Influenza in FL data

### read in data ###
FLU.FL <- read.csv("C:/Users/Lisa/Desktop/677/FLU/FLU.FL.csv", stringsAsFactors = FALSE)

### this is what the data looks like ###
head(FLU.FL)
##   YEAR WEEK CASE
## 1 1919    1    -
## 2 1919    2    -
## 3 1919    3    -
## 4 1919    4    -
## 5 1919    5    -
## 6 1919    6    -

### change all unavailalble CASE data (-) to NA ###
for (i in 1:length(FLU.FL$CASE)) {
    if (FLU.FL$CASE[i] == "-") {
        FLU.FL$CASE[i] <- NA
    }
}

FLU.FL$CASE <- as.numeric(FLU.FL$CASE)
FLU.FL$YEAR <- as.numeric(FLU.FL$YEAR)
FLU.FL$WEEK <- formatC(FLU.FL$WEEK, width = 2, flag = "0")

### this is what the data looks like now ###
head(FLU.FL)
##   YEAR WEEK CASE
## 1 1919   01   NA
## 2 1919   02   NA
## 3 1919   03   NA
## 4 1919   04   NA
## 5 1919   05   NA
## 6 1919   06   NA

### create an ID for YEAR & WEEK together - YEAR.WEEK ###
YR.WK <- as.character(paste(FLU.FL[, 1], FLU.FL[, 2], sep = "."))
FLU.FL <- data.frame(FLU.FL, YR.WK)

### find yearly CASE totals ###

FLU.FLs <- as.array(split(FLU.FL, FLU.FL$YEAR))

CASE.YR <- rep(NA, length(unique(FLU.FL$YEAR)))

for (i in 1:length(unique(FLU.FL$YEAR))) {
    CASE.YR[i] <- sum(FLU.FLs[[i]][, 3], na.rm = TRUE)
}

CASE.YR <- data.frame(YEAR = c(min(FLU.FL$YEAR):max(FLU.FL$YEAR)), CASE.YR)

### Merge data into one dataframe containing weekly and yearly CASE
### numbers ### CASE.YR is total of CASEs for that year ###
FLU.FL <- merge(FLU.FL, CASE.YR)
head(FLU.FL, 106)
##     YEAR WEEK CASE   YR.WK CASE.YR
## 1   1919   01   NA 1919.01     114
## 2   1919   02   NA 1919.02     114
## 3   1919   03   NA 1919.03     114
## 4   1919   04   NA 1919.04     114
## 5   1919   05   NA 1919.05     114
## 6   1919   06   NA 1919.06     114
## 7   1919   07   NA 1919.07     114
## 8   1919   08   NA 1919.08     114
## 9   1919   09   NA 1919.09     114
## 10  1919   10   NA 1919.10     114
## 11  1919   11   NA 1919.11     114
## 12  1919   12   NA 1919.12     114
## 13  1919   13   NA 1919.13     114
## 14  1919   14   NA 1919.14     114
## 15  1919   15   NA 1919.15     114
## 16  1919   16   NA 1919.16     114
## 17  1919   17   NA 1919.17     114
## 18  1919   18   NA 1919.18     114
## 19  1919   19   NA 1919.19     114
## 20  1919   20   NA 1919.20     114
## 21  1919   21   NA 1919.21     114
## 22  1919   22   NA 1919.22     114
## 23  1919   23   NA 1919.23     114
## 24  1919   24   NA 1919.24     114
## 25  1919   25   NA 1919.25     114
## 26  1919   26   NA 1919.26     114
## 27  1919   27   NA 1919.27     114
## 28  1919   28   NA 1919.28     114
## 29  1919   29   NA 1919.29     114
## 30  1919   30   NA 1919.30     114
## 31  1919   31   NA 1919.31     114
## 32  1919   32   NA 1919.32     114
## 33  1919   33   NA 1919.33     114
## 34  1919   34   NA 1919.34     114
## 35  1919   35   NA 1919.35     114
## 36  1919   36   NA 1919.36     114
## 37  1919   37   NA 1919.37     114
## 38  1919   38   NA 1919.38     114
## 39  1919   39   NA 1919.39     114
## 40  1919   40   NA 1919.40     114
## 41  1919   41   NA 1919.41     114
## 42  1919   42   NA 1919.42     114
## 43  1919   43   NA 1919.43     114
## 44  1919   44   16 1919.44     114
## 45  1919   45   31 1919.45     114
## 46  1919   46   17 1919.46     114
## 47  1919   47   NA 1919.47     114
## 48  1919   48   12 1919.48     114
## 49  1919   49    8 1919.49     114
## 50  1919   50    9 1919.50     114
## 51  1919   51    4 1919.51     114
## 52  1919   52    3 1919.52     114
## 53  1919   53   14 1919.53     114
## 54  1920   01    2 1920.01      12
## 55  1920   02   10 1920.02      12
## 56  1920   03   NA 1920.03      12
## 57  1920   04   NA 1920.04      12
## 58  1920   05   NA 1920.05      12
## 59  1920   06   NA 1920.06      12
## 60  1920   07   NA 1920.07      12
## 61  1920   08   NA 1920.08      12
## 62  1920   09   NA 1920.09      12
## 63  1920   10   NA 1920.10      12
## 64  1920   11   NA 1920.11      12
## 65  1920   12   NA 1920.12      12
## 66  1920   13   NA 1920.13      12
## 67  1920   14   NA 1920.14      12
## 68  1920   15   NA 1920.15      12
## 69  1920   16   NA 1920.16      12
## 70  1920   17   NA 1920.17      12
## 71  1920   18   NA 1920.18      12
## 72  1920   19   NA 1920.19      12
## 73  1920   20   NA 1920.20      12
## 74  1920   21   NA 1920.21      12
## 75  1920   22   NA 1920.22      12
## 76  1920   23   NA 1920.23      12
## 77  1920   24   NA 1920.24      12
## 78  1920   25   NA 1920.25      12
## 79  1920   26   NA 1920.26      12
## 80  1920   27   NA 1920.27      12
## 81  1920   28   NA 1920.28      12
## 82  1920   29   NA 1920.29      12
## 83  1920   30   NA 1920.30      12
## 84  1920   31   NA 1920.31      12
## 85  1920   32   NA 1920.32      12
## 86  1920   33   NA 1920.33      12
## 87  1920   34   NA 1920.34      12
## 88  1920   35   NA 1920.35      12
## 89  1920   36   NA 1920.36      12
## 90  1920   37   NA 1920.37      12
## 91  1920   38   NA 1920.38      12
## 92  1920   39   NA 1920.39      12
## 93  1920   40   NA 1920.40      12
## 94  1920   41   NA 1920.41      12
## 95  1920   42   NA 1920.42      12
## 96  1920   43   NA 1920.43      12
## 97  1920   44   NA 1920.44      12
## 98  1920   45   NA 1920.45      12
## 99  1920   46   NA 1920.46      12
## 100 1920   47   NA 1920.47      12
## 101 1920   48   NA 1920.48      12
## 102 1920   49   NA 1920.49      12
## 103 1920   50   NA 1920.50      12
## 104 1920   51   NA 1920.51      12
## 105 1920   52   NA 1920.52      12
## 106 1921   01   NA 1921.01       0

### create plots of weekly and yearly CASE numbers in 'lattice' ###
require(lattice)
## Loading required package: lattice
plot.wk <- barchart(CASE ~ YR.WK, data = FLU.FL, horizontal = FALSE, xlab = "WEEK")
plot.yr <- barchart(CASE.YR ~ YEAR, data = FLU.FL, horizontal = FALSE, col = "black", 
    xlab = "YEAR")
print(plot.wk, position = c(0.01, 0.47, 0.65, 0.99), more = TRUE)
print(plot.yr, position = c(0.01, 0, 0.65, 0.5), more = FALSE)

plot of chunk unnamed-chunk-1


### same plots plotted using 'plot' ###
par(mfrow = c(2, 1), mar = c(4, 4, 1, 1))
plot(FLU.FL$YR.WK, FLU.FL$CASE, type = "p", pch = ".", xlab = "WEEK")
plot(FLU.FL$YEAR, FLU.FL$CASE.YR, type = "b", pch = 16, xlab = "YEAR")

plot of chunk unnamed-chunk-1



### split the data by year and plot CASE numbers by week for each year ###
### note that CASEs for each month are NOT plotted on the same scale ###
FLU.FLc <- FLU.FL[complete.cases(FLU.FL), ]
FLU.FLcs <- as.array(split(FLU.FLc, FLU.FLc$YEAR))

par(mfrow = c(1, 1))
for (i in 1:length(unique(FLU.FLc$YEAR))) {
    plot(FLU.FLcs[[i]][, 2], FLU.FLcs[[i]][, 3], type = "b", xlab = FLU.FLcs[[i]][1, 
        1], ylab = "Cases", pch = 16)
}

plot of chunk unnamed-chunk-1 plot of chunk unnamed-chunk-1 plot of chunk unnamed-chunk-1 plot of chunk unnamed-chunk-1 plot of chunk unnamed-chunk-1 plot of chunk unnamed-chunk-1 plot of chunk unnamed-chunk-1 plot of chunk unnamed-chunk-1 plot of chunk unnamed-chunk-1 plot of chunk unnamed-chunk-1 plot of chunk unnamed-chunk-1 plot of chunk unnamed-chunk-1 plot of chunk unnamed-chunk-1 plot of chunk unnamed-chunk-1 plot of chunk unnamed-chunk-1 plot of chunk unnamed-chunk-1 plot of chunk unnamed-chunk-1 plot of chunk unnamed-chunk-1 plot of chunk unnamed-chunk-1 plot of chunk unnamed-chunk-1 plot of chunk unnamed-chunk-1 plot of chunk unnamed-chunk-1 plot of chunk unnamed-chunk-1 plot of chunk unnamed-chunk-1 plot of chunk unnamed-chunk-1 plot of chunk unnamed-chunk-1