##
## Call:
## lm(formula = speedKMH.x ~ speedKMH.y, data = correlacao)
##
## Residuals:
## Min 1Q Median 3Q Max
## -6.1451 -1.0612 0.1423 1.6109 5.3612
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 8.6580 2.3783 3.640 0.000588 ***
## speedKMH.y 0.1603 0.1794 0.893 0.375415
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 2.531 on 57 degrees of freedom
## Multiple R-squared: 0.01381, Adjusted R-squared: -0.003493
## F-statistic: 0.7981 on 1 and 57 DF, p-value: 0.3754
##
## Call:
## lm(formula = speedKMH.x ~ periodoJunc, data = as)
##
## Residuals:
## Min 1Q Median 3Q Max
## -5.9216 -0.9176 -0.0647 1.1227 6.8453
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 13.2547 0.2555 51.871 < 0.0000000000000002 ***
## periodoJuncAv. Goethe Após 0.2077 0.6639 0.313 0.755
## periodoJuncSistema Antes -2.3931 0.3614 -6.622 0.000000000525 ***
## periodoJuncSistema Após -4.2027 0.6639 -6.330 0.000000002418 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 2.123 on 158 degrees of freedom
## Multiple R-squared: 0.315, Adjusted R-squared: 0.302
## F-statistic: 24.22 on 3 and 158 DF, p-value: 0.0000000000005974
## Analysis of Variance Table
##
## Response: speedKMH.x
## Df Sum Sq Mean Sq F value Pr(>F)
## periodoJunc 3 327.40 109.135 24.223 0.0000000000005974 ***
## Residuals 158 711.87 4.506
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Shapiro-Wilk normality test
##
## data: resid(modelo.anova2)
## W = 0.97177, p-value = 0.002135
## Levene's Test for Homogeneity of Variance (center = median)
## Df F value Pr(>F)
## group 3 5.2633 0.001736 **
## 158
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## Tukey multiple comparisons of means
## 95% family-wise confidence level
##
## Fit: aov(formula = speedKMH.x ~ periodoJunc, data = as)
##
## $periodoJunc
## diff lwr upr p adj
## Av. Goethe Após-Av. Goethe Antes 0.2077151 -1.516143 1.93157297 0.9893515
## Sistema Antes-Av. Goethe Antes -2.3931061 -3.331455 -1.45475675 0.0000000
## Sistema Após-Av. Goethe Antes -4.2026809 -5.926539 -2.47882305 0.0000000
## Sistema Antes-Av. Goethe Após -2.6008212 -4.324679 -0.87696334 0.0007603
## Sistema Após-Av. Goethe Após -4.4103960 -6.660479 -2.16031327 0.0000060
## Sistema Após-Sistema Antes -1.8095748 -3.533433 -0.08571693 0.0356031
##
## Call:
## lm(formula = speedKMH.x ~ speedKMH.y, data = correlacao)
##
## Residuals:
## Min 1Q Median 3Q Max
## -2.8600 -1.0345 -0.3195 0.7664 3.8620
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 7.46657 0.81840 9.123 0.0000000000000276 ***
## speedKMH.y 0.28799 0.06447 4.467 0.0000239759974144 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.458 on 86 degrees of freedom
## Multiple R-squared: 0.1883, Adjusted R-squared: 0.1789
## F-statistic: 19.96 on 1 and 86 DF, p-value: 0.00002398
##
## Call:
## lm(formula = speedKMH.x ~ periodoJunc, data = bs)
##
## Residuals:
## Min 1Q Median 3Q Max
## -7.0818 -1.0899 -0.0089 1.2036 8.1406
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 12.0279 0.2414 49.828 < 0.0000000000000002 ***
## periodoJuncAv. Goethe Após 1.8615 0.4990 3.731 0.000254 ***
## periodoJuncSistema Antes -1.3494 0.3414 -3.953 0.000110 ***
## periodoJuncSistema Após -0.7075 0.4990 -1.418 0.157920
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 2.048 on 184 degrees of freedom
## Multiple R-squared: 0.1983, Adjusted R-squared: 0.1852
## F-statistic: 15.17 on 3 and 184 DF, p-value: 0.000000007281
## Analysis of Variance Table
##
## Response: speedKMH.x
## Df Sum Sq Mean Sq F value Pr(>F)
## periodoJunc 3 190.96 63.653 15.172 0.000000007281 ***
## Residuals 184 771.93 4.195
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Shapiro-Wilk normality test
##
## data: resid(modelo.anova2)
## W = 0.96102, p-value = 0.00004531
## Levene's Test for Homogeneity of Variance (center = median)
## Df F value Pr(>F)
## group 3 2.9661 0.03335 *
## 184
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## Tukey multiple comparisons of means
## 95% family-wise confidence level
##
## Fit: aov(formula = speedKMH.x ~ periodoJunc, data = bs)
##
## $periodoJunc
## diff lwr upr p adj
## Av. Goethe Após-Av. Goethe Antes 1.8615307 0.5678912 3.1551703 0.0014399
## Sistema Antes-Av. Goethe Antes -1.3494254 -2.2344915 -0.4643593 0.0006318
## Sistema Após-Av. Goethe Antes -0.7074635 -2.0011030 0.5861761 0.4898201
## Sistema Antes-Av. Goethe Após -3.2109561 -4.5045957 -1.9173165 0.0000000
## Sistema Após-Av. Goethe Após -2.5689942 -4.1701390 -0.9678494 0.0002832
## Sistema Após-Sistema Antes 0.6419619 -0.6516777 1.9356015 0.5726250
## R version 3.6.2 (2019-12-12)
## Platform: x86_64-w64-mingw32/x64 (64-bit)
## Running under: Windows 10 x64 (build 18363)
##
## Matrix products: default
##
## locale:
## [1] LC_COLLATE=Portuguese_Brazil.1252 LC_CTYPE=Portuguese_Brazil.1252
## [3] LC_MONETARY=Portuguese_Brazil.1252 LC_NUMERIC=C
## [5] LC_TIME=Portuguese_Brazil.1252
##
## attached base packages:
## [1] stats graphics grDevices utils datasets methods base
##
## other attached packages:
## [1] ggpmisc_0.3.3 ggplot2_3.2.1 stringr_1.4.0 chron_2.3-54 mapview_2.7.0
## [6] sp_1.3-2 tidyr_1.0.0 dplyr_0.8.3 jsonlite_1.6 car_3.0-6
## [11] carData_3.0-3
##
## loaded via a namespace (and not attached):
## [1] viridisLite_0.3.0 shiny_1.4.0 assertthat_0.2.1
## [4] stats4_3.6.2 cellranger_1.1.0 yaml_2.2.0
## [7] gdtools_0.2.1 pillar_1.4.3 backports_1.1.5
## [10] lattice_0.20-38 glue_1.3.1 uuid_0.1-2
## [13] digest_0.6.23 promises_1.1.0 leaflet.providers_1.9.0
## [16] colorspace_1.4-1 plyr_1.8.5 htmltools_0.4.0
## [19] httpuv_1.5.2 pkgconfig_2.0.3 raster_3.0-7
## [22] haven_2.2.0 purrr_0.3.3 xtable_1.8-4
## [25] scales_1.1.0 webshot_0.5.2 svglite_1.2.2
## [28] brew_1.0-6 openxlsx_4.1.4 satellite_1.0.2
## [31] later_1.0.0 rio_0.5.16 tibble_2.1.3
## [34] farver_2.0.1 withr_2.1.2 lazyeval_0.2.2
## [37] magrittr_1.5 crayon_1.3.4 readxl_1.3.1
## [40] mime_0.8 evaluate_0.14 forcats_0.4.0
## [43] foreign_0.8-72 class_7.3-15 tools_3.6.2
## [46] data.table_1.12.8 hms_0.5.3 lifecycle_0.1.0
## [49] munsell_0.5.0 zip_2.0.4 compiler_3.6.2
## [52] e1071_1.7-3 systemfonts_0.1.1 rlang_0.4.2
## [55] leafpop_0.0.5 classInt_0.4-2 units_0.6-5
## [58] grid_3.6.2 htmlwidgets_1.5.1 crosstalk_1.0.0
## [61] leafem_0.0.1 labeling_0.3 base64enc_0.1-3
## [64] rmarkdown_2.0 gtable_0.3.0 codetools_0.2-16
## [67] abind_1.4-5 DBI_1.1.0 curl_4.3
## [70] reshape2_1.4.3 polynom_1.4-0 R6_2.4.1
## [73] knitr_1.26 fastmap_1.0.1 zeallot_0.1.0
## [76] KernSmooth_2.23-16 stringi_1.4.4 Rcpp_1.0.3
## [79] vctrs_0.2.1 sf_0.8-0 png_0.1-7
## [82] leaflet_2.0.3 tidyselect_0.2.5 xfun_0.11