Abdullah M. Mustafa
Jan, 6th 2020
The following code for the server is avaliable at Github
x = switch(input$group, class = 'Class',sex = 'Sex',age = 'Age','Class')
Survival <- switch(input$rate, survival = TRUE, death = FALSE, TRUE)
data <- Titanic_data %>% group_by_at(vars(x,'Survived')) %>% summarise(Total = sum(Freq))
data_split <- data.frame(split(data$Total, data[x]))
if (Survival)
{Mortality_rate <- data.frame(rate = sapply(data_split, function(x){x[2]/sum(x)}))}
else
{Mortality_rate <- data.frame(rate = sapply(data_split, function(x){x[1]/sum(x)}))}
Mortality_rate$var <- rownames(Mortality_rate)
ggplot(aes(var,rate),data=Mortality_rate)+geom_bar(stat = "identity")+
labs(x=x,y='Percentage',title="Titanic Survival")
This plot is for the Class variable showing the survival rate.
Overall, we can see for these data that survivor rate increases with: 1 . First class has higher survival rate. 2 . Females have higher survival rates. 3 . Children have higher survival rates.