This is a part of “Agrobiodiversity” Project conducted by CIAT.
Data importing and library
library(ggplot2); library(tidyverse)
Registered S3 method overwritten by 'dplyr':
method from
print.rowwise_df
[37m-- [1mAttaching packages[22m --------------------------------------- tidyverse 1.2.1 --[39m
[37m[32mv[37m [34mtibble [37m 2.1.3 [32mv[37m [34mpurrr [37m 0.3.2
[32mv[37m [34mtidyr [37m 0.8.3 [32mv[37m [34mdplyr [37m 0.8.1
[32mv[37m [34mreadr [37m 1.3.1 [32mv[37m [34mstringr[37m 1.4.0
[32mv[37m [34mtibble [37m 2.1.3 [32mv[37m [34mforcats[37m 0.4.0[39m
[37m-- [1mConflicts[22m ------------------------------------------ tidyverse_conflicts() --
[31mx[37m [34mdplyr[37m::[32mfilter()[37m masks [34mstats[37m::filter()
[31mx[37m [34mdplyr[37m::[32mlag()[37m masks [34mstats[37m::lag()[39m
setwd("C:/Users/Admin/Google Drive/CIAT Fellowship/CIAT DATA/CIAT_Analysis")
# Load the dataset
Agro<-read.csv("Agro_Biodiversity.csv",header = T)
# Filter the data with eatable crops and plot area > 20m2. We only selected "Edible" crop and plot area>20 square meters
Agro<-Agro %>% filter(Eating_Type=="Edible" & Plot_Area_m2>20) %>% select(Area,Family_Code,Plot_Code,Variety,Percent,Species,Plantation_Type,Eating_Type,Classification,Area_Ha,Latitude,Longitude,Altitude)
head(Agro)
NA
Calculating Species Richness
# Species Richness
df<-Agro %>% dplyr::group_by(Family_Code, Species) %>% dplyr::summarise(N.Species=n()) %>% data.frame()
# The number of species in each family or farm
df1<-df %>% dplyr::group_by(Family_Code) %>% dplyr::summarise(N.Species=sum(N.Species))
# Calculating species richness
richness <- (df1$N.Species-1)/(log(sum(df1$N.Species)))
DF_Richness<- data.frame(df1,Richness=richness)
head(DF_Richness)
NA
Calculating Evenness Index
LS0tDQp0aXRsZTogIlIgTm90ZWJvb2siDQpvdXRwdXQ6IGh0bWxfbm90ZWJvb2sNCi0tLQ0KDQpUaGlzIGlzIGEgcGFydCBvZiAiQWdyb2Jpb2RpdmVyc2l0eSIgUHJvamVjdCBjb25kdWN0ZWQgYnkgQ0lBVC4NCg0KRGF0YSBpbXBvcnRpbmcgYW5kIGxpYnJhcnkgDQoNCmBgYHtyfQ0KbGlicmFyeShnZ3Bsb3QyKTsgbGlicmFyeSh0aWR5dmVyc2UpDQoNCnNldHdkKCJDOi9Vc2Vycy9BZG1pbi9Hb29nbGUgRHJpdmUvQ0lBVCBGZWxsb3dzaGlwL0NJQVQgREFUQS9DSUFUX0FuYWx5c2lzIikNCiMgTG9hZCB0aGUgZGF0YXNldA0KDQpBZ3JvPC1yZWFkLmNzdigiQWdyb19CaW9kaXZlcnNpdHkuY3N2IixoZWFkZXIgPSBUKQ0KIyBGaWx0ZXIgdGhlIGRhdGEgd2l0aCBlYXRhYmxlIGNyb3BzIGFuZCBwbG90IGFyZWEgPiAyMG0yLiBXZSBvbmx5IHNlbGVjdGVkICJFZGlibGUiIGNyb3AgYW5kIHBsb3QgYXJlYT4yMCBzcXVhcmUgbWV0ZXJzIA0KDQpBZ3JvPC1BZ3JvICU+JSBmaWx0ZXIoRWF0aW5nX1R5cGU9PSJFZGlibGUiICYgUGxvdF9BcmVhX20yPjIwKSAlPiUgc2VsZWN0KEFyZWEsRmFtaWx5X0NvZGUsUGxvdF9Db2RlLFZhcmlldHksUGVyY2VudCxTcGVjaWVzLFBsYW50YXRpb25fVHlwZSxFYXRpbmdfVHlwZSxDbGFzc2lmaWNhdGlvbixBcmVhX0hhLExhdGl0dWRlLExvbmdpdHVkZSxBbHRpdHVkZSkNCg0KaGVhZChBZ3JvKQ0KDQpgYGANCg0KQ2FsY3VsYXRpbmcgU3BlY2llcyBSaWNobmVzcyANCg0KYGBge3J9DQojIFNwZWNpZXMgUmljaG5lc3MgDQpkZjwtQWdybyAlPiUgZHBseXI6Omdyb3VwX2J5KEZhbWlseV9Db2RlLCBTcGVjaWVzKSAlPiUgZHBseXI6OnN1bW1hcmlzZShOLlNwZWNpZXM9bigpKSAlPiUgZGF0YS5mcmFtZSgpDQoNCiMgVGhlIG51bWJlciBvZiBzcGVjaWVzIGluIGVhY2ggZmFtaWx5IG9yIGZhcm0NCg0KZGYxPC1kZiAlPiUgZHBseXI6Omdyb3VwX2J5KEZhbWlseV9Db2RlKSAlPiUgZHBseXI6OnN1bW1hcmlzZShOLlNwZWNpZXM9c3VtKE4uU3BlY2llcykpIA0KDQojIENhbGN1bGF0aW5nIHNwZWNpZXMgcmljaG5lc3MNCg0KcmljaG5lc3MgPC0gKGRmMSROLlNwZWNpZXMtMSkvKGxvZyhzdW0oZGYxJE4uU3BlY2llcykpKQ0KDQpERl9SaWNobmVzczwtIGRhdGEuZnJhbWUoZGYxLFJpY2huZXNzPXJpY2huZXNzKQ0KDQpoZWFkKERGX1JpY2huZXNzKQ0KDQpgYGANCg0KQ2FsY3VsYXRpbmcgRXZlbm5lc3MgSW5kZXgNCg0KYGBge3J9DQpkZl92ZWdlbjwtQWdybyAlPiUgZHBseXI6Omdyb3VwX2J5KEZhbWlseV9Db2RlLFNwZWNpZXMpICU+JSBkcGx5cjo6c3VtbWFyaXNlKE4uU3BlY2llcz1uKCkpICU+JSBkYXRhLmZyYW1lKCkNCg0KZGZfdmVnZW4kRmFtaWx5X0NvZGU8LWFzLmZhY3RvcihkZl92ZWdlbiRGYW1pbHlfQ29kZSkNCg0KaGVhZChkZl92ZWdlbikNCg0KIyBHZXQgbnVtYmVyIG9mIHNwZWNpZXMgcGVyIGhvdXNlaG9sZA0KDQpkZl9zcGVjaWVzPC1kZl92ZWdlbiAlPiUgZ3JvdXBfYnkoRmFtaWx5X0NvZGUpICU+JSBzdW1tYXJpc2UoU3VtPXN1bShOLlNwZWNpZXMpKQ0KDQoNCmhlYWQoZGZfc3BlY2llcywyMCkNCg0KIyBFdmVubmVzcyAgDQpsaWJyYXJ5KHRpZHlyKQ0KDQpBMTwtIGRmX3ZlZ2VuICU+JSB0aWR5cjo6c3ByZWFkKEZhbWlseV9Db2RlLCBTcGVjaWVzKSANCg0KQTFbaXMubmEoQTEpXTwtMCAjIFJlcGxhY2UgTkEgd2l0aCAwDQoNCg0KYGBgDQoNCg0K