Data sets: http://vincentarelbundock.github.io/Rdatasets/ (click on the csv index for a list): datasets.csv
“Stat2Data”,“AppleStock”,“Daily Price and Volume of Apple Stock”,66,4,0,0,1,0,3, “https://raw.github.com/vincentarelbundock/Rdatasets/master/csv/Stat2Data/AppleStock.csv”, “https://raw.github.com/vincentarelbundock/Rdatasets/master/doc/Stat2Data/AppleStock.html”
library(readr)
apple.data <-read_delim(file="AppleStock.csv", delim=',')
## Warning: Missing column names filled in: 'X1' [1]
## Parsed with column specification:
## cols(
## X1 = col_double(),
## Date = col_character(),
## Price = col_double(),
## Change = col_double(),
## Volume = col_double()
## )
apple.data
## # A tibble: 66 x 5
## X1 Date Price Change Volume
## <dbl> <chr> <dbl> <dbl> <dbl>
## 1 1 7/21/2016 99.4 NA 32.7
## 2 2 7/22/2016 98.7 -0.77 28.2
## 3 3 7/25/2016 97.3 -1.32 40.3
## 4 4 7/26/2016 96.7 -0.67 53.5
## 5 5 7/27/2016 103. 6.28 92.1
## 6 6 7/28/2016 104. 1.39 38.8
## 7 7 7/29/2016 104. -0.13 27.7
## 8 8 8/1/2016 106. 1.84 38.0
## 9 9 8/2/2016 104. -1.57 33.8
## 10 10 8/3/2016 106. 1.31 30.1
## # … with 56 more rows
summary(apple.data)
## X1 Date Price Change
## Min. : 1.00 Length:66 Min. : 96.67 Min. :-2.8400
## 1st Qu.:17.25 Class :character 1st Qu.:106.75 1st Qu.:-0.4600
## Median :33.50 Mode :character Median :108.97 Median : 0.0000
## Mean :33.50 Mean :109.75 Mean : 0.2677
## 3rd Qu.:49.75 3rd Qu.:113.58 3rd Qu.: 0.8600
## Max. :66.00 Max. :117.63 Max. : 6.2800
## NA's :1
## Volume
## Min. : 18.65
## 1st Qu.: 25.03
## Median : 29.66
## Mean : 35.72
## 3rd Qu.: 37.89
## Max. :111.19
##
-> Mean and Median of Attribute Price:
round(mean(apple.data$Price), digits=2)
## [1] 109.75
round(median(apple.data$Price), digits=2)
## [1] 108.97
-> Mean and Median of Attribute Volume:
round(mean(apple.data$Volume), digits=2)
## [1] 35.72
round(median(apple.data$Volume), digits=2)
## [1] 29.66
-> Creating asubset having only August 2016 Data in it ; and selected columns:
apple.data.august2016 <- subset(apple.data, grepl("^8", apple.data$Date) & grepl("2016$", apple.data$Date) , select = c("X1","Date","Price","Change"), drop = FALSE )
apple.data.august2016
## # A tibble: 23 x 4
## X1 Date Price Change
## <dbl> <chr> <dbl> <dbl>
## 1 8 8/1/2016 106. 1.84
## 2 9 8/2/2016 104. -1.57
## 3 10 8/3/2016 106. 1.31
## 4 11 8/4/2016 106. 0.08
## 5 12 8/5/2016 107. 1.61
## 6 13 8/8/2016 108. 0.89
## 7 14 8/9/2016 109. 0.44
## 8 15 8/10/2016 108 -0.81
## 9 16 8/11/2016 108. -0.07
## 10 17 8/12/2016 108. 0.25
## # … with 13 more rows
-> Renaming the column names
names(apple.data.august2016) <- c("X1"= "Id", "Date" ="MarketDate","Price" = "StockPrice", "Change" ="PriceChange")
apple.data.august2016
## # A tibble: 23 x 4
## Id MarketDate StockPrice PriceChange
## <dbl> <chr> <dbl> <dbl>
## 1 8 8/1/2016 106. 1.84
## 2 9 8/2/2016 104. -1.57
## 3 10 8/3/2016 106. 1.31
## 4 11 8/4/2016 106. 0.08
## 5 12 8/5/2016 107. 1.61
## 6 13 8/8/2016 108. 0.89
## 7 14 8/9/2016 109. 0.44
## 8 15 8/10/2016 108 -0.81
## 9 16 8/11/2016 108. -0.07
## 10 17 8/12/2016 108. 0.25
## # … with 13 more rows
-> USe of summary on the new data set:
summary(apple.data.august2016)
## Id MarketDate StockPrice PriceChange
## Min. : 8.0 Length:23 Min. :104.5 Min. :-1.57000
## 1st Qu.:13.5 Class :character 1st Qu.:106.5 1st Qu.:-0.31000
## Median :19.0 Mode :character Median :108.0 Median : 0.00000
## Mean :19.0 Mean :107.6 Mean : 0.09217
## 3rd Qu.:24.5 3rd Qu.:108.8 3rd Qu.: 0.34500
## Max. :30.0 Max. :109.5 Max. : 1.84000
round(mean(apple.data.august2016$StockPrice), digits=2)
## [1] 107.63
round(median(apple.data.august2016$StockPrice), digits=2)
## [1] 108
round(mean(apple.data.august2016$PriceChange), digits=2)
## [1] 0.09
round(median(apple.data.august2016$PriceChange), digits=2)
## [1] 0
-> Adding a new Column having character values:
apple.data.august2016$ChangeIndicator = ifelse(apple.data.august2016$PriceChange > 0 , "I",(ifelse(apple.data.august2016$PriceChange <0, "D", "S" )) )
apple.data.august2016
## # A tibble: 23 x 5
## Id MarketDate StockPrice PriceChange ChangeIndicator
## <dbl> <chr> <dbl> <dbl> <chr>
## 1 8 8/1/2016 106. 1.84 I
## 2 9 8/2/2016 104. -1.57 D
## 3 10 8/3/2016 106. 1.31 I
## 4 11 8/4/2016 106. 0.08 I
## 5 12 8/5/2016 107. 1.61 I
## 6 13 8/8/2016 108. 0.89 I
## 7 14 8/9/2016 109. 0.44 I
## 8 15 8/10/2016 108 -0.81 D
## 9 16 8/11/2016 108. -0.07 D
## 10 17 8/12/2016 108. 0.25 I
## # … with 13 more rows
-> Column Value Renaming:
apple.data.august2016$ChangeIndicator <- gsub("I","Increase", apple.data.august2016$ChangeIndicator)
apple.data.august2016$ChangeIndicator <- gsub("D","Decrease", apple.data.august2016$ChangeIndicator)
apple.data.august2016$ChangeIndicator <- gsub("S","Same", apple.data.august2016$ChangeIndicator)
apple.data.august2016
## # A tibble: 23 x 5
## Id MarketDate StockPrice PriceChange ChangeIndicator
## <dbl> <chr> <dbl> <dbl> <chr>
## 1 8 8/1/2016 106. 1.84 Increase
## 2 9 8/2/2016 104. -1.57 Decrease
## 3 10 8/3/2016 106. 1.31 Increase
## 4 11 8/4/2016 106. 0.08 Increase
## 5 12 8/5/2016 107. 1.61 Increase
## 6 13 8/8/2016 108. 0.89 Increase
## 7 14 8/9/2016 109. 0.44 Increase
## 8 15 8/10/2016 108 -0.81 Decrease
## 9 16 8/11/2016 108. -0.07 Decrease
## 10 17 8/12/2016 108. 0.25 Increase
## # … with 13 more rows
-> Data:
as.data.frame(apple.data)
## X1 Date Price Change Volume
## 1 1 7/21/2016 99.43 NA 32.690
## 2 2 7/22/2016 98.66 -0.77 28.218
## 3 3 7/25/2016 97.34 -1.32 40.291
## 4 4 7/26/2016 96.67 -0.67 53.455
## 5 5 7/27/2016 102.95 6.28 92.144
## 6 6 7/28/2016 104.34 1.39 38.772
## 7 7 7/29/2016 104.21 -0.13 27.698
## 8 8 8/1/2016 106.05 1.84 38.019
## 9 9 8/2/2016 104.48 -1.57 33.770
## 10 10 8/3/2016 105.79 1.31 30.148
## 11 11 8/4/2016 105.87 0.08 26.782
## 12 12 8/5/2016 107.48 1.61 39.547
## 13 13 8/8/2016 108.37 0.89 28.010
## 14 14 8/9/2016 108.81 0.44 26.296
## 15 15 8/10/2016 108.00 -0.81 23.840
## 16 16 8/11/2016 107.93 -0.07 27.460
## 17 17 8/12/2016 108.18 0.25 18.649
## 18 18 8/15/2016 109.48 1.30 25.704
## 19 19 8/16/2016 109.38 -0.10 33.755
## 20 20 8/17/2016 109.22 -0.16 25.329
## 21 21 8/18/2016 109.08 -0.14 21.918
## 22 22 8/19/2016 109.08 0.00 25.109
## 23 23 8/22/2016 108.08 0.00 25.784
## 24 24 8/23/2016 108.85 0.00 21.237
## 25 25 8/24/2016 108.03 -0.82 23.606
## 26 26 8/25/2016 107.57 -0.46 25.002
## 27 27 8/26/2016 106.94 -0.63 27.744
## 28 28 8/29/2016 106.82 -0.12 24.900
## 29 29 8/30/2016 106.00 -0.82 24.818
## 30 30 8/31/2016 106.10 0.10 31.639
## 31 31 9/1/2016 106.73 0.63 26.675
## 32 32 9/2/2016 107.73 1.00 26.394
## 33 33 9/6/2016 107.70 -0.03 26.645
## 34 34 9/7/2016 108.36 0.66 42.250
## 35 35 9/8/2016 105.52 -2.84 52.955
## 36 36 9/9/2016 103.13 -2.39 46.462
## 37 37 9/12/2016 105.44 2.31 45.115
## 38 38 9/13/2016 107.95 2.51 62.080
## 39 39 9/14/2016 111.77 3.82 111.187
## 40 40 9/15/2016 115.57 3.80 90.398
## 41 41 9/16/2016 114.92 -0.65 79.764
## 42 42 9/19/2016 113.58 -1.34 46.937
## 43 43 9/20/2016 113.57 -0.01 34.494
## 44 44 9/21/2016 113.55 -0.02 35.952
## 45 45 9/22/2016 114.62 1.07 31.048
## 46 46 9/23/2016 112.71 -1.91 52.411
## 47 47 9/26/2016 112.88 0.17 29.800
## 48 48 9/27/2016 113.09 0.21 24.587
## 49 49 9/28/2016 113.95 0.86 29.608
## 50 50 9/29/2016 112.18 -1.77 35.850
## 51 51 9/30/2016 113.05 0.87 36.341
## 52 52 10/3/2016 112.52 -0.53 21.635
## 53 53 10/4/2016 113.00 0.48 29.707
## 54 54 10/5/2016 113.05 0.05 21.400
## 55 55 10/6/2016 113.89 0.84 28.509
## 56 56 10/7/2016 114.06 0.17 24.336
## 57 57 10/10/2016 116.05 1.99 36.088
## 58 58 10/11/2016 116.30 0.25 63.963
## 59 59 10/12/2016 117.34 1.04 37.513
## 60 60 10/13/2016 116.98 -0.36 35.042
## 61 61 10/14/2016 117.63 0.65 35.626
## 62 62 10/17/2016 117.55 -0.08 23.584
## 63 63 10/18/2016 117.47 -0.08 24.308
## 64 64 10/19/2016 117.12 -0.35 19.977
## 65 65 10/20/2016 117.06 -0.06 24.100
## 66 66 10/21/2016 116.60 -0.46 22.528
as.data.frame(apple.data.august2016)
## Id MarketDate StockPrice PriceChange ChangeIndicator
## 1 8 8/1/2016 106.05 1.84 Increase
## 2 9 8/2/2016 104.48 -1.57 Decrease
## 3 10 8/3/2016 105.79 1.31 Increase
## 4 11 8/4/2016 105.87 0.08 Increase
## 5 12 8/5/2016 107.48 1.61 Increase
## 6 13 8/8/2016 108.37 0.89 Increase
## 7 14 8/9/2016 108.81 0.44 Increase
## 8 15 8/10/2016 108.00 -0.81 Decrease
## 9 16 8/11/2016 107.93 -0.07 Decrease
## 10 17 8/12/2016 108.18 0.25 Increase
## 11 18 8/15/2016 109.48 1.30 Increase
## 12 19 8/16/2016 109.38 -0.10 Decrease
## 13 20 8/17/2016 109.22 -0.16 Decrease
## 14 21 8/18/2016 109.08 -0.14 Decrease
## 15 22 8/19/2016 109.08 0.00 Same
## 16 23 8/22/2016 108.08 0.00 Same
## 17 24 8/23/2016 108.85 0.00 Same
## 18 25 8/24/2016 108.03 -0.82 Decrease
## 19 26 8/25/2016 107.57 -0.46 Decrease
## 20 27 8/26/2016 106.94 -0.63 Decrease
## 21 28 8/29/2016 106.82 -0.12 Decrease
## 22 29 8/30/2016 106.00 -0.82 Decrease
## 23 30 8/31/2016 106.10 0.10 Increase
-> Access csv fiel via github:
theURL <- "https://raw.githubusercontent.com/kamathvk1982/CunyBridgeR/master/AppleStock.csv"
git.apple.data <-read_delim(file=theURL, delim=',')
## Warning: Missing column names filled in: 'X1' [1]
## Parsed with column specification:
## cols(
## X1 = col_double(),
## Date = col_character(),
## Price = col_double(),
## Change = col_double(),
## Volume = col_double()
## )
git.apple.data
## # A tibble: 66 x 5
## X1 Date Price Change Volume
## <dbl> <chr> <dbl> <dbl> <dbl>
## 1 1 7/21/2016 99.4 NA 32.7
## 2 2 7/22/2016 98.7 -0.77 28.2
## 3 3 7/25/2016 97.3 -1.32 40.3
## 4 4 7/26/2016 96.7 -0.67 53.5
## 5 5 7/27/2016 103. 6.28 92.1
## 6 6 7/28/2016 104. 1.39 38.8
## 7 7 7/29/2016 104. -0.13 27.7
## 8 8 8/1/2016 106. 1.84 38.0
## 9 9 8/2/2016 104. -1.57 33.8
## 10 10 8/3/2016 106. 1.31 30.1
## # … with 56 more rows
summary(git.apple.data)
## X1 Date Price Change
## Min. : 1.00 Length:66 Min. : 96.67 Min. :-2.8400
## 1st Qu.:17.25 Class :character 1st Qu.:106.75 1st Qu.:-0.4600
## Median :33.50 Mode :character Median :108.97 Median : 0.0000
## Mean :33.50 Mean :109.75 Mean : 0.2677
## 3rd Qu.:49.75 3rd Qu.:113.58 3rd Qu.: 0.8600
## Max. :66.00 Max. :117.63 Max. : 6.2800
## NA's :1
## Volume
## Min. : 18.65
## 1st Qu.: 25.03
## Median : 29.66
## Mean : 35.72
## 3rd Qu.: 37.89
## Max. :111.19
##