId共にcsv出力

#提出用にPassengerIdと予想したpredictionの列を持つdata.frameを作成する
solution <- data.frame(PassengerID = train2$PassengerId, Survived =train2$Survived, predictSurvived = prediction2)
head(solution)
##   PassengerID Survived predictSurvived
## 1           1        0               0
## 2           2        1               1
## 3           3        1               1
## 4           4        1               1
## 5           5        0               0
## 6           6        0               0
write.csv(solution, file = 'train2Solution.csv', row.names = F)


#http://smrmkt.hatenablog.jp/entry/2012/12/20/232113
#https://momonoki2017.blogspot.com/2018/04/r007-riris.html
#http://yuranhiko.hatenablog.com/entry/DataAnalysis_R_caret_LinearRegression

(脱線1:Rで3D)

#library(rgl)
#open3d() # 3Dグラフィックのウィンドウのみを生成
# とりあえず単純な球体に乱子の画像を貼り付ける
#spheres3d (c(0,0,0),  texture= "c\temp\ani.png", radius=1, color="white",alpha=0.8)
# この状態で,画像の適当な場所でマウスの左クリックを押したまま回転できます
# ホイールを使うと拡大もできます
# 自動的に回転させてみる(この場合ImageMagickをインストールしている必要はありません)
#if (!rgl.useNULL()) play3d(spin3d(axis=c(0,0,1), rpm=8), duration=20 )
# C:\temp というフォルダを用意して,anime.gifを作成(ImageMagickが必要です)
# Mac の場合は
# Sys.setenv(PATH=paste("/opt/local/bin", Sys.getenv("PATH"), sep=":")
# としてImageMagickのconvertプログラムの場所を指定する必要があります
#movie3d(spin3d(), ,fps = 16,duration=5,movie = "c\temp\ani")
# 作成されたanime.gifはブラウザで開きます.Internet ExplorerやFirefoxのアイコンにドラッグ&ドロップします.

(脱線2:cordataの使い方)

# (脱線:cordataの使い方)
#よく教科書に載っている「相関係数がρのときの散布図」をRで作る。
#http://ryotamugiyama.com/wp-content/uploads/2016/01/corr_scatter.html
#cordata関数は、散布図のの作成に優れている
#cormat <- alldata dum <- cordata %>% select(Survived, Pclass,Sex, Embarked, Dfamsize, Title, group, Wom_chd)
#select(Survived, Pclass, Sex, Embarked, DFamsize, Title, group, Wom_chd)
r2norm <- function(n, mu, sigma, rho) {
  tmp <- rnorm(n) 
  x   <- mu+sigma*tmp
  y   <- rho*x + sqrt(1-rho^2)*rnorm(n)
  return(data.frame(x=x,y=y))
}
time <- seq(-1, 1, length=21)
size <- 5000

cordata <- data.frame()

for (i in time){
  cor <- i
  cordata_mini <- r2norm(size, 0, 1, i)
  cordata_mini$cor <- cor
  cordata <- rbind(cordata, cordata_mini)
}
corsample <- data.frame()

for (i in time){
  corsub <- cor(cordata$x[cordata$cor == i], cordata$y[cordata$cor == i])
  cortrue <- i
  corsub <- cbind(cortrue, corsub)
  corsample <- rbind(corsample, corsub)
}

## 95%信頼区間も確認しておく
corsample$lowerCI <- corsample$corsub - 1.96*sqrt((1 - corsample$corsub^2)/(size - 2))
corsample$upperCI <- corsample$corsub + 1.96*sqrt((1 - corsample$corsub^2)/(size - 2))
colnames(corsample) <- c("True", "Sample", "lower 95% CI", "upper 95% CI")

kable(corsample)
True Sample lower 95% CI upper 95% CI
-1.0 -1.0000000 -1.0000000 -1.0000000
-0.9 -0.9019475 -0.9139201 -0.8899750
-0.8 -0.7949512 -0.8117707 -0.7781317
-0.7 -0.7002343 -0.7200269 -0.6804417
-0.6 -0.5767970 -0.5994445 -0.5541496
-0.5 -0.5120474 -0.5358613 -0.4882336
-0.4 -0.3777884 -0.4034580 -0.3521189
-0.3 -0.3124347 -0.3387709 -0.2860985
-0.2 -0.2099618 -0.2370679 -0.1828556
-0.1 -0.0969085 -0.1245021 -0.0693149
0.0 -0.0295103 -0.0572223 -0.0017982
0.1 0.1006581 0.0730748 0.1282414
0.2 0.1932507 0.1660491 0.2204522
0.3 0.3082779 0.2819040 0.3346517
0.4 0.4113374 0.3860673 0.4366075
0.5 0.5066561 0.4827538 0.5305584
0.6 0.5898091 0.5674207 0.6121975
0.7 0.6990309 0.6792056 0.7188561
0.8 0.7981846 0.7814833 0.8148860
0.9 0.8999498 0.8878623 0.9120373
1.0 1.0000000 1.0000000 1.0000000
cordata1 <- subset(cordata, cor > -1)
p1 <- ggplot(cordata1, aes(x = x, y = y)) + 
  geom_point() + 
  facet_wrap(~cor) + 
  xlim(-4,4) + 
  ylim(-4,4)

p1
## Warning: Removed 8 rows containing missing values (geom_point).

#いくつかピックアップして抜き出すと次のようになる。

cordata$cor <- round(cordata$cor, digits = 1)

cordata2 <- subset(cordata, abs(cor) == 0.9 | abs(cor) == 0.7 | abs(cor) == 0.5 | abs(cor) == 0.3 | abs(cor) == 0)

p2 <- ggplot(cordata2, aes(x = x, y = y)) + 
  geom_point() + 
  facet_wrap(~cor) + 
  xlim(-4,4) + 
  ylim(-4,4)

p2
## Warning: Removed 4 rows containing missing values (geom_point).