Score = c(3, 13, 13, 8, 11, 9, 12, 7, 16, 15, 18, 6, 21, 34, 26, 11, 24, 14, 21, 5, 17, 17, 23, 19, 7)
Group = c(rep("1", 10), rep("2", 6), rep("3", 9))
dat = data.frame(Group, Score)
dat
## Group Score
## 1 1 3
## 2 1 13
## 3 1 13
## 4 1 8
## 5 1 11
## 6 1 9
## 7 1 12
## 8 1 7
## 9 1 16
## 10 1 15
## 11 2 18
## 12 2 6
## 13 2 21
## 14 2 34
## 15 2 26
## 16 2 11
## 17 3 24
## 18 3 14
## 19 3 21
## 20 3 5
## 21 3 17
## 22 3 17
## 23 3 23
## 24 3 19
## 25 3 7
anova = aov(Score ~ Group, data=dat)
summary(anova)
## Df Sum Sq Mean Sq F value Pr(>F)
## Group 2 312.6 156.28 3.413 0.0512 .
## Residuals 22 1007.4 45.79
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
library(lme4)
## Loading required package: Matrix
fit = lmer(Score ~ 1 + (1 | Group), data=dat, REML=0)
summary(fit)
## Linear mixed model fit by maximum likelihood ['lmerMod']
## Formula: Score ~ 1 + (1 | Group)
## Data: dat
##
## AIC BIC logLik deviance df.resid
## 175.0 178.7 -84.5 169.0 22
##
## Scaled residuals:
## Min 1Q Median 3Q Max
## -1.64958 -0.65718 0.08166 0.52496 2.48793
##
## Random effects:
## Groups Name Variance Std.Dev.
## Group (Intercept) 7.083 2.661
## Residual 45.797 6.767
## Number of obs: 25, groups: Group, 3
##
## Fixed effects:
## Estimate Std. Error t value
## (Intercept) 15.150 2.059 7.358
library(lmerTest)
##
## Attaching package: 'lmerTest'
## The following object is masked from 'package:lme4':
##
## lmer
## The following object is masked from 'package:stats':
##
## step
fit = lmer(Score ~ 1 + (1 | Group), data=dat, REML=0)
summary(fit)
## Linear mixed model fit by maximum likelihood . t-tests use Satterthwaite's
## method [lmerModLmerTest]
## Formula: Score ~ 1 + (1 | Group)
## Data: dat
##
## AIC BIC logLik deviance df.resid
## 175.0 178.7 -84.5 169.0 22
##
## Scaled residuals:
## Min 1Q Median 3Q Max
## -1.64958 -0.65718 0.08166 0.52496 2.48793
##
## Random effects:
## Groups Name Variance Std.Dev.
## Group (Intercept) 7.083 2.661
## Residual 45.797 6.767
## Number of obs: 25, groups: Group, 3
##
## Fixed effects:
## Estimate Std. Error df t value Pr(>|t|)
## (Intercept) 15.150 2.059 2.942 7.358 0.00554 **
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
fit = lmer(Score ~ 1 + Group + (1 | Group), data=dat, REML=0)
## boundary (singular) fit: see ?isSingular
summary(fit)
## Linear mixed model fit by maximum likelihood . t-tests use Satterthwaite's
## method [lmerModLmerTest]
## Formula: Score ~ 1 + Group + (1 | Group)
## Data: dat
##
## AIC BIC logLik deviance df.resid
## 173.4 179.4 -81.7 163.4 20
##
## Scaled residuals:
## Min 1Q Median 3Q Max
## -2.1004 -0.4253 0.1050 0.6774 2.3104
##
## Random effects:
## Groups Name Variance Std.Dev.
## Group (Intercept) 0.0 0.000
## Residual 40.3 6.348
## Number of obs: 25, groups: Group, 3
##
## Fixed effects:
## Estimate Std. Error df t value Pr(>|t|)
## (Intercept) 10.700 2.007 25.000 5.330 1.59e-05 ***
## Group2 8.633 3.278 25.000 2.634 0.0143 *
## Group3 5.633 2.917 25.000 1.931 0.0648 .
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Correlation of Fixed Effects:
## (Intr) Group2
## Group2 -0.612
## Group3 -0.688 0.421
## convergence code: 0
## boundary (singular) fit: see ?isSingular
```
This is an R Markdown document. Markdown is a simple formatting syntax for authoring HTML, PDF, and MS Word documents. For more details on using R Markdown see http://rmarkdown.rstudio.com.
When you click the Knit button a document will be generated that includes both content as well as the output of any embedded R code chunks within the document. You can embed an R code chunk like this:
summary(cars)
## speed dist
## Min. : 4.0 Min. : 2.00
## 1st Qu.:12.0 1st Qu.: 26.00
## Median :15.0 Median : 36.00
## Mean :15.4 Mean : 42.98
## 3rd Qu.:19.0 3rd Qu.: 56.00
## Max. :25.0 Max. :120.00
You can also embed plots, for example:
Note that the echo = FALSE parameter was added to the code chunk to prevent printing of the R code that generated the plot.