0. これまでの記録

2020年1月3日までの作業内容や海苔の様子については以下を参照

(ファイルサイズの都合で1つのhtmlとしてアップロードできないため)

1. 海苔の成長データ

使うライブラリ

library(gsheet)

データの在処は表示しない

データの読み込み

data_ <- gsheet2tbl(url)

1.1 中間刈り取りまでのデータ

data.md <- data_[1:9,]
colnames(data.md) <- c("Date", "Day", "Temp", "Off_Fuji", "Off_Ctr", "Off_Rbw",
                       "Bch_Fuji", "Bch_Ctr", "Bch_Rbw")
DT::datatable(data.md[c(1:9)])

表の凡例 Temp: Water temperature, Off: Offshore, Bch: Beach, Fuji: Fuji TV, Ctr: Center, Rbw: Rainbow bridge

1.2 地点別のグラフ

par(family = "HiraKakuProN-W3") #Macintoshの場合
par(oma = c(0, 0, 4, 0)) 
par(mfrow=c(2,3)) 

plot(data_$Day, data_$Offshore_Fuji, xlim = c(0,50), ylim=c(0,500), 
     type = "b", pch = 4, col = 1, xlab = "Day", ylab = "Length (mm) ", 
     main = "沖・フジTV側")

plot(data_$Day, data_$Offshore_Center, xlim = c(0,50), ylim = c(0,500), 
     type = "b", pch = 4, col = 1, xlab = "Day", ylab = "Length (mm) ",
     main = "沖・中央")

plot(data_$Day, data_$Offshore_Rainbow, xlim = c(0,50), ylim = c(0,500), 
     type = "b", pch = 4, col = 1, xlab = "Day", ylab = "Length (mm) ",
     main = "沖・レインボー側")

plot(data_$Day, data_$Beach_Fuji, xlim=c(0,50), ylim=c(0,500), type = "b", 
     pch = 4, col = 1, xlab = "Day", ylab = "Length (mm) ", 
     main = "浜・フジTV側")

plot(data_$Day, data_$Beach_Center, xlim=c(0,50), ylim=c(0,500), 
     type = "b", pch = 4, col = 1, xlab = "Day", ylab = "Length (mm) ", 
     main = "浜・中央")

plot(data_$Day, data_$Beach_Rainbow, xlim = c(0,50), ylim = c(0,500), 
     type = "b", pch = 4, col = 1, xlab = "Day", ylab = "Length (mm) ", 
     main = "浜・レインボー側")

2. 海苔の成長予測

2.1 中間刈り取りまでのモデル

\(length = a \times b^{day}\)

2.2 中間刈り取りまでの指数回帰

# 指数回帰の係数を推定する
exp.b.f <- nls(Bch_Fuji ~ a*b^Day, data = data.md, start = list(a = 1, b = 1)) 
exp.b.c <- nls(Bch_Ctr  ~ a*b^Day, data = data.md, start = list(a = 1, b = 1)) 
exp.b.r <- nls(Bch_Rbw  ~ a*b^Day, data = data.md, start = list(a = 1, b = 1)) 

exp.o.f <- nls(Off_Fuji ~ a*b^Day, data = data.md, start = list(a = 1, b = 1)) 
exp.o.c <- nls(Off_Ctr  ~ a*b^Day, data = data.md, start = list(a = 1, b = 1)) 
exp.o.r <- nls(Off_Rbw  ~ a*b^Day, data = data.md, start = list(a = 1, b = 1)) 

# 推定値を格納する
sum.b.f <- summary(exp.b.f)
sum.b.c <- summary(exp.b.c)
sum.b.r <- summary(exp.b.r)

sum.o.f <- summary(exp.o.f)
sum.o.c <- summary(exp.o.c)
sum.o.r <- summary(exp.o.r)

b.f.a <- sum.b.f$coefficients[1,1]; b.f.b <- sum.b.f$coefficients[2,1]
b.c.a <- sum.b.c$coefficients[1,1]; b.c.b <- sum.b.c$coefficients[2,1]
b.r.a <- sum.b.r$coefficients[1,1]; b.r.b <- sum.b.r$coefficients[2,1]

o.f.a <- sum.o.f$coefficients[1,1]; o.f.b <- sum.o.f$coefficients[2,1]
o.c.a <- sum.o.c$coefficients[1,1]; o.c.b <- sum.o.c$coefficients[2,1]
o.r.a <- sum.o.r$coefficients[1,1]; o.r.b <- sum.o.r$coefficients[2,1]

2.3 指数回帰の分析結果

沖・フジTV側

summary(exp.b.f)
## 
## Formula: Bch_Fuji ~ a * b^Day
## 
## Parameters:
##   Estimate Std. Error t value Pr(>|t|)    
## a 0.105381   0.015862   6.644  0.00266 ** 
## b 1.328494   0.007774 170.880 7.04e-09 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 1.324 on 4 degrees of freedom
## 
## Number of iterations to convergence: 11 
## Achieved convergence tolerance: 2.911e-07
##   (3 observations deleted due to missingness)

沖・中央

summary(exp.b.c)
## 
## Formula: Bch_Ctr ~ a * b^Day
## 
## Parameters:
##   Estimate Std. Error t value Pr(>|t|)    
## a  0.10383    0.02758   3.765   0.0197 *  
## b  1.32282    0.01367  96.781 6.83e-08 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 2.115 on 4 degrees of freedom
## 
## Number of iterations to convergence: 10 
## Achieved convergence tolerance: 4.45e-06
##   (3 observations deleted due to missingness)

沖・レインボー側

summary(exp.b.r)
## 
## Formula: Bch_Rbw ~ a * b^Day
## 
## Parameters:
##   Estimate Std. Error t value Pr(>|t|)    
## a  0.02174    0.01341   1.621     0.18    
## b  1.40482    0.03353  41.899 1.94e-06 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 3.449 on 4 degrees of freedom
## 
## Number of iterations to convergence: 13 
## Achieved convergence tolerance: 3.185e-06
##   (3 observations deleted due to missingness)

浜・フジTV側

summary(exp.o.f)
## 
## Formula: Off_Fuji ~ a * b^Day
## 
## Parameters:
##   Estimate Std. Error t value Pr(>|t|)    
## a 0.204750   0.020561   9.958 0.000571 ***
## b 1.268833   0.004989 254.347 1.43e-09 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 0.6996 on 4 degrees of freedom
## 
## Number of iterations to convergence: 8 
## Achieved convergence tolerance: 1.15e-06
##   (3 observations deleted due to missingness)

浜・中央

summary(exp.o.c)
## 
## Formula: Off_Ctr ~ a * b^Day
## 
## Parameters:
##   Estimate Std. Error t value Pr(>|t|)    
## a   0.4466     0.1153   3.873   0.0179 *  
## b   1.2262     0.0125  98.093 6.48e-08 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 2.065 on 4 degrees of freedom
## 
## Number of iterations to convergence: 8 
## Achieved convergence tolerance: 4.404e-06
##   (3 observations deleted due to missingness)

浜・レインボー側

summary(exp.o.r)
## 
## Formula: Off_Rbw ~ a * b^Day
## 
## Parameters:
##   Estimate Std. Error t value Pr(>|t|)    
## a 0.360385   0.043313    8.32  0.00114 ** 
## b 1.236443   0.005853  211.24 3.01e-09 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 0.9047 on 4 degrees of freedom
## 
## Number of iterations to convergence: 9 
## Achieved convergence tolerance: 1.468e-06
##   (3 observations deleted due to missingness)

これらの結果をまとめると以下の通り

海苔の長さの推定値を求める方法

沖・フジTV側

沖・中央
沖・レインボー側
浜・フジTV側
浜・中央
浜・レインボー側

例えば,20日後の長さの推定値を求めたい場合,\(length = a \times b^{day}\)であるから,aの値と,bの値の20乗をかけることで,長さの推定値が求まる。

仮に\(a = 0.38\), \(b = 1.24\)で20日後の長さを求めるのであれば,\(0.38 \times 1.24^{20} = 28.06\)となる。

2.4 成長予測のグラフ

# 作図する
plot(data.md$Day, data.md$Bch_Fuji, xlim = c(0,36), ylim = c(0,500), 
     pch = 0, col = 2,xlab = "Day", ylab = "Length (mm) ",
     main = "Odaiba-nori Growth Estimate 2019-20")
par(new=T)
plot(data.md$Day, data.md$Bch_Ctr, xlim = c(0,36), ylim = c(0,500),
     pch = 1, col = 2, axes = F, xlab = "", ylab = "")
par(new=T)
plot(data.md$Day, data.md$Bch_Rbw, xlim = c(0,36), ylim = c(0,500), 
     pch = 2, col = 2, axes = F, xlab = "", ylab = "")
par(new = T)

plot(data.md$Day, data.md$Off_Fuji, xlim = c(0,36), ylim = c(0,500), 
     pch = 0, col = 4, axes = F, xlab="", ylab="")
par(new = T)
plot(data.md$Day, data.md$Off_Ctr, xlim = c(0,36), ylim = c(0,500),
     pch = 1, col = 4, axes = F, xlab = "", ylab = "")
par(new = T)
plot(data.md$Day, data.md$Off_Rbw, xlim = c(0,36), ylim = c(0,500), 
     pch = 2, col = 4, axes = F, xlab = "", ylab = "")

data.day <- c(1:36)
lines(data.day, b.f.a*b.f.b^data.day, col = 2, lty = 1, lwd = 2)
lines(data.day, b.c.a*b.c.b^data.day, col = 2, lty = 3, lwd = 2)
lines(data.day, b.r.a*b.r.b^data.day, col = 2, lty = 4, lwd = 2)

lines(data.day, o.f.a*o.f.b^data.day, col = 4, lty = 1, lwd = 2)
lines(data.day, o.c.a*o.c.b^data.day, col = 4, lty = 3, lwd = 2)
lines(data.day, o.r.a*o.r.b^data.day, col = 4, lty = 4, lwd = 2)

legend (0, 500, 
c("Beach_Fuji", "Beach_Center", "Beach_Rainbow", 
  "Offshore_Fuji", "Offshore_Center", "Offshore_Rainbow"),
lwd = 1, 
pch = c(0,1,2,0,1,2), lty = c(1,3,4,1,3,4), col = c(2,2,2,4,4,4), 
bty = "n", bg = "n", cex = 0.8
)

  • このグラフは凡例の順に描画しているため回帰直線が重なり見えないことがある

2.5 観察・作業予定日ごとの成長予測

# dec 29 (16days)
days <- 16
d29.b.f <- b.f.a*b.f.b^days; d29.b.c <- b.c.a*b.c.b^days
d29.b.r <- b.r.a*b.r.b^days; d29.o.f <- o.f.a*o.f.b^days
d29.o.c <- o.c.a*o.c.b^days; d29.o.r <- o.r.a*o.r.b^days

# Jan 3 (21days)
days <- 21
j3.b.f <- b.f.a*b.f.b^days; j3.b.c <- b.c.a*b.c.b^days
j3.b.r <- b.r.a*b.r.b^days; j3.o.f <- o.f.a*o.f.b^days
j3.o.c <- o.c.a*o.c.b^days; j3.o.r <- o.r.a*o.r.b^days

# Jan 8 (26days)
days <- 26
j8.b.f <- b.f.a*b.f.b^days; j8.b.c <- b.c.a*b.c.b^days
j8.b.r <- b.r.a*b.r.b^days; j8.o.f <- o.f.a*o.f.b^days
j8.o.c <- o.c.a*o.c.b^days; j8.o.r <- o.r.a*o.r.b^days

# Jan 11 (29days)
days <- 29
j11.b.f <- b.f.a*b.f.b^days; j11.b.c <- b.c.a*b.c.b^days
j11.b.r <- b.r.a*b.r.b^days; j11.o.f <- o.f.a*o.f.b^days
j11.o.c <- o.c.a*o.c.b^days; j11.o.r <- o.r.a*o.r.b^days

# Jan 16 (34days)
days <- 34
j16.b.f <- b.f.a*b.f.b^days; j16.b.c <- b.c.a*b.c.b^days
j16.b.r <- b.r.a*b.r.b^days; j16.o.f <- o.f.a*o.f.b^days
j16.o.c <- o.c.a*o.c.b^days; j16.o.r <- o.r.a*o.r.b^days

# Jan 18 (36days)
days <- 36
j18.b.f <- b.f.a*b.f.b^days; j18.b.c <- b.c.a*b.c.b^days
j18.b.r <- b.r.a*b.r.b^days; j18.o.f <- o.f.a*o.f.b^days
j18.o.c <- o.c.a*o.c.b^days; j18.o.r <- o.r.a*o.r.b^days

md.es.tab <- data.frame(t(
             matrix(c(d29.b.f, d29.b.c, d29.b.r, d29.o.f, d29.o.c, d29.o.r,
                        j3.b.f,  j3.b.c,  j3.b.r,  j3.o.f,  j3.o.c,  j3.o.r,
                        j8.b.f,  j8.b.c,  j8.b.r,  j8.o.f,  j8.o.c,  j8.o.r,
                       j11.b.f, j11.b.c, j11.b.r, j11.o.f, j11.o.c, j11.o.r,
                       j16.b.f, j16.b.c, j16.b.r, j16.o.f, j16.o.c, j16.o.r,
                       j18.b.f, j18.b.c, j18.b.r, j18.o.f, j18.o.c, j18.o.r),
                    nrow = 6, ncol = 6)
             ))

colnames(md.es.tab) <- c( "Off_Fuji", "Off_Ctr", "Off_Rbw",
                          "Bch_Fuji", "Bch_Ctr", "Bch_Rbw")
rownames(md.es.tab) <- c("Dec.29", "Jan.03", "Jan.08", 
                         "Jan.11", "Jan.16", "Jan.18")

DT::datatable(format(md.es.tab, digits = 2, nsmall = 2))
  • 単位はmm

3 作業の内容

3.1 2019年12月14日

3.2 2019年12月20日

3.3 2019年12月25日

3.4 2019年12月29日

上記については以下のwebpageを参照

http://rpubs.com/koyo/nori200103


3.5 2020年1月3日

作業内容など

Jan.03
作業時刻 15:00-15:40
水温 13
実測潮位 119cm
参加者 委員長,副委員長,小学生1名,中学生1名,ほか4名(台場担当係長不在)
作業内容 観察,動画撮影。前回の海苔網の高さ調整後成長の早かった部分の抑制ができたため,調整は行わなかった。

作業の様子

海苔の様子

. .

3.6 2020年1月8日

作業内容など

Jan.08
作業時刻 10:00-10:20
水温 NA
実測潮位 135cm
参加者 委員長,台場担当,他2名
作業内容 観察,動画撮影。

作業の様子

海苔の様子

. .