This notebook is a means of showing our work in our gender analysis. It makes extensive use of the dplyr filter function. Search occurs through usage of booleans.
Data for this analysis was accessed January 3, 2020 from: https://github.com/qsideinstitute/AMS-letters-study/
library(readr)
library(dplyr)
##
## Attaching package: 'dplyr'
## The following objects are masked from 'package:stats':
##
## filter, lag
## The following objects are masked from 'package:base':
##
## intersect, setdiff, setequal, union
df <- read_csv("./Desktop/Gender/AMS-letters-data.csv")
## Parsed with column specification:
## cols(
## name = col_character(),
## affiliation = col_character(),
## lettergroup = col_character(),
## gender = col_character(),
## ethnicity = col_character(),
## isurm = col_character(),
## highered = col_character(),
## institution = col_character(),
## research = col_character(),
## country = col_character(),
## role = col_character(),
## security = col_character(),
## field = col_character(),
## simplefield = col_character()
## )
#as.factor allows data to be searched as a categorical variable, instead of a string
df$lettergroup <- as.factor(df$lettergroup)
df$gender <- as.factor(df$gender)
df$role <- as.factor(df$role)
df$security <- as.factor(df$security)
df$institution <- as.factor(df$institution)
df$lettergroup <- as.factor(df$lettergroup)
df$research <- as.factor(df$research)
Summary statistics
summary(df)
## name affiliation lettergroup gender
## Length:1431 Length:1431 A and B: 6 man :971
## Class :character Class :character A Only :615 nonbinary: 1
## Mode :character Mode :character B and C: 74 woman :452
## B Only :600 NA's : 7
## C Only :136
##
##
## ethnicity isurm highered
## Length:1431 Length:1431 Length:1431
## Class :character Class :character Class :character
## Mode :character Mode :character Mode :character
##
##
##
##
## institution research country role
## domesticother:381 lessri:486 Length:1431 professor:630
## domesticr1 :676 moreri:881 Class :character associate:210
## domesticr2 :105 NA's : 64 Mode :character assistant:194
## international:205 grad :119
## NA's : 64 ntt : 92
## (Other) : 85
## NA's :101
## security field simplefield
## lesssecure:422 Length:1431 Length:1431
## moresecure:907 Class :character Class :character
## NA's :102 Mode :character Mode :character
##
##
##
##
All variable are those who are more or less secure with non NaN gender, ie security == moresecure OR lesssecure.
# A
table(na.omit(filter(df, (lettergroup=="A Only"|lettergroup=="A and B")&(security=="moresecure"|security=="lesssecure"))$gender))
##
## man nonbinary woman
## 278 1 294
#A cap B
table(na.omit(filter(df, (lettergroup=="A and B")&(security=="moresecure"|security=="lesssecure"))$gender))
##
## man nonbinary woman
## 5 0 1
#B
table(na.omit(filter(df, (lettergroup=="B Only"|lettergroup=="A and B"|lettergroup=="B and C")&(security=="moresecure"|security=="lesssecure"))$gender))
##
## man nonbinary woman
## 529 0 95
#B cap C
table(na.omit(filter(df, (lettergroup=="B and C")&(security=="moresecure"|security=="lesssecure"))$gender))
##
## man nonbinary woman
## 65 0 7
# C
table(na.omit(filter(df, (lettergroup=="C Only"|lettergroup=="B and C")&(security=="moresecure"|security=="lesssecure"))$gender))
##
## man nonbinary woman
## 163 0 44
#B cup C including A cap B
table(na.omit(filter(df, (lettergroup=="B Only"|lettergroup=="A and B"|lettergroup=="C Only"|lettergroup=="B and C")&(security=="moresecure"|security=="lesssecure"))$gender))
##
## man nonbinary woman
## 627 0 132
#A cup B cup C
table(na.omit(filter(df,(security=="moresecure"|security=="lesssecure"))$gender))
##
## man nonbinary woman
## 900 1 425
research == lessri AND (security == moresecure OR lesssecure)
# A
table(na.omit(filter(df, (lettergroup=="A Only"|lettergroup=="A and B")&(research=="lessri")&(security=="moresecure"|security=="lesssecure"))$gender))
##
## man nonbinary woman
## 160 1 172
#A cap B
table(na.omit(filter(df, (lettergroup=="A and B")&(research=="lessri")&(security=="moresecure"|security=="lesssecure"))$gender))
##
## man nonbinary woman
## 2 0 1
#B
table(na.omit(filter(df, (lettergroup=="B Only"|lettergroup=="A and B"|lettergroup=="B and C")&(research=="lessri")&(security=="moresecure"|security=="lesssecure"))$gender))
##
## man nonbinary woman
## 105 0 34
#B cap C
table(na.omit(filter(df, (lettergroup=="B and C")&(research=="lessri")&(security=="moresecure"|security=="lesssecure"))$gender))
##
## man nonbinary woman
## 1 0 0
# C
table(na.omit(filter(df, (lettergroup=="C Only"|lettergroup=="B and C")&(research=="lessri")&(security=="moresecure"|security=="lesssecure"))$gender))
##
## man nonbinary woman
## 4 0 3
#B cup C including A cap B
table(na.omit(filter(df, (lettergroup=="B Only"|lettergroup=="A and B"|lettergroup=="C Only"|lettergroup=="B and C")&(research=="lessri")&(security=="moresecure"|security=="lesssecure"))$gender))
##
## man nonbinary woman
## 108 0 37
#A cup B cup C
table(na.omit(filter(df,(security=="moresecure"|security=="lesssecure")&(research=="lessri"))$gender))
##
## man nonbinary woman
## 266 1 208
security != moresecure AND research == moreri. We use != moresecure to account for nans.
# A
table(na.omit(filter(df, ((lettergroup=="A Only"|lettergroup=="A and B")&(security!="moresecure")&(research=="moreri")))$gender))
##
## man nonbinary woman
## 79 0 91
#A cap B
table(na.omit(filter(df, ((lettergroup=="A and B")&(security!="moresecure")&(research=="moreri")))$gender))
##
## man nonbinary woman
## 2 0 0
#B
table(na.omit(filter(df, ((lettergroup=="B Only"|lettergroup=="A and B"|lettergroup=="B and C")&(security!="moresecure")&(research=="moreri")))$gender))
##
## man nonbinary woman
## 83 0 18
#B cap C
table(na.omit(filter(df, ((lettergroup=="B and C")&(security!="moresecure")&(research=="moreri")))$gender))
##
## man nonbinary woman
## 1 0 0
# C
table(na.omit(filter(df, ((lettergroup=="C Only"|lettergroup=="B and C")&(security!="moresecure")&(research=="moreri")))$gender))
##
## man nonbinary woman
## 2 0 0
#B cup C
table(na.omit(filter(df, ((lettergroup=="B Only"|lettergroup=="A and B"|lettergroup=="B and C"|lettergroup=="C Only")&(security!="moresecure")&(research=="moreri")))$gender))
##
## man nonbinary woman
## 84 0 18
#A cup B cup C
table(na.omit(filter(df,((security!="moresecure")&(research=="moreri")))$gender))
##
## man nonbinary woman
## 161 0 109
research == moreri AND (role == assistant OR security == secure)
# A
table(na.omit(filter(df, ((lettergroup=="A Only"|lettergroup=="A and B")&(research=="moreri")&(security=="moresecure"|role=="assistant")))$gender))
##
## man nonbinary woman
## 58 0 58
#A cap B
table(na.omit(filter(df, ((lettergroup=="A and B")&(research=="moreri")&(security=="moresecure"|role=="assistant")))$gender))
##
## man nonbinary woman
## 1 0 0
#B
table(na.omit(filter(df, ((lettergroup=="B Only"|lettergroup=="A and B"|lettergroup=="B and C")&(research=="moreri")&(security=="moresecure"|role=="assistant")))$gender))
##
## man nonbinary woman
## 375 0 51
#B cap C
table(na.omit(filter(df, ((lettergroup=="B and C")&(research=="moreri")&(security=="moresecure"|role=="assistant")))$gender))
##
## man nonbinary woman
## 63 0 7
# C
table(na.omit(filter(df, ((lettergroup=="C Only"|lettergroup=="B and C")&(research=="moreri")&(security=="moresecure"|role=="assistant")))$gender))
##
## man nonbinary woman
## 157 0 41
#B cup C
table(na.omit(filter(df, ((research=="moreri")&(lettergroup=="B Only"|lettergroup=="A and B"|lettergroup=="B and C"|lettergroup=="C Only")&(security=="moresecure"|role=="assistant")))$gender))
##
## man nonbinary woman
## 469 0 85
#A cup B cup C
table(na.omit(filter(df,((research=="moreri")&(security=="moresecure"|role=="assistant")))$gender))
##
## man nonbinary woman
## 526 0 143
research == moreri AND security == moresecure
# A
table(na.omit(filter(df, ((lettergroup=="A Only"|lettergroup=="A and B")&(research=="moreri")&(security=="moresecure")))$gender))
##
## man nonbinary woman
## 39 0 31
#A cap B
table(na.omit(filter(df, ((lettergroup=="A and B")&(research=="moreri")&(security=="moresecure")))$gender))
##
## man nonbinary woman
## 1 0 0
#B
table(na.omit(filter(df, ((lettergroup=="B Only"|lettergroup=="A and B"|lettergroup=="B and C")&(research=="moreri")&(security=="moresecure")))$gender))
##
## man nonbinary woman
## 341 0 43
#B cap C
table(na.omit(filter(df, ((lettergroup=="B and C")&(research=="moreri")&(security=="moresecure")))$gender))
##
## man nonbinary woman
## 63 0 7
# C
table(na.omit(filter(df, ((lettergroup=="C Only"|lettergroup=="B and C")&(research=="moreri")&(security=="moresecure")))$gender))
##
## man nonbinary woman
## 157 0 41
#B cup C
table(na.omit(filter(df, ((research=="moreri")&(lettergroup=="B Only"|lettergroup=="A and B"|lettergroup=="B and C"|lettergroup=="C Only")&(security=="moresecure")))$gender))
##
## man nonbinary woman
## 435 0 77
#A cup B cup C
table(na.omit(filter(df,((research=="moreri")&(security=="moresecure")))$gender))
##
## man nonbinary woman
## 473 0 108