Veamos un poco de descriptiva de la base de datos:

      chart.Correlation(df %>% select(-ESTATURA,-PESO), histogram=TRUE, pch=19)

      table1( ~ .,data=df
      , render.continuous=c(.="Mean (SD) ", " Mediana [Q1,Q3] "= "Q2 [Q1, Q3]",
                          "CV%, [Rango] "="CV%, [MIN, MAX]"))
Overall
(n=41)
edad
Mean (SD) 27.9 (4.24)
Mediana [Q1,Q3] 27.0 [25.0, 29.1]
CV%, [Rango] 15.2%, [23.0, 43.3]
ESTATURA
Mean (SD) 165 (4.91)
Mediana [Q1,Q3] 164 [161, 169]
CV%, [Rango] 3.0%, [157, 177]
PESO
Mean (SD) 60.1 (7.01)
Mediana [Q1,Q3] 59.0 [55.0, 62.0]
CV%, [Rango] 11.7%, [49.0, 75.0]
IMC
Mean (SD) 36.4 (4.06)
Mediana [Q1,Q3] 35.4 [33.7, 39.2]
CV%, [Rango] 11.2%, [29.3, 46.5]
PIE
Mean (SD) 0.135 (0.187)
Mediana [Q1,Q3] 0.0700 [0.0400, 0.160]
CV%, [Rango] 138.3%, [0.0200, 1.00]
MANO
Mean (SD) 0.0279 (0.0259)
Mediana [Q1,Q3] 0.0200 [0.0200, 0.0200]
CV%, [Rango] 92.8%, [0.00800, 0.160]
ANOD
Mean (SD) 0.0248 (0.0211)
Mediana [Q1,Q3] 0.0200 [0.00800, 0.0200]
CV%, [Rango] 85.1%, [0.00600, 0.0700]
ANAI
Mean (SD) 0.0247 (0.0219)
Mediana [Q1,Q3] 0.0200 [0.00800, 0.0400]
CV%, [Rango] 88.8%, [0.00800, 0.0700]
VAGD
Mean (SD) 0.0212 (0.0268)
Mediana [Q1,Q3] 0.00800 [0.00800, 0.0200]
CV%, [Rango] 126.7%, [0.00800, 0.160]
VAGI
Mean (SD) 0.0170 (0.0147)
Mediana [Q1,Q3] 0.00800 [0.00800, 0.0200]
CV%, [Rango] 86.3%, [0.00800, 0.0700]
CLIT
Mean (SD) 0.0221 (0.0185)
Mediana [Q1,Q3] 0.0200 [0.00800, 0.0200]
CV%, [Rango] 83.6%, [0.00800, 0.0700]