Etapas de análisis

Bibliotecas para Data Science

Material

Instalación de herramientas

Lectura de datos

Preprocesamiento de datos

Entrenamiento de modelos

Predicciones

Validación del modelo

Métricas de desempeño

  • Matriz de confusión:
          Truth
Prediction   no  yes
       no  3230  612
       yes  398  684
  • Accuracy y Kappa:
  • Área bajo la curva (ROC):
  • Precisión:
  • Sensitividad:
  • Medidas F:

Recursos

LS0tDQp0aXRsZTogIlRlbnNvciBGbG93IGNvbiBSIg0Kc3VidGl0bGU6ICJUdXRvcmlhbCBFZGdhciBSdcOteiAtIE3DqXhpY28gMjAxOSINCmF1dGhvcjogIltFZGltZXIgRGF2aWQgSmFyYW1pbGxvXShodHRwczovL2VkaW1lci5naXRodWIuaW8vKSINCm91dHB1dDoNCiAgaHRtbF9ub3RlYm9vazoNCiAgICB0b2M6IHRydWUNCiAgICB0aGVtZTogcGFwZXINCiAgICBoaWdobGlnaHQ6IGJyZWV6ZWRhcmsNCiAgICBjc3M6IGVzdGlsby5jc3MNCi0tLQ0KDQpgYGB7ciwgaW5jbHVkZT1GQUxTRX0NCmtuaXRyOjpvcHRzX2NodW5rJHNldChlY2hvID0gVFJVRSwNCiAgICAgICAgICAgICAgICAgICAgICBmaWcuYWxpZ24gPSAiY2VudGVyIiwNCiAgICAgICAgICAgICAgICAgICAgICBmaWcud2lkdGggPSA3LA0KICAgICAgICAgICAgICAgICAgICAgIGZpZy5oZWlnaHQgPSA0LjUsDQogICAgICAgICAgICAgICAgICAgICAgd2FybmluZyA9IEZBTFNFLA0KICAgICAgICAgICAgICAgICAgICAgIG1lc3NhZ2UgPSBGQUxTRSkNCmBgYA0KDQojIEV0YXBhcyBkZSBhbsOhbGlzaXMNCg0KPGNlbnRlcj4NCjxpbWcgc3JjPSJodHRwczovL2dpdGh1Yi5jb20vZWRnYXJhcnVpei90ZW5zb3JmbG93LWNvbi1SL3Jhdy9tYXN0ZXIvaW1hZ2VuZXMvcGFzb3MucG5nIi8+DQo8L2NlbnRlcj4NCg0KIyBCaWJsaW90ZWNhcyBwYXJhICpEYXRhIFNjaWVuY2UqDQoNCjxjZW50ZXI+DQo8aW1nIHNyYz0iaW1nL2JpYmxpb3RlY2FzLnBuZyIvPg0KPC9jZW50ZXI+DQoNCiMgTWF0ZXJpYWwNCg0KLSBbVHVyb3JpYWwgcMOhZ2luYSB3ZWIgUlN0dWRpbyAtIEVkZ2FyIFJ1w616XShodHRwczovL3Jlc291cmNlcy5yc3R1ZGlvLmNvbS9lc3Bhbm9sL3RlbnNvcmZsb3cteS1yKQ0KLSBbR2l0aHViIEVkZ2FyIFJ1w616IC0gVGVuc29yIEZsb3cgY29uIFJdKGh0dHBzOi8vZ2l0aHViLmNvbS9lZGdhcmFydWl6L3RlbnNvcmZsb3ctY29uLVIpDQotIFtEYXRvcyBkZSBlamVtcGxvOiBQcmVkaWNjacOzbiBkZSBww6lyZGlkYSBkZSBjbGllbnRlc10oaHR0cHM6Ly9naXRodWIuY29tL2VkZ2FyYXJ1aXovdGVuc29yZmxvdy1jb24tUi9ibG9iL21hc3Rlci9SbWQvY3VzdG9tZXJfY2h1cm4uY3N2KQ0KDQojIEluc3RhbGFjacOzbiBkZSBoZXJyYW1pZW50YXMNCg0KYGBge3J9DQppbnN0YWxsLnBhY2thZ2VzKCJ0ZW5zb3JmbG93IikNCmluc3RhbGwucGFja2FnZXMoImtlcmFzIikNCg0KbGlicmFyeShrZXJhcykNCmxpYnJhcnkodGVuc29yZmxvdykNCg0KaW5zdGFsbF9rZXJhcygpDQppbnN0YWxsX3RlbnNvcmZsb3coKQ0KYGBgDQoNCiMgTGVjdHVyYSBkZSBkYXRvcw0KDQpgYGB7cn0NCmxpYnJhcnkodGlkeXZlcnNlKQ0KZGF0b3MgPC0gcmVhZF9jc3YoImRhdGEvY3VzdG9tZXJfY2h1cm4uY3N2IikNCmRhdG9zDQpgYGANCg0KIyBQcmVwcm9jZXNhbWllbnRvIGRlIGRhdG9zDQoNCiMjIFRyYWluIHkgVGVzdA0KDQo8Y2VudGVyPg0KPGltZyBzcmMgPSJpbWcvZGF0YXBhcnRpdGlvbi5wbmciLz4NCjwvY2VudGVyPg0KDQpgYGB7cn0NCmxpYnJhcnkocnNhbXBsZSkNCmlkX3BhcnRpdGlvbiA8LSBpbml0aWFsX3NwbGl0KGRhdGEgPSBkYXRvcywgcHJvcCA9IDAuMykNCmRmX3RyYWluIDwtIHRyYWluaW5nKGlkX3BhcnRpdGlvbikNCmRmX3Rlc3QgPC0gdGVzdGluZyhpZF9wYXJ0aXRpb24pDQpgYGANCg0KIyMgIlJlY2V0YSIgDQoNCjxjZW50ZXI+DQo8aW1nIHNyYyA9ImltZy9yZWNpcGVzLnBuZyIvPg0KPC9jZW50ZXI+DQoNCmBgYHtyfQ0KbGlicmFyeShyZWNpcGVzKQ0KZGVwdXJhdGlvbiA8LSBkZl90cmFpbiAlPiUgDQogIHJlY2lwZShDaHVybiB+IC4pICU+JSAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICMgRm9ybWEgZGVsIG1vZGVsbw0KICBzdGVwX3JtKGN1c3RvbWVySUQpICU+JSAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAjIFJlbXVldmUgY29sdW1uYXMNCiAgc3RlcF9uYW9taXQoYWxsX291dGNvbWVzKCksIGFsbF9wcmVkaWN0b3JzKCkpICU+JSAgICAgIyBPbWl0aXIgTkFzDQogIHN0ZXBfZGlzY3JldGl6ZSh0ZW51cmUsIG9wdGlvbnMgPSBsaXN0KGN1dHMgPSA2KSkgJT4lICMgRGlzY3JldGl6YSB2YXJpYWJsZXMgDQogIHN0ZXBfbG9nKFRvdGFsQ2hhcmdlcykgJT4lICAgICAgICAgICAgICAgICAgICAgICAgICAgICMgQ29udmVyc2nDs24gbG9nYXLDrXRtaWNhDQogIHN0ZXBfbXV0YXRlKENodXJuID0gaWZlbHNlKENodXJuID09ICJZZXMiLCAxLCAwKSkgJT4lICMgQ29udmVyc2nDs24gYmluYXJpYQ0KICBzdGVwX2R1bW15KGFsbF9ub21pbmFsKCksIC1hbGxfb3V0Y29tZXMoKSkgJT4lICAgICAgICAjIFZhcmlhYmxlcyBkdW1teQ0KICBzdGVwX2NlbnRlcihhbGxfcHJlZGljdG9ycygpLCAtYWxsX291dGNvbWVzKCkpICU+JSAgICAjIENlbnRyYXIgdmFsb3Jlcw0KICBzdGVwX3NjYWxlKGFsbF9wcmVkaWN0b3JzKCksIC1hbGxfb3V0Y29tZXMoKSkgJT4lICAgICAjIENlbnRyYWRvIGRlIHZhcmlhYmxlcw0KICBwcmVwKCkNCmBgYA0KDQojIyBBcGxpY2FjacOzbiBkZSAiUmVjZXRhIg0KDQojIyMgVHJhaW4NCg0KYGBge3J9DQojIFByZWRpY3RvcmVzIA0KeF9kZl90cmFpbiA8LSBkZXB1cmF0aW9uICU+JSANCiAganVpY2UoYWxsX3ByZWRpY3RvcnMoKSwNCiAgICAgICAgY29tcG9zaXRpb24gPSAibWF0cml4IikNCg0KIyBSZXNwdWVzdGENCnlfZGZfdHJhaW4gPC0gZGVwdXJhdGlvbiAlPiUgDQogIGp1aWNlKGFsbF9vdXRjb21lcygpKSAlPiUgDQogIHB1bGwoKQ0KYGBgDQoNCiMjIyBUZXN0DQoNCmBgYHtyfQ0KIyBQcmVwcm9jZXNhZG8gYmFzZQ0KYmFzZV90ZXN0IDwtIGJha2Uob2JqZWN0ID0gZGVwdXJhdGlvbiwgbmV3X2RhdGEgPSBkZl90ZXN0KQ0KDQojIFByZWRpY3RvcmVzDQp4X2RmX3Rlc3QgPC0gYmFzZV90ZXN0ICU+JSANCiAgc2VsZWN0KC1DaHVybikgJT4lIA0KICBhcy5tYXRyaXgoKQ0KDQojIFJlc3B1ZXN0YQ0KeV9kZl90ZXN0IDwtIGJhc2VfdGVzdCAlPiUgDQogIHNlbGVjdChDaHVybikgJT4lIA0KICBwdWxsKCkNCmBgYA0KDQojIEVudHJlbmFtaWVudG8gZGUgbW9kZWxvcw0KDQojIyBQcmVwYXJhY2nDs24gY29uIGBrZXJhc2ANCg0KPGNlbnRlcj4NCjxpbWcgc3JjID0iaW1nL2tlcmFzLnBuZyIvPg0KPC9jZW50ZXI+DQoNCi0gR3XDrWFzIHBhcmEgY29tcGxlbWVudGFyIGxhIHByZXBhcmFjacOzbiBkZWwgbW9kZWxvIGNvbiBga2VyYXNgOg0KICAgIC0gW01vZGVsbyBzZWN1ZW5jaWFsIGBrZXJhc2BdKGh0dHBzOi8va2VyYXMuaW8vZ2V0dGluZy1zdGFydGVkL3NlcXVlbnRpYWwtbW9kZWwtZ3VpZGUvKQ0KICAgIC0gW01hY2hpbmUgTGVhcm5pbmcgY29uIGBjYXJldGAgeSBga2VyYXNgIC0gRWRpbWVyXShodHRwczovL3JwdWJzLmNvbS9FZGltZXIvNTM2MDM0KQ0KDQpgYGB7cn0NCm1vZGVsb19rZXJhcyA8LSBrZXJhc19tb2RlbF9zZXF1ZW50aWFsKCkgJT4lIA0KICBsYXllcl9kZW5zZSh1bml0cyA9IDE2LA0KICAgICAgICAgICAgICBrZXJuZWxfaW5pdGlhbGl6ZXIgPSAidW5pZm9ybSIsDQogICAgICAgICAgICAgIGFjdGl2YXRpb24gPSAicmVsdSIsDQogICAgICAgICAgICAgIGlucHV0X3NoYXBlID0gbmNvbCh4X2RmX3RyYWluKSkgJT4lIA0KICBsYXllcl9kcm9wb3V0KHJhdGUgPSAwLjEpICU+JSANCiAgbGF5ZXJfZGVuc2UodW5pdHMgPSAxNiwNCiAgICAgICAgICAgICAga2VybmVsX2luaXRpYWxpemVyID0gInVuaWZvcm0iLA0KICAgICAgICAgICAgICBhY3RpdmF0aW9uID0gInJlbHUiKSAlPiUgDQogIGxheWVyX2Ryb3BvdXQocmF0ZSA9IDAuMSkgJT4lIA0KICBsYXllcl9kZW5zZSh1bml0cyA9IDEsDQogICAgICAgICAgICAgIGtlcm5lbF9pbml0aWFsaXplciA9ICJ1bmlmb3JtIiwNCiAgICAgICAgICAgICAgYWN0aXZhdGlvbiA9ICJzaWdtb2lkIikgJT4lIA0KICBjb21waWxlKG9wdGltaXplciA9ICJhZGFtIiwNCiAgICAgICAgICBsb3NzID0gImJpbmFyeV9jcm9zc2VudHJvcHkiLA0KICAgICAgICAgIG1ldHJpY3MgPSBjKCJhY2N1cmFjeSIpKQ0KYGBgDQoNCiMjIEFqdXN0ZSBkZWwgbW9kZWxvDQoNCjxjZW50ZXI+DQo8aW1nIHNyYyA9ImltZy9rZXJhc3RlbnNvci5wbmciLz4NCjwvY2VudGVyPg0KDQpgYGB7cn0NCnJlc3VsdGFkbyA8LSBmaXQoDQogIG9iamVjdCA9IG1vZGVsb19rZXJhcywNCiAgeCA9IHhfZGZfdHJhaW4sDQogIHkgPSB5X2RmX3RyYWluLA0KICBiYXRjaF9zaXplID0gNTAsDQogIGVwb2NocyA9IDM1LA0KICB2YWxpZGF0aW9uX3NwbGl0ID0gMC4zMCwNCiAgdmVyYm9zZSA9IDANCikNCg0KcGxvdChyZXN1bHRhZG8pICsNCiAgdGhlbWVfYncoKQ0KYGBgDQoNCiMjIFByZWRpY2Npb25lcw0KDQpgYGB7cn0NCiMgUHJlZGljY2nDs24gZGUgY2xhc2VzIA0KcnRhX2NsYXNzIDwtIG1vZGVsb19rZXJhcyAlPiUgDQogIHByZWRpY3RfY2xhc3Nlcyh4X2RmX3Rlc3QpICU+JSANCiAgYXMuZmFjdG9yKCkgJT4lIA0KICBmY3RfcmVjb2RlKHllcyA9ICIxIiwgbm8gPSAiMCIpDQoNCiMgUHJlZGljY2nDs24gZGUgcHJvYmFiaWxpZGFkZXMNCnJ0YV9wcm9icyA8LSBtb2RlbG9fa2VyYXMgJT4lIA0KICBwcmVkaWN0X3Byb2JhKHhfZGZfdGVzdCkgJT4lIA0KICBhcy52ZWN0b3IoKQ0KDQojIFZhbG9yZXMgcmVhbGVzIGVuIHRlc3QNCnJlYWxfdGVzdCA8LSB5X2RmX3Rlc3QgJT4lIA0KICBhcy5mYWN0b3IoKSAlPiUgDQogIGZjdF9yZWNvZGUoeWVzID0gIjEiLCBubyA9ICIwIikNCg0KIyBKdW50YW5kbyBwcmVkaWNob3MgeSByZWFsZXMNCmRmX3JlYWxfcHJlZGljdCA8LSB0aWJibGUoDQogIHJlYWwgPSByZWFsX3Rlc3QsDQogIHByZWRpY2hvID0gcnRhX2NsYXNzLA0KICBwcmVkaWNob19wcm9iID0gcnRhX3Byb2JzDQopDQpkZl9yZWFsX3ByZWRpY3QNCmBgYA0KDQojIFZhbGlkYWNpw7NuIGRlbCBtb2RlbG8NCg0KIyMgTcOpdHJpY2FzIGRlIGRlc2VtcGXDsW8NCg0KPGNlbnRlcj4NCjxpbWcgc3JjID0iaW1nL3lhcmRzdGljay5wbmciLz4NCjwvY2VudGVyPg0KDQpgYGB7cn0NCmxpYnJhcnkoeWFyZHN0aWNrKQ0KYGBgDQoNCi0gKipNYXRyaXogZGUgY29uZnVzacOzbjoqKg0KDQpgYGB7cn0NCmNvbmZfbWF0KGRhdGEgPSBkZl9yZWFsX3ByZWRpY3QsIHRydXRoID0gcmVhbCwgZXN0aW1hdGUgPSBwcmVkaWNobykNCmBgYA0KDQotICoqQWNjdXJhY3kgeSBLYXBwYToqKg0KDQpgYGB7cn0NCm1ldHJpY3MoZGF0YSA9IGRmX3JlYWxfcHJlZGljdCwgdHJ1dGggPSByZWFsLCBlc3RpbWF0ZSA9IHByZWRpY2hvKQ0KYGBgDQoNCi0gKirDgXJlYSBiYWpvIGxhIGN1cnZhIChST0MpOioqDQoNCmBgYHtyfQ0Kcm9jX2F1YyhkYXRhID0gZGZfcmVhbF9wcmVkaWN0LCByZWFsLCBwcmVkaWNob19wcm9iKQ0KYGBgDQoNCi0gKipQcmVjaXNpw7NuOioqDQoNCmBgYHtyfQ0KcHJlY2lzaW9uKGRhdGEgPSBkZl9yZWFsX3ByZWRpY3QsIHRydXRoID0gcmVhbCwgZXN0aW1hdGUgPSBwcmVkaWNobykNCmBgYA0KDQotICoqU2Vuc2l0aXZpZGFkOioqDQoNCmBgYHtyfQ0KcmVjYWxsKGRhdGEgPSBkZl9yZWFsX3ByZWRpY3QsIHRydXRoID0gcmVhbCwgZXN0aW1hdGUgPSBwcmVkaWNobykNCmBgYA0KDQotICoqTWVkaWRhcyBGOioqDQoNCmBgYHtyfQ0KZl9tZWFzKGRhdGEgPSBkZl9yZWFsX3ByZWRpY3QsIHRydXRoID0gcmVhbCwgZXN0aW1hdGUgPSBwcmVkaWNobywgYmV0YSA9IDEpDQpgYGANCg0KIyMgRW50ZW5kaWVuZG8gZWwgbW9kZWxvICpibGFjayBib3gqDQoNCjxjZW50ZXI+DQo8aW1nIHNyYyA9ImltZy9saW1lLnBuZyIvPg0KPC9jZW50ZXI+DQoNCmBgYHtyfQ0KbGlicmFyeShsaW1lKQ0Kc3VwcHJlc3NXYXJuaW5ncyhleHBsaWNhciA8LSB4X2RmX3RyYWluICU+JSANCiAgYXNfdGliYmxlKCkgJT4lICANCiAgbGltZShtb2RlbG9fa2VyYXMsIGJpbl9jb250aW51b3VzID0gRkFMU0UpKQ0KDQpleHBsYW5hdGlvbiA8LSB4X2RmX3Rlc3QgJT4lIA0KICBhc190aWJibGUoKSAlPiUNCiAgbGltZTo6ZXhwbGFpbigNCiAgICBleHBsYWluZXIgPSBleHBsaWNhciwgbl9sYWJlbHMgPSAxLA0KICAgIG5fZmVhdHVyZXMgPSAyLCBrZXJuZWxfd2lkdGggPSAwLjUNCiAgKQ0KYGBgDQoNCiMgUmVjdXJzb3MNCg0KLSBbQXByZW5kaXphamUgYXV0b23DoXRpY28gY29uIFRlbnNvcmZsb3cgeSBSXShodHRwczovL3Jlc291cmNlcy5yc3R1ZGlvLmNvbS9lc3Bhbm9sL3RlbnNvcmZsb3cteS1yKQ0KLSBbRGVlcCBMZWFybmluZyB3aXRoIEtlcmFzICYgTGltZSBpbiBSXShodHRwczovL3JwdWJzLmNvbS9pYW1rYnBhcmsvZGVlcC1rZXJhcy1saW1lKQ==