The data comes from the QSIDE dataset, accessed January 3rd. The categorical variables we are interested in are lettergroup (which letter was signed), gender, role (e.g., grad student, lecturer, assistant professor, professor, etc…), security (more or less secure) and institution (R1, R2, etc…). We did not use any ethnicity data in this analysis.
“moresecure” refers to identified associates, professors, or retired.
“lesssecure” refers to identified assistant, grad, ntt professor, staff, or undergrad.
“moreri” refers to more research intensive institutions, ie R1.
“lessri” refers to less research intensive institutions, ie non-R1.
The booleans used for comparison were:
all: security == moresecure OR security == lesssecure
non-R1: research == lessri AND (security == moresecure OR security == lesssecure)
untenured-R1: security == lesssecure AND research == moreri
tenure-track-R1: (security == moresecure OR role == assistant) AND research == moreri
tenured-R1: research == moreri AND security == moresecure
Remarks:
Note that tenured-R1 + untenured-R1 + non-R1 == all
Assistant professors are the intersection of untenured-R1 and tenure-track-R1.
df$lettergroup <- as.factor(df$lettergroup)
df$gender <- as.factor(df$gender)
df$role <- as.factor(df$role)
df$security <- as.factor(df$security)
df$institution <- as.factor(df$institution)
df$lettergroup <- as.factor(df$lettergroup)
df$research <- as.factor(df$research)
summary(df)
## name affiliation lettergroup gender
## Length:1431 Length:1431 A and B: 6 man :971
## Class :character Class :character A Only :615 nonbinary: 1
## Mode :character Mode :character B and C: 74 woman :452
## B Only :600 NA's : 7
## C Only :136
##
##
## ethnicity isurm highered
## Length:1431 Length:1431 Length:1431
## Class :character Class :character Class :character
## Mode :character Mode :character Mode :character
##
##
##
##
## institution research country role
## domesticother:381 lessri:486 Length:1431 professor:630
## domesticr1 :676 moreri:881 Class :character associate:210
## domesticr2 :105 NA's : 64 Mode :character assistant:194
## international:205 grad :119
## NA's : 64 ntt : 92
## (Other) : 85
## NA's :101
## security field simplefield
## lesssecure:422 Length:1431 Length:1431
## moresecure:907 Class :character Class :character
## NA's :102 Mode :character Mode :character
##
##
##
##
# A
table(na.omit(filter(df, (lettergroup=="A Only"|lettergroup=="A and B")&(security=="moresecure"|security=="lesssecure"))$field))
##
## comp math mathed other stat
## 7 507 34 15 9
#A cap B
table(na.omit(filter(df, (lettergroup=="A and B")&(security=="moresecure"|security=="lesssecure"))$field))
##
## math
## 6
#B
table(na.omit(filter(df, (lettergroup=="B Only"|lettergroup=="A and B"|lettergroup=="B and C")&(security=="moresecure"|security=="lesssecure"))$field))
##
## comp math mathed other stat
## 7 560 1 53 3
#B cap C
table(na.omit(filter(df, (lettergroup=="B and C")&(security=="moresecure"|security=="lesssecure"))$gender))
##
## man nonbinary woman
## 65 0 7
# C
table(na.omit(filter(df, (lettergroup=="C Only"|lettergroup=="B and C")&(security=="moresecure"|security=="lesssecure"))$gender))
##
## man nonbinary woman
## 163 0 44
#B cup C including A cap B
table(na.omit(filter(df, (lettergroup=="B Only"|lettergroup=="A and B"|lettergroup=="C Only"|lettergroup=="B and C")&(security=="moresecure"|security=="lesssecure"))$gender))
##
## man nonbinary woman
## 627 0 132
#A cup B cup C
table(na.omit(filter(df,(security=="moresecure"|security=="lesssecure"))$gender))
##
## man nonbinary woman
## 900 1 425
# A
table(na.omit(filter(df, (lettergroup=="A Only"|lettergroup=="A and B")&(research=="lessri")&(security=="moresecure"|security=="lesssecure"))$gender))
##
## man nonbinary woman
## 160 1 172
#A cap B
table(na.omit(filter(df, (lettergroup=="A and B")&(research=="lessri")&(security=="moresecure"|security=="lesssecure"))$gender))
##
## man nonbinary woman
## 2 0 1
#B
table(na.omit(filter(df, (lettergroup=="B Only"|lettergroup=="A and B"|lettergroup=="B and C")&(research=="lessri")&(security=="moresecure"|security=="lesssecure"))$gender))
##
## man nonbinary woman
## 105 0 34
#B cap C
table(na.omit(filter(df, (lettergroup=="B and C")&(research=="lessri")&(security=="moresecure"|security=="lesssecure"))$gender))
##
## man nonbinary woman
## 1 0 0
# C
table(na.omit(filter(df, (lettergroup=="C Only"|lettergroup=="B and C")&(research=="lessri")&(security=="moresecure"|security=="lesssecure"))$gender))
##
## man nonbinary woman
## 4 0 3
#B cup C including A cap B
table(na.omit(filter(df, (lettergroup=="B Only"|lettergroup=="A and B"|lettergroup=="C Only"|lettergroup=="B and C")&(research=="lessri")&(security=="moresecure"|security=="lesssecure"))$gender))
##
## man nonbinary woman
## 108 0 37
#A cup B cup C
table(na.omit(filter(df,(security=="moresecure"|security=="lesssecure")&(research=="lessri"))$role))
##
## assistant associate grad ntt professor retired staff
## 106 135 6 29 177 14 5
## undergrad
## 3
# A
table(na.omit(filter(df, ((lettergroup=="A Only"|lettergroup=="A and B")&(security=="lesssecure")&(research=="moreri")))$gender))
##
## man nonbinary woman
## 79 0 91
#A cap B
table(na.omit(filter(df, ((lettergroup=="A and B")&(security=="lesssecure")&(research=="moreri")))$gender))
##
## man nonbinary woman
## 2 0 0
#B
table(na.omit(filter(df, ((lettergroup=="B Only"|lettergroup=="A and B"|lettergroup=="B and C")&(security=="lesssecure")&(research=="moreri")))$gender))
##
## man nonbinary woman
## 83 0 18
#B cap C
table(na.omit(filter(df, ((lettergroup=="B and C")&(security=="lesssecure")&(research=="moreri")))$gender))
##
## man nonbinary woman
## 1 0 0
# C
table(na.omit(filter(df, ((lettergroup=="C Only"|lettergroup=="B and C")&(security=="lesssecure")&(research=="moreri")))$gender))
##
## man nonbinary woman
## 2 0 0
#B cup C
table(na.omit(filter(df, ((lettergroup=="B Only"|lettergroup=="A and B"|lettergroup=="B and C"|lettergroup=="C Only")&(security=="lesssecure")&(research=="moreri")))$gender))
##
## man nonbinary woman
## 84 0 18
#A cup B cup C
table(na.omit(filter(df,((security=="lesssecure")&(research=="moreri")))$gender))
##
## man nonbinary woman
## 161 0 109
# A
table(na.omit(filter(df, ((lettergroup=="A Only"|lettergroup=="A and B")&(research=="moreri")&(security=="moresecure"|role=="assistant")))$gender))
##
## man nonbinary woman
## 58 0 58
#A cap B
table(na.omit(filter(df, ((lettergroup=="A and B")&(research=="moreri")&(security=="moresecure"|role=="assistant")))$gender))
##
## man nonbinary woman
## 1 0 0
#B
table(na.omit(filter(df, ((lettergroup=="B Only"|lettergroup=="A and B"|lettergroup=="B and C")&(research=="moreri")&(security=="moresecure"|role=="assistant")))$gender))
##
## man nonbinary woman
## 375 0 51
#B cap C
table(na.omit(filter(df, ((lettergroup=="B and C")&(research=="moreri")&(security=="moresecure"|role=="assistant")))$gender))
##
## man nonbinary woman
## 63 0 7
# C
table(na.omit(filter(df, ((lettergroup=="C Only"|lettergroup=="B and C")&(research=="moreri")&(security=="moresecure"|role=="assistant")))$gender))
##
## man nonbinary woman
## 157 0 41
#B cup C
table(na.omit(filter(df, ((research=="moreri")&(lettergroup=="B Only"|lettergroup=="A and B"|lettergroup=="B and C"|lettergroup=="C Only")&(security=="moresecure"|role=="assistant")))$gender))
##
## man nonbinary woman
## 469 0 85
#A cup B cup C
table(na.omit(filter(df,((research=="moreri")&(security=="moresecure"|role=="assistant")))$gender))
##
## man nonbinary woman
## 526 0 143
# A
table(na.omit(filter(df, ((lettergroup=="A Only"|lettergroup=="A and B")&(research=="moreri")&(security=="moresecure")))$gender))
##
## man nonbinary woman
## 39 0 31
#A cap B
table(na.omit(filter(df, ((lettergroup=="A and B")&(research=="moreri")&(security=="moresecure")))$gender))
##
## man nonbinary woman
## 1 0 0
#B
table(na.omit(filter(df, ((lettergroup=="B Only"|lettergroup=="A and B"|lettergroup=="B and C")&(research=="moreri")&(security=="moresecure")))$gender))
##
## man nonbinary woman
## 341 0 43
#B cap C
table(na.omit(filter(df, ((lettergroup=="B and C")&(research=="moreri")&(security=="moresecure")))$gender))
##
## man nonbinary woman
## 63 0 7
# C
table(na.omit(filter(df, ((lettergroup=="C Only"|lettergroup=="B and C")&(research=="moreri")&(security=="moresecure")))$gender))
##
## man nonbinary woman
## 157 0 41
#B cup C
table(na.omit(filter(df, ((research=="moreri")&(lettergroup=="B Only"|lettergroup=="A and B"|lettergroup=="B and C"|lettergroup=="C Only")&(security=="moresecure")))$gender))
##
## man nonbinary woman
## 435 0 77
#A cup B cup C
table(na.omit(filter(df,((research=="moreri")&(security=="moresecure")))$gender))
##
## man nonbinary woman
## 473 0 108