## [1] 2823 14
## [1] "PropertyLink" "Location" "Rooms" "Bathrooms" "Photos"
## [6] "Furnished" "FloorNo" "TotalFloors" "EastFacing" "Tenants"
## [11] "Parking" "CarpetArea" "SuperArea" "Rent"
# fit linear OLS model
OLSModel <- lm(Rent ~ Rooms
+ Bathrooms
+ Photos
+ Furnished
+ FloorNo
+ TotalFloors
+ EastFacing
+ Tenants
+ Parking
+ CarpetArea
+ Location,
data = HouseP.df)
# summary of the Model
summary(OLSModel)
##
## Call:
## lm(formula = Rent ~ Rooms + Bathrooms + Photos + Furnished +
## FloorNo + TotalFloors + EastFacing + Tenants + Parking +
## CarpetArea + Location, data = HouseP.df)
##
## Residuals:
## Min 1Q Median 3Q Max
## -64052 -8475 -812 6786 106592
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -17644.731 1882.122 -9.375 < 2e-16 ***
## Rooms2 -603.049 1049.080 -0.575 0.565449
## Bathrooms2 3744.961 902.664 4.149 3.44e-05 ***
## Photos 90.993 51.789 1.757 0.079027 .
## FurnishedSemi 2914.134 679.620 4.288 1.87e-05 ***
## FurnishedYes 5750.221 782.240 7.351 2.58e-13 ***
## FloorNo -34.298 74.708 -0.459 0.646206
## TotalFloors 477.655 48.704 9.807 < 2e-16 ***
## EastFacingYes -463.092 581.159 -0.797 0.425611
## TenantsBoth 310.417 701.836 0.442 0.658312
## TenantsFamily 636.895 968.399 0.658 0.510799
## ParkingYes 2430.336 631.770 3.847 0.000122 ***
## CarpetArea 73.538 2.402 30.612 < 2e-16 ***
## LocationBandra 37106.395 1978.878 18.751 < 2e-16 ***
## LocationBhandup -10831.177 2391.283 -4.529 6.16e-06 ***
## LocationBhayandar -18093.063 2868.823 -6.307 3.30e-10 ***
## LocationBorivali -1789.743 2153.891 -0.831 0.406082
## LocationCharniRoad 16713.712 4549.892 3.673 0.000244 ***
## LocationChembur 12983.627 2699.309 4.810 1.59e-06 ***
## LocationChurcheGate 65012.681 5274.547 12.326 < 2e-16 ***
## LocationColaba 39849.032 1870.624 21.303 < 2e-16 ***
## LocationDahisar -11634.110 2140.768 -5.435 5.97e-08 ***
## LocationGhatkopar 781.095 1915.337 0.408 0.683444
## LocationGoregaon -4440.161 2094.569 -2.120 0.034108 *
## LocationGrantRoad 19400.083 4365.014 4.444 9.16e-06 ***
## LocationJogeshwari 826.966 2121.292 0.390 0.696684
## LocationJuhu 34539.304 2156.768 16.014 < 2e-16 ***
## LocationKandivali-West -8152.719 2101.852 -3.879 0.000107 ***
## LocationKandivali East -12212.563 2095.414 -5.828 6.25e-09 ***
## LocationKanjurmarg -8581.914 2415.334 -3.553 0.000387 ***
## LocationKhar 37744.872 3095.500 12.193 < 2e-16 ***
## LocationKurla -3320.113 2213.406 -1.500 0.133728
## LocationLowerParel 16945.228 1664.070 10.183 < 2e-16 ***
## LocationMahalaxmi 32724.469 2102.069 15.568 < 2e-16 ***
## LocationMahim 15603.538 2091.412 7.461 1.14e-13 ***
## LocationMalad -8645.188 2093.861 -4.129 3.75e-05 ***
## LocationMarineDrive 22899.593 6820.173 3.358 0.000797 ***
## LocationMatungaRoad 21582.993 1790.422 12.055 < 2e-16 ***
## LocationMulund -13634.626 2130.113 -6.401 1.81e-10 ***
## LocationMumCentral 16825.169 5799.437 2.901 0.003747 **
## LocationPowai 4878.738 2095.384 2.328 0.019966 *
## LocationSanta Cruz 19653.422 2119.207 9.274 < 2e-16 ***
## LocationVasai -22709.817 2451.930 -9.262 < 2e-16 ***
## LocationVikhroli 10394.828 3755.914 2.768 0.005685 **
## LocationVile Parle 17389.875 2194.159 7.926 3.26e-15 ***
## LocationVirar -23288.100 2207.655 -10.549 < 2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 14830 on 2777 degrees of freedom
## Multiple R-squared: 0.7849, Adjusted R-squared: 0.7814
## F-statistic: 225.2 on 45 and 2777 DF, p-value: < 2.2e-16
# fit linear OLS interaction model
OLSModelInt <- lm(Rent ~ Rooms
+ Bathrooms * Rooms
+ Photos * Rooms
+ Furnished * Rooms
+ FloorNo * Rooms
+ TotalFloors * Rooms
+ EastFacing * Rooms
+ Tenants * Rooms
+ Parking * Rooms
+ CarpetArea * Rooms
+ Location,
data = HouseP.df)
# summary of the Model
summary(OLSModelInt)
##
## Call:
## lm(formula = Rent ~ Rooms + Bathrooms * Rooms + Photos * Rooms +
## Furnished * Rooms + FloorNo * Rooms + TotalFloors * Rooms +
## EastFacing * Rooms + Tenants * Rooms + Parking * Rooms +
## CarpetArea * Rooms + Location, data = HouseP.df)
##
## Residuals:
## Min 1Q Median 3Q Max
## -64765 -8128 -561 6701 109536
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -8466.735 2762.519 -3.065 0.002199 **
## Rooms2 -8070.652 4010.162 -2.013 0.044259 *
## Bathrooms2 3986.756 962.140 4.144 3.52e-05 ***
## Photos 205.614 85.398 2.408 0.016118 *
## FurnishedSemi 1023.764 1062.671 0.963 0.335437
## FurnishedYes 3365.096 1186.199 2.837 0.004589 **
## FloorNo -123.428 147.784 -0.835 0.403680
## TotalFloors 138.877 110.838 1.253 0.210324
## EastFacingYes 1281.330 883.742 1.450 0.147202
## TenantsBoth -1146.380 1024.001 -1.120 0.263019
## TenantsFamily 4495.329 1627.758 2.762 0.005789 **
## ParkingYes 2084.890 938.828 2.221 0.026449 *
## CarpetArea 60.660 4.627 13.110 < 2e-16 ***
## LocationBandra 37180.250 1955.953 19.009 < 2e-16 ***
## LocationBhandup -10910.707 2360.719 -4.622 3.98e-06 ***
## LocationBhayandar -19235.278 2845.918 -6.759 1.69e-11 ***
## LocationBorivali -1444.900 2126.316 -0.680 0.496858
## LocationCharniRoad 18227.611 4501.588 4.049 5.28e-05 ***
## LocationChembur 13411.750 2667.100 5.029 5.26e-07 ***
## LocationChurcheGate 65112.674 5253.473 12.394 < 2e-16 ***
## LocationColaba 40979.294 1856.272 22.076 < 2e-16 ***
## LocationDahisar -12357.003 2115.243 -5.842 5.76e-09 ***
## LocationGhatkopar 955.522 1894.636 0.504 0.614070
## LocationGoregaon -3832.937 2069.895 -1.852 0.064168 .
## LocationGrantRoad 19565.196 4312.632 4.537 5.96e-06 ***
## LocationJogeshwari 1214.674 2095.501 0.580 0.562192
## LocationJuhu 34900.080 2133.862 16.355 < 2e-16 ***
## LocationKandivali-West -9004.937 2086.906 -4.315 1.65e-05 ***
## LocationKandivali East -12888.150 2073.463 -6.216 5.88e-10 ***
## LocationKanjurmarg -7797.541 2385.266 -3.269 0.001092 **
## LocationKhar 38266.925 3054.885 12.526 < 2e-16 ***
## LocationKurla -2924.669 2189.080 -1.336 0.181651
## LocationLowerParel 18324.686 1687.689 10.858 < 2e-16 ***
## LocationMahalaxmi 31627.783 2085.962 15.162 < 2e-16 ***
## LocationMahim 15790.262 2071.760 7.622 3.42e-14 ***
## LocationMalad -8219.013 2066.553 -3.977 7.15e-05 ***
## LocationMarineDrive 22829.250 6738.010 3.388 0.000714 ***
## LocationMatungaRoad 22404.276 1771.615 12.646 < 2e-16 ***
## LocationMulund -13564.228 2107.993 -6.435 1.45e-10 ***
## LocationMumCentral 16768.741 5746.514 2.918 0.003550 **
## LocationPowai 5072.599 2071.131 2.449 0.014379 *
## LocationSanta Cruz 20000.054 2091.308 9.563 < 2e-16 ***
## LocationVasai -23157.554 2430.689 -9.527 < 2e-16 ***
## LocationVikhroli 10563.490 3724.592 2.836 0.004599 **
## LocationVile Parle 17837.787 2168.261 8.227 2.93e-16 ***
## LocationVirar -23048.640 2183.233 -10.557 < 2e-16 ***
## Rooms2:Bathrooms2 -4332.326 2718.138 -1.594 0.111082
## Rooms2:Photos -174.238 100.264 -1.738 0.082358 .
## Rooms2:FurnishedSemi 2289.958 1374.961 1.665 0.095932 .
## Rooms2:FurnishedYes 3324.475 1547.686 2.148 0.031798 *
## Rooms2:FloorNo 167.251 170.863 0.979 0.327733
## Rooms2:TotalFloors 389.685 121.436 3.209 0.001347 **
## Rooms2:EastFacingYes -3109.865 1146.456 -2.713 0.006717 **
## Rooms2:TenantsBoth 3051.961 1384.919 2.204 0.027627 *
## Rooms2:TenantsFamily -4737.656 1991.277 -2.379 0.017417 *
## Rooms2:ParkingYes 528.416 1242.291 0.425 0.670610
## Rooms2:CarpetArea 13.789 5.294 2.604 0.009252 **
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 14620 on 2766 degrees of freedom
## Multiple R-squared: 0.7917, Adjusted R-squared: 0.7875
## F-statistic: 187.7 on 56 and 2766 DF, p-value: < 2.2e-16
# Step 1:Residuals of linear OLS Model
OLSModelRes <- resid(OLSModelInt)
# Step 2: Taking square of the residuals of linear OLS Model
OLSModelResSq <- OLSModelRes^2
# Step 3: Taking natural log of the squared residuals of linear OLS Model
lnOLSResSq <- log(OLSModelResSq)
# Step 4: Running auxiliary OLS Model
auxOLSModel <- lm(lnOLSResSq ~ Rooms
+ Bathrooms * Rooms
+ Photos * Rooms
+ Furnished * Rooms
+ FloorNo * Rooms
+ TotalFloors * Rooms
+ EastFacing * Rooms
+ Tenants * Rooms
+ Parking * Rooms
+ CarpetArea * Rooms
+ Location,
data = HouseP.df)
# Step 5: Get fitted value of auxiliary OLS Model i.e. 'auxOLSModel'
fittedValue <- fitted(auxOLSModel)
# Step 6: Compute exponential values of fiited value for auxialiary OLS Model
expValue <- exp(fittedValue)
# Step 7: Fit Log-linear FGLS Model
FGLSModelInt <- lm(Rent ~ Rooms
+ Bathrooms * Rooms
+ Photos * Rooms
+ Furnished * Rooms
+ FloorNo * Rooms
+ TotalFloors * Rooms
+ EastFacing * Rooms
+ Tenants * Rooms
+ Parking * Rooms
+ CarpetArea * Rooms
+ Location,
data = HouseP.df,
weights = 1/expValue)
summary(FGLSModelInt)
##
## Call:
## lm(formula = Rent ~ Rooms + Bathrooms * Rooms + Photos * Rooms +
## Furnished * Rooms + FloorNo * Rooms + TotalFloors * Rooms +
## EastFacing * Rooms + Tenants * Rooms + Parking * Rooms +
## CarpetArea * Rooms + Location, data = HouseP.df, weights = 1/expValue)
##
## Weighted Residuals:
## Min 1Q Median 3Q Max
## -8.9773 -1.2096 -0.1366 1.0096 19.1763
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -5073.926 1817.751 -2.791 0.005285 **
## Rooms2 4266.689 3110.718 1.372 0.170296
## Bathrooms2 2053.718 577.515 3.556 0.000383 ***
## Photos 108.842 49.159 2.214 0.026906 *
## FurnishedSemi 1496.622 613.654 2.439 0.014796 *
## FurnishedYes 3844.575 766.076 5.019 5.54e-07 ***
## FloorNo -135.078 89.150 -1.515 0.129844
## TotalFloors 196.871 64.702 3.043 0.002366 **
## EastFacingYes 1007.082 525.161 1.918 0.055257 .
## TenantsBoth -1153.391 669.828 -1.722 0.085195 .
## TenantsFamily 2081.591 871.222 2.389 0.016948 *
## ParkingYes 1492.682 560.606 2.663 0.007798 **
## CarpetArea 59.227 3.034 19.522 < 2e-16 ***
## LocationBandra 37559.445 2205.907 17.027 < 2e-16 ***
## LocationBhandup -7251.829 1541.599 -4.704 2.68e-06 ***
## LocationBhayandar -16674.148 2429.981 -6.862 8.36e-12 ***
## LocationBorivali 430.891 1390.929 0.310 0.756747
## LocationCharniRoad 11354.474 4226.913 2.686 0.007269 **
## LocationChembur 11215.081 3106.940 3.610 0.000312 ***
## LocationChurcheGate 74075.281 7057.284 10.496 < 2e-16 ***
## LocationColaba 38115.982 1557.523 24.472 < 2e-16 ***
## LocationDahisar -10704.856 1312.334 -8.157 5.15e-16 ***
## LocationGhatkopar 2453.893 1188.162 2.065 0.038989 *
## LocationGoregaon -59.831 1530.305 -0.039 0.968815
## LocationGrantRoad 18445.252 2375.928 7.763 1.16e-14 ***
## LocationJogeshwari 3015.437 1427.472 2.112 0.034739 *
## LocationJuhu 32765.056 2673.085 12.257 < 2e-16 ***
## LocationKandivali-West -6365.881 1277.314 -4.984 6.62e-07 ***
## LocationKandivali East -8415.371 1541.662 -5.459 5.22e-08 ***
## LocationKanjurmarg -4368.648 1371.567 -3.185 0.001463 **
## LocationKhar 36639.374 4200.548 8.723 < 2e-16 ***
## LocationKurla -1827.125 1268.827 -1.440 0.149977
## LocationLowerParel 15714.391 1166.260 13.474 < 2e-16 ***
## LocationMahalaxmi 20301.423 2323.597 8.737 < 2e-16 ***
## LocationMahim 15593.711 1327.059 11.751 < 2e-16 ***
## LocationMalad -5165.170 1327.565 -3.891 0.000102 ***
## LocationMarineDrive 19071.269 8828.528 2.160 0.030844 *
## LocationMatungaRoad 20759.847 1268.591 16.364 < 2e-16 ***
## LocationMulund -8763.927 1483.872 -5.906 3.93e-09 ***
## LocationMumCentral 15994.299 4482.514 3.568 0.000366 ***
## LocationPowai 6283.589 1434.528 4.380 1.23e-05 ***
## LocationSanta Cruz 19815.165 1675.931 11.823 < 2e-16 ***
## LocationVasai -22700.999 1585.385 -14.319 < 2e-16 ***
## LocationVikhroli 13608.552 1767.824 7.698 1.91e-14 ***
## LocationVile Parle 18694.560 1680.897 11.122 < 2e-16 ***
## LocationVirar -23175.274 1414.768 -16.381 < 2e-16 ***
## Rooms2:Bathrooms2 -2343.988 2162.205 -1.084 0.278427
## Rooms2:Photos -162.898 60.649 -2.686 0.007277 **
## Rooms2:FurnishedSemi 1114.919 859.524 1.297 0.194693
## Rooms2:FurnishedYes 2699.849 1122.643 2.405 0.016242 *
## Rooms2:FloorNo 119.478 117.906 1.013 0.310990
## Rooms2:TotalFloors 208.397 80.311 2.595 0.009513 **
## Rooms2:EastFacingYes -2135.011 766.343 -2.786 0.005373 **
## Rooms2:TenantsBoth 1746.189 952.216 1.834 0.066789 .
## Rooms2:TenantsFamily -2088.210 1184.505 -1.763 0.078021 .
## Rooms2:ParkingYes -287.522 831.072 -0.346 0.729395
## Rooms2:CarpetArea -3.100 4.142 -0.748 0.454304
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.885 on 2766 degrees of freedom
## Multiple R-squared: 0.7686, Adjusted R-squared: 0.7639
## F-statistic: 164.1 on 56 and 2766 DF, p-value: < 2.2e-16
##
## Call:
## lm(formula = Rent ~ Rooms + Bathrooms + Photos + Furnished +
## TotalFloors + EastFacing + Tenants + Parking + CarpetArea +
## Location + Rooms:Photos + Rooms:Furnished + Rooms:TotalFloors +
## Rooms:EastFacing + Rooms:Tenants, data = HouseP.df, weights = 1/expValue)
##
## Weighted Residuals:
## Min 1Q Median 3Q Max
## -8.9625 -1.2239 -0.1370 0.9882 19.1393
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -4391.945 1605.024 -2.736 0.006252 **
## Rooms2 462.396 1414.363 0.327 0.743746
## Bathrooms2 1991.925 555.062 3.589 0.000338 ***
## Photos 114.429 48.984 2.336 0.019559 *
## FurnishedSemi 1594.936 609.396 2.617 0.008913 **
## FurnishedYes 3973.665 758.832 5.237 1.76e-07 ***
## TotalFloors 125.060 45.208 2.766 0.005707 **
## EastFacingYes 1038.232 524.898 1.978 0.048031 *
## TenantsBoth -1021.208 662.827 -1.541 0.123508
## TenantsFamily 2151.144 863.741 2.490 0.012815 *
## ParkingYes 1389.271 417.838 3.325 0.000896 ***
## CarpetArea 57.368 2.123 27.019 < 2e-16 ***
## LocationBandra 37506.413 2203.454 17.022 < 2e-16 ***
## LocationBhandup -7177.628 1540.168 -4.660 3.31e-06 ***
## LocationBhayandar -16666.609 2427.039 -6.867 8.06e-12 ***
## LocationBorivali 492.688 1390.252 0.354 0.723075
## LocationCharniRoad 11633.896 4223.624 2.754 0.005917 **
## LocationChembur 11304.129 3105.488 3.640 0.000278 ***
## LocationChurcheGate 73615.973 7033.106 10.467 < 2e-16 ***
## LocationColaba 38328.165 1546.910 24.777 < 2e-16 ***
## LocationDahisar -10597.212 1310.907 -8.084 9.27e-16 ***
## LocationGhatkopar 2507.013 1186.431 2.113 0.034684 *
## LocationGoregaon -6.111 1528.942 -0.004 0.996811
## LocationGrantRoad 18406.927 2374.680 7.751 1.27e-14 ***
## LocationJogeshwari 3104.670 1424.577 2.179 0.029389 *
## LocationJuhu 32810.439 2672.330 12.278 < 2e-16 ***
## LocationKandivali-West -6328.135 1274.834 -4.964 7.33e-07 ***
## LocationKandivali East -8357.460 1540.537 -5.425 6.29e-08 ***
## LocationKanjurmarg -4213.869 1367.639 -3.081 0.002082 **
## LocationKhar 36550.232 4199.665 8.703 < 2e-16 ***
## LocationKurla -1864.029 1265.770 -1.473 0.140960
## LocationLowerParel 15583.047 1162.590 13.404 < 2e-16 ***
## LocationMahalaxmi 20294.726 2323.188 8.736 < 2e-16 ***
## LocationMahim 15647.768 1326.596 11.795 < 2e-16 ***
## LocationMalad -5123.416 1326.992 -3.861 0.000116 ***
## LocationMarineDrive 18963.476 8827.097 2.148 0.031774 *
## LocationMatungaRoad 20773.082 1267.933 16.383 < 2e-16 ***
## LocationMulund -8704.165 1481.244 -5.876 4.70e-09 ***
## LocationMumCentral 16509.946 4465.544 3.697 0.000222 ***
## LocationPowai 6245.658 1432.019 4.361 1.34e-05 ***
## LocationSanta Cruz 19867.773 1675.122 11.860 < 2e-16 ***
## LocationVasai -22688.883 1582.136 -14.341 < 2e-16 ***
## LocationVikhroli 13616.103 1766.207 7.709 1.75e-14 ***
## LocationVile Parle 18714.622 1679.084 11.146 < 2e-16 ***
## LocationVirar -23121.723 1413.277 -16.360 < 2e-16 ***
## Rooms2:Photos -170.004 60.357 -2.817 0.004887 **
## Rooms2:FurnishedSemi 1004.517 850.853 1.181 0.237863
## Rooms2:FurnishedYes 2538.981 1108.103 2.291 0.022022 *
## Rooms2:TotalFloors 265.579 55.887 4.752 2.12e-06 ***
## Rooms2:EastFacingYes -2139.094 765.193 -2.795 0.005218 **
## Rooms2:TenantsBoth 1562.941 939.388 1.664 0.096268 .
## Rooms2:TenantsFamily -2272.343 1143.300 -1.988 0.046962 *
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.885 on 2771 degrees of freedom
## Multiple R-squared: 0.7682, Adjusted R-squared: 0.7639
## F-statistic: 180.1 on 51 and 2771 DF, p-value: < 2.2e-16
## Loading required package: carData
## lattice theme set by effectsTheme()
## See ?effectsTheme for details.
pRent <- predictorEffect("Furnished",
StepFGLSModel)
plot(pRent,
main=NULL,
xlab = "Furnishing Status",
lines = list(multiline=TRUE),
confint = list(style="bars"),
colors = c("black"), lty=c(2,1),
rug = FALSE,
axes = list(
y = list(lab = "Rent", rotate = 30)))
The rent of furnished apartments is more than the rent of unfurnished apartments.
This difference in rent is relatively more for 2BHK, compared to 1BHK apartments.
library(effects)
pRent <- predictorEffect("Tenants",
StepFGLSModel)
plot(pRent,
main=NULL,
xlab = "Tenants",
lines = list(multiline=TRUE),
confint = list(style="bars"),
colors = c("black"), lty=c(2,1),
rug = FALSE,
axes = list(
y = list(lab = "Rent", rotate = 30)))
The Rent for 2BHK Apartments for Tenants {Bachelors, Family, Both} is higher than the 1BHK Apartments
The Rent is much higher in the category both {Family & Bachelors} for 2BHK Apartments but lower in the 1BHK Apartments
The Rent is higher in category Family for 1BHK Apartments and Lower in 2BHK Apartments
library(effects)
pRent <- predictorEffect("EastFacing",
StepFGLSModel)
plot(pRent,
main=NULL,
xlab = "East Facing",
lines = list(multiline=TRUE),
confint = list(style="bars"),
colors = c("black"), lty=c(2,1),
rug = FALSE,
axes = list(
y = list(lab = "Rent", rotate = 30)))
The Rents for 2BHK Apartments which are facing to East are higher than the 1BHK Apartments
In 2BHK East Facing Apartments are Cheaper than others, but in 1BHK East Facing Apartments are at higher Rents
library(effects)
pRent <- predictorEffect("Photos",
StepFGLSModel)
plot(pRent,
main=NULL,
xlab = "Photos",
lines = list(multiline=TRUE),
confint = list(style="none"),
colors = c("black"), lty=c(2,1),
rug = FALSE,
axes = list(
y = list(lab = "Rent", rotate = 30)))
The Rent increases with the count of photos in 1BHK Apartments, but in 2BHK Rent decreases with the increment in number of photos available on the website
library(effects)
pRent <- predictorEffect("TotalFloors",
StepFGLSModel)
plot(pRent,
main=NULL,
xlab = "Total Floors",
lines = list(multiline=TRUE),
confint = list(style="none"),
colors = c("black"), lty=c(2,1),
rug = FALSE,
axes = list(
y = list(lab = "Rent", rotate = 30)))
The Rent increases as the total number of floors increases in the number, in 1BHK & 2BHK Apartments,but the slope is higher in the 2BHK Apartments