#21. Check the clock and assign it as a new variable named clock (e.g. 11,23). Write a if condition. If the clock is between 10 and 12, print “I am at school”, else print “I should go to school”.
clock <- 10.58
if (clock >10 & clock < 12) {
print( "I am at school")
} else {
print( "I should go to school")
}
[1] "I am at school"
for ( i in 4:11 ) {
print( i )
}
[1] 4
[1] 5
[1] 6
[1] 7
[1] 8
[1] 9
[1] 10
[1] 11
#22. Write a loop. Print i for each value from 4 to 11 in for loop.
x <- (4:11)
for (i in x ) {
print(i)
}
[1] 4
[1] 5
[1] 6
[1] 7
[1] 8
[1] 9
[1] 10
[1] 11
#23. Assign temperature of sta_data1 as temp1. Write an nested if-else condition in for loop. Do that: - look for all temperature values with for loop, (lenght of temp1 is important, from 1st element to last element of temp1) - if temp1 is bigger than 20 and lower than 30 then print the value with " is not a extreme value" - else if temp1 is lower than 20 then print each value with " is a lower value" - else, print each value with " is a bigger value"
for(i in 1:length(temp1)) {
if (temp1[i] > 20 & temp1[i] < 30) {
print(c(temp1[i], "is not a extreme value"))
} else if(temp1[i] < 20) {
print(c(temp1[i], "is lower value"))
} else{ print(c(temp1[i], "is bigger value")) }
}
[1] "23.9" "is not a extreme value"
[1] "23.9" "is not a extreme value"
[1] "23.8" "is not a extreme value"
[1] "23.8" "is not a extreme value"
[1] "23.6" "is not a extreme value"
[1] "23.2" "is not a extreme value"
[1] "23.2" "is not a extreme value"
[1] "23.1" "is not a extreme value"
[1] "23" "is not a extreme value"
[1] "22.8" "is not a extreme value"
[1] "22.5" "is not a extreme value"
[1] "22.4" "is not a extreme value"
[1] "22.2" "is not a extreme value"
[1] "22.3" "is not a extreme value"
[1] "22.2" "is not a extreme value"
[1] "21.7" "is not a extreme value"
[1] "21.9" "is not a extreme value"
[1] "21.7" "is not a extreme value"
[1] "21.6" "is not a extreme value"
[1] "22.2" "is not a extreme value"
[1] "22.2" "is not a extreme value"
[1] "22.1" "is not a extreme value"
[1] "22.3" "is not a extreme value"
[1] "22.5" "is not a extreme value"
[1] "22.3" "is not a extreme value"
[1] "22.2" "is not a extreme value"
[1] "22.5" "is not a extreme value"
[1] "22.6" "is not a extreme value"
[1] "22.6" "is not a extreme value"
[1] "22.6" "is not a extreme value"
[1] "22.6" "is not a extreme value"
[1] "22.7" "is not a extreme value"
[1] "22.6" "is not a extreme value"
[1] "22.5" "is not a extreme value"
[1] "22.6" "is not a extreme value"
[1] "22.5" "is not a extreme value"
[1] "22.5" "is not a extreme value"
[1] "22.4" "is not a extreme value"
[1] "22.5" "is not a extreme value"
[1] "22.4" "is not a extreme value"
[1] "22.5" "is not a extreme value"
[1] "22.6" "is not a extreme value"
[1] "23" "is not a extreme value"
[1] "23.2" "is not a extreme value"
[1] "24.2" "is not a extreme value"
[1] "25.1" "is not a extreme value"
[1] "25.5" "is not a extreme value"
[1] "26.1" "is not a extreme value"
[1] "27.1" "is not a extreme value"
[1] "26.9" "is not a extreme value"
[1] "27.6" "is not a extreme value"
[1] "28" "is not a extreme value"
[1] "28.4" "is not a extreme value"
[1] "28.5" "is not a extreme value"
[1] "29.3" "is not a extreme value"
[1] "30.2" "is bigger value"
[1] "30.1" "is bigger value"
[1] "30.1" "is bigger value"
[1] "30.4" "is bigger value"
[1] "30.4" "is bigger value"
[1] "30.8" "is bigger value"
[1] "30.9" "is bigger value"
[1] "31" "is bigger value"
[1] "31.5" "is bigger value"
[1] "31.2" "is bigger value"
[1] "30.9" "is bigger value"
[1] "30.9" "is bigger value"
[1] "30.4" "is bigger value"
[1] "30.4" "is bigger value"
[1] "30" "is bigger value"
[1] "29.2" "is not a extreme value"
[1] "29.5" "is not a extreme value"
[1] "29.4" "is not a extreme value"
[1] "29.3" "is not a extreme value"
[1] "29.6" "is not a extreme value"
[1] "28.8" "is not a extreme value"
[1] "29" "is not a extreme value"
[1] "29" "is not a extreme value"
[1] "29.2" "is not a extreme value"
[1] "28.4" "is not a extreme value"
[1] "27.8" "is not a extreme value"
[1] "27.4" "is not a extreme value"
[1] "26.6" "is not a extreme value"
[1] "26.2" "is not a extreme value"
[1] "25.8" "is not a extreme value"
[1] "25.6" "is not a extreme value"
[1] "25.4" "is not a extreme value"
[1] "24.2" "is not a extreme value"
Error in if (temp1[i] > 20 & temp1[i] < 30) { :
missing value where TRUE/FALSE needed
#24. Write a function with named “outlier”. Do these into function; - Mean, Median, Range of temp1 - Variance, Standart Deviation - Plot, hist - Barplot with table function - Summary function - Boxplot - Write a loop and condition: Look for (loop) all temp1, if (condition) there is a outlier, print the value and " is outlier" together. Also print index of outlier.
NOTE : Condition for outliers is: OUTLIERS < MEAN-IQR(temp1) or OUTLIERS > MEAN+IQR(temp1)
outliers <- function(temp1) {
print(c(mean(temp1),"mean"))
print(c(median(temp1),"median"))
print(c(range(temp1),"range"))
print(c(var(temp1),"var"))
print(c(sd(temp1),"sd"))
plot(temp1)
hist(temp1)
barplot(table(temp1))
print(c(summary(temp1),"summary"))
boxplot(temp1)
for (i in 1:length(temp1)) {
if (temp1[i]< mean(temp1)- IQR(temp1) | temp1[i]>mean(temp1)+IQR(temp1)) {
print("there is outliers")
print(c(temp1[i] , "outlier") )
print(which(temp1==temp1[i]))
}
}
}
outliers(temp1)
[1] NA "mean"
[1] NA "median"
[1] NA NA "range"
[1] NA "var"
[1] NA "sd"
Min. 1st Qu. Median Mean 3rd Qu.
"20.1" "21.4" "22.6" "24.3235294117647" "27.7"
Max. NA's
"31.5" "2" "summary"
Error in quantile.default(as.numeric(x), c(0.25, 0.75), na.rm = na.rm, :
missing values and NaN's not allowed if 'na.rm' is FALSE
#25. Go to main web page and download CRU_TR_Near-Surface_Temp_16-01-1901_16-12-2012_Monthly.nc in your working directory and read the station data in R-Studio (WITH ncdf4 Package). Assign it as cru_data1.
getwd()
[1] "C:/Users/Asus/Desktop"
library(ncdf4)
cru_data1<- nc_open("cru_1901_2012_tmp_TR (1).nc")
cru_data1
File cru_1901_2012_tmp_TR (1).nc (NC_FORMAT_CLASSIC):
1 variables (excluding dimension variables):
double tmp[lon,lat,time]
long_name: near-surface temperature
units: degrees Celsius
_FillValue: 9.96920996838687e+36
missing_value: 9.96920996838687e+36
correlation_decay_distance: 1200
3 dimensions:
lon Size:42
standard_name: longitude
long_name: longitude
units: degrees_east
axis: X
lat Size:18
standard_name: latitude
long_name: latitude
units: degrees_north
axis: Y
time Size:1344 *** is unlimited ***
standard_name: time
long_name: time
units: days since 1900-01-01 00:00:00
calendar: standard
10 global attributes:
CDI: Climate Data Interface version 1.6.9 (http://mpimet.mpg.de/cdi)
Conventions: CF-1.4
history: Mon Feb 22 16:24:47 2016: cdo sellonlatbox,25,46,34,43 cru_ts3.21.1901.2012.tmp.dat.nc cru_1901_2012_tmp_TR.nc
Wed 10 Jul 2013 17:04:15 BST : User ianharris : Program makegridsauto.for called by update.for
source: Run ID = 1307101324
Data generated by BADC from:
tmp.1307101049.dtb
institution: Data held at British Atmospheric Data Centre, RAL, UK.
title: CRU TS3.21 Mean Temperature
references: Information on the data is available at http://badc.nerc.ac.uk/data/cru/
comment: Data restrictions: for academic research use only.Contact BADC for details
contact: BADC <badc@rl.ac.uk>
CDO: Climate Data Operators version 1.7.0rc2 (http://mpimet.mpg.de/cdo)
#26. Check the metadata, structure, class and attributes of cru_data1.
class(cru_data1)
[1] "ncdf4"
str(cru_data1)
List of 14
$ filename : chr "cru_1901_2012_tmp_TR (1).nc"
$ writable : logi FALSE
$ id : int 131072
$ safemode : logi FALSE
$ format : chr "NC_FORMAT_CLASSIC"
$ is_GMT : logi FALSE
$ groups :List of 1
..$ :List of 7
.. ..$ id : int 131072
.. ..$ name : chr ""
.. ..$ ndims: int 3
.. ..$ nvars: int 4
.. ..$ natts: int 10
.. ..$ dimid: int [1:3(1d)] 0 1 2
.. ..$ fqgn : chr ""
.. ..- attr(*, "class")= chr "ncgroup4"
$ fqgn2Rindex:List of 1
..$ : int 1
$ ndims : num 3
$ natts : num 10
$ dim :List of 3
..$ lon :List of 10
.. ..$ name : chr "lon"
.. ..$ len : int 42
.. ..$ unlim : logi FALSE
.. ..$ group_index : int 1
.. ..$ group_id : int 131072
.. ..$ id : int 0
.. ..$ dimvarid :List of 5
.. .. ..$ id : int 0
.. .. ..$ group_index: int 1
.. .. ..$ group_id : int 131072
.. .. ..$ list_index : num -1
.. .. ..$ isdimvar : logi TRUE
.. .. ..- attr(*, "class")= chr "ncid4"
.. ..$ units : chr "degrees_east"
.. ..$ vals : num [1:42(1d)] 25.2 25.8 26.2 26.8 27.2 ...
.. ..$ create_dimvar: logi TRUE
.. ..- attr(*, "class")= chr "ncdim4"
..$ lat :List of 10
.. ..$ name : chr "lat"
.. ..$ len : int 18
.. ..$ unlim : logi FALSE
.. ..$ group_index : int 1
.. ..$ group_id : int 131072
.. ..$ id : int 1
.. ..$ dimvarid :List of 5
.. .. ..$ id : int 1
.. .. ..$ group_index: int 1
.. .. ..$ group_id : int 131072
.. .. ..$ list_index : num -1
.. .. ..$ isdimvar : logi TRUE
.. .. ..- attr(*, "class")= chr "ncid4"
.. ..$ units : chr "degrees_north"
.. ..$ vals : num [1:18(1d)] 34.2 34.8 35.2 35.8 36.2 ...
.. ..$ create_dimvar: logi TRUE
.. ..- attr(*, "class")= chr "ncdim4"
..$ time:List of 11
.. ..$ name : chr "time"
.. ..$ len : int 1344
.. ..$ unlim : logi TRUE
.. ..$ group_index : int 1
.. ..$ group_id : int 131072
.. ..$ id : int 2
.. ..$ dimvarid :List of 5
.. .. ..$ id : int 2
.. .. ..$ group_index: int 1
.. .. ..$ group_id : int 131072
.. .. ..$ list_index : num -1
.. .. ..$ isdimvar : logi TRUE
.. .. ..- attr(*, "class")= chr "ncid4"
.. ..$ units : chr "days since 1900-01-01 00:00:00"
.. ..$ calendar : chr "standard"
.. ..$ vals : num [1:1344(1d)] 380 410 439 470 500 531 561 592 623 653 ...
.. ..$ create_dimvar: logi TRUE
.. ..- attr(*, "class")= chr "ncdim4"
$ unlimdimid : num 3
$ nvars : num 1
$ var :List of 1
..$ tmp:List of 22
.. ..$ id :List of 5
.. .. ..$ id : num 3
.. .. ..$ group_index: num -1
.. .. ..$ group_id : int 131072
.. .. ..$ list_index : num 1
.. .. ..$ isdimvar : logi FALSE
.. .. ..- attr(*, "class")= chr "ncid4"
.. ..$ name : chr "tmp"
.. ..$ ndims : int 3
.. ..$ natts : int 5
.. ..$ size : int [1:3] 42 18 1344
.. ..$ dimids : int [1:3] 0 1 2
.. ..$ prec : chr "double"
.. ..$ units : chr "degrees Celsius"
.. ..$ longname : chr "near-surface temperature"
.. ..$ group_index : int 1
.. ..$ chunksizes : logi NA
.. ..$ storage : num 2
.. ..$ shuffle : logi FALSE
.. ..$ compression : logi NA
.. ..$ dims : list()
.. ..$ dim :List of 3
.. .. ..$ :List of 10
.. .. .. ..$ name : chr "lon"
.. .. .. ..$ len : int 42
.. .. .. ..$ unlim : logi FALSE
.. .. .. ..$ group_index : int 1
.. .. .. ..$ group_id : int 131072
.. .. .. ..$ id : int 0
.. .. .. ..$ dimvarid :List of 5
.. .. .. .. ..$ id : int 0
.. .. .. .. ..$ group_index: int 1
.. .. .. .. ..$ group_id : int 131072
.. .. .. .. ..$ list_index : num -1
.. .. .. .. ..$ isdimvar : logi TRUE
.. .. .. .. ..- attr(*, "class")= chr "ncid4"
.. .. .. ..$ units : chr "degrees_east"
.. .. .. ..$ vals : num [1:42(1d)] 25.2 25.8 26.2 26.8 27.2 ...
.. .. .. ..$ create_dimvar: logi TRUE
.. .. .. ..- attr(*, "class")= chr "ncdim4"
.. .. ..$ :List of 10
.. .. .. ..$ name : chr "lat"
.. .. .. ..$ len : int 18
.. .. .. ..$ unlim : logi FALSE
.. .. .. ..$ group_index : int 1
.. .. .. ..$ group_id : int 131072
.. .. .. ..$ id : int 1
.. .. .. ..$ dimvarid :List of 5
.. .. .. .. ..$ id : int 1
.. .. .. .. ..$ group_index: int 1
.. .. .. .. ..$ group_id : int 131072
.. .. .. .. ..$ list_index : num -1
.. .. .. .. ..$ isdimvar : logi TRUE
.. .. .. .. ..- attr(*, "class")= chr "ncid4"
.. .. .. ..$ units : chr "degrees_north"
.. .. .. ..$ vals : num [1:18(1d)] 34.2 34.8 35.2 35.8 36.2 ...
.. .. .. ..$ create_dimvar: logi TRUE
.. .. .. ..- attr(*, "class")= chr "ncdim4"
.. .. ..$ :List of 11
.. .. .. ..$ name : chr "time"
.. .. .. ..$ len : int 1344
.. .. .. ..$ unlim : logi TRUE
.. .. .. ..$ group_index : int 1
.. .. .. ..$ group_id : int 131072
.. .. .. ..$ id : int 2
.. .. .. ..$ dimvarid :List of 5
.. .. .. .. ..$ id : int 2
.. .. .. .. ..$ group_index: int 1
.. .. .. .. ..$ group_id : int 131072
.. .. .. .. ..$ list_index : num -1
.. .. .. .. ..$ isdimvar : logi TRUE
.. .. .. .. ..- attr(*, "class")= chr "ncid4"
.. .. .. ..$ units : chr "days since 1900-01-01 00:00:00"
.. .. .. ..$ calendar : chr "standard"
.. .. .. ..$ vals : num [1:1344(1d)] 380 410 439 470 500 531 561 592 623 653 ...
.. .. .. ..$ create_dimvar: logi TRUE
.. .. .. ..- attr(*, "class")= chr "ncdim4"
.. ..$ varsize : int [1:3] 42 18 1344
.. ..$ unlim : logi TRUE
.. ..$ make_missing_value: logi TRUE
.. ..$ missval : num 9.97e+36
.. ..$ hasAddOffset : logi FALSE
.. ..$ hasScaleFact : logi FALSE
.. ..- attr(*, "class")= chr "ncvar4"
- attr(*, "class")= chr "ncdf4"
attributes(cru_data1)
$names
[1] "filename" "writable" "id" "safemode" "format" "is_GMT"
[7] "groups" "fqgn2Rindex" "ndims" "natts" "dim" "unlimdimid"
[13] "nvars" "var"
$class
[1] "ncdf4"
#27. Write these - The number of variable(s) and dimension(s) - Name(s) of dimension(s), - Long and short name of variable(s), - The size of time step. - Last step of time.
message("1 variable and 3 dimensions")
1 variable and 3 dimensions
message("dimensions are lon, lat, time")
dimensions are lon, lat, time
message("the sort name of variable is time, the long name of variable is time")
the sort name of variable is time, the long name of variable is time
message("Time ends in 12 / 2012 ")
Time ends in 12 / 2012
attributes(cru_data1)
$names
[1] "filename" "writable" "id" "safemode" "format" "is_GMT"
[7] "groups" "fqgn2Rindex" "ndims" "natts" "dim" "unlimdimid"
[13] "nvars" "var"
$class
[1] "ncdf4"
attributes(cru_data1$var)
$names
[1] "tmp"
attributes(cru_data1$var$tmp)
$names
[1] "id" "name" "ndims" "natts"
[5] "size" "dimids" "prec" "units"
[9] "longname" "group_index" "chunksizes" "storage"
[13] "shuffle" "compression" "dims" "dim"
[17] "varsize" "unlim" "make_missing_value" "missval"
[21] "hasAddOffset" "hasScaleFact"
$class
[1] "ncvar4"
#29. Get variable from netcdf file (WITH ncdf4 Package). Assign it as var1.
ncatt_get(cru_data1,'tmp')
$long_name
[1] "near-surface temperature"
$units
[1] "degrees Celsius"
$`_FillValue`
[1] 9.96921e+36
$missing_value
[1] 9.96921e+36
$correlation_decay_distance
[1] 1200
var1_att <- ncatt_get(cru_data1,'tmp')
var1 <- ncvar_get(cru_data1,'tmp')
#30. Check the structure, class and dimensions of var1.
str(var1)
num [1:42, 1:18, 1:1344] NA NA NA NA NA NA NA NA NA NA ...
class(var1)
[1] "array"
dim(var1)
[1] 42 18 1344
#Print var1 at 2nd Time step for all Latitude, Longitude.
print(var1)
, , 1
[,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10] [,11] [,12] [,13] [,14] [,15] [,16]
[1,] NA 8.6 8.7 NA 8.6 8.0 7.0 6.5 NA NA NA 3.6 NA 1.7 -1.0 -3.1
[2,] NA NA 9.1 NA 8.4 8.0 6.7 NA 5.9 4.4 4.2 NA 1.9 1.4 -1.4 -1.6
[3,] NA NA 8.2 NA NA 7.9 NA 6.1 5.6 4.7 5.7 4.5 2.8 1.6 0.5 -0.5
[4,] NA NA 9.1 NA NA NA 7.5 6.1 6.7 4.9 5.4 2.8 1.6 0.6 0.5 0.3
[5,] NA NA 8.8 8.1 NA 7.7 7.0 6.4 5.5 4.1 3.2 2.0 2.4 1.5 1.1 0.4
[6,] NA NA NA 8.4 7.4 7.3 5.8 3.7 4.6 3.3 2.5 2.4 2.7 2.4 1.2 -0.2
[7,] NA NA NA NA 7.7 8.6 3.5 2.8 2.4 2.0 1.2 1.2 2.8 NA 1.9 1.3
[8,] NA NA NA NA NA 7.6 2.0 1.2 1.8 1.0 0.5 0.5 2.7 1.9 2.8 NA
[9,] NA NA NA NA 4.9 3.1 -0.2 0.3 1.5 0.1 -0.9 -1.0 0.6 3.2 3.2 NA
[10,] NA NA NA NA 5.4 -2.0 -1.2 -0.2 0.5 -0.8 -2.1 -2.5 0.3 2.2 1.9 NA
[11,] NA NA NA NA 7.9 -0.2 0.6 1.9 -0.6 -2.0 -2.6 -2.6 -1.0 1.7 2.2 NA
[12,] NA NA NA NA NA 8.2 3.1 -0.9 -1.3 -2.2 -3.1 -2.6 -2.6 -1.0 2.3 NA
[13,] NA 2.6 NA NA NA 5.6 -1.2 -3.2 -1.6 -2.2 -2.1 -2.8 -3.5 -1.7 1.8 NA
[14,] NA 8.5 NA NA NA 5.0 -3.7 -2.2 -2.7 -2.2 -1.8 -2.1 -3.6 -4.4 1.3 NA
[15,] NA 6.7 7.6 NA 8.2 -2.5 -2.8 -3.2 -3.3 -2.8 -2.5 -2.6 -3.5 -4.0 -1.8 0.4
[16,] NA 7.8 9.2 NA 0.8 -2.6 -2.2 -2.2 -2.8 -3.4 -3.8 -3.5 -4.5 -5.3 -3.2 0.1
[17,] NA 8.2 8.5 NA 3.1 -0.2 -1.8 -2.8 -2.6 -2.7 -3.2 -3.4 -5.2 -5.7 -4.1 -3.3
[18,] NA 8.4 8.9 NA 6.1 -2.9 -3.3 -2.4 -2.2 -2.8 -2.9 -2.8 -3.4 -4.8 -4.8 -3.1
[19,] NA NA 8.1 7.8 6.4 3.2 -6.4 -1.9 -3.0 -2.3 -2.9 -2.5 -3.1 -3.9 -4.1 -2.6
[20,] NA NA NA NA NA 7.5 0.1 -3.6 -2.8 -2.5 -2.8 -3.0 -3.3 -2.4 -3.4 -2.0
[21,] NA NA NA NA NA 7.1 6.4 -5.2 -3.5 -3.7 -4.4 -3.9 -3.9 -3.1 -0.9 2.5
[22,] 8.0 8.4 8.1 8.9 4.1 8.3 7.8 -0.9 -5.1 -5.2 -6.2 -4.8 -3.4 -2.2 -0.6 1.0
[23,] 0.2 5.7 6.0 5.3 6.0 5.5 4.7 -2.7 -6.7 -6.3 -5.2 -5.5 -3.4 -2.2 2.5 1.9
[24,] 1.0 4.5 5.1 4.5 5.4 4.8 1.2 -3.5 -6.4 -5.8 -5.7 -5.5 -3.9 -1.9 5.3 NA
[25,] 2.1 2.3 4.0 4.6 4.1 3.6 1.2 -4.1 -6.7 -6.2 -6.6 -6.0 -5.0 -2.3 2.3 NA
[26,] 2.9 2.3 3.3 4.2 4.0 3.4 2.1 -1.5 -6.2 -5.7 -5.6 -5.6 -5.6 -2.3 2.1 NA
[27,] 4.2 2.8 3.5 4.3 4.1 3.6 3.1 1.6 -3.7 -3.1 -3.8 -4.5 -4.1 -3.6 NA NA
[28,] 4.4 3.3 3.7 4.5 4.1 3.8 3.2 2.6 -2.4 -3.9 -6.5 -5.6 -5.8 -2.8 NA NA
[29,] 3.9 4.6 2.9 4.1 3.9 3.5 2.9 2.0 -2.5 -2.4 -6.7 -7.0 -4.4 -3.6 1.4 NA
[30,] 4.2 5.0 4.0 4.1 3.0 3.2 2.0 0.1 0.6 -3.8 -8.2 -8.2 -6.0 -4.0 3.0 NA
[31,] 4.8 5.1 4.8 3.7 2.3 3.0 2.0 0.4 -0.3 -4.1 -6.0 -8.0 -9.6 -5.5 3.0 NA
[32,] 5.3 5.3 4.9 4.3 3.3 3.2 1.6 0.2 -1.4 -5.3 -8.1 -9.1 -11.7 -9.6 1.2 NA
[33,] 5.5 5.4 5.2 4.5 3.7 4.0 1.7 0.0 -3.1 -8.0 -9.8 -10.4 -11.0 -11.1 -0.8 NA
[34,] 5.9 5.3 5.3 5.2 3.9 4.4 2.5 0.6 -4.9 -8.4 -10.0 -10.0 -9.9 -8.3 -6.1 2.9
[35,] 6.7 5.8 5.6 5.6 4.9 4.4 3.4 -1.1 -5.0 -6.4 -8.1 -10.9 -10.2 -10.5 -11.1 -8.2
[36,] 7.0 6.8 6.3 5.8 4.9 4.3 0.7 -3.7 -5.9 -5.9 -8.7 -11.5 -11.5 -13.2 -14.1 -11.4
[37,] 7.8 7.4 6.7 6.1 4.7 2.1 -2.4 -8.1 -6.4 -6.1 -10.1 -12.4 -13.5 -13.4 -14.4 -11.4
[38,] 8.0 7.8 7.3 6.2 3.9 -0.3 -5.4 -9.3 -8.9 -9.4 -10.6 -11.1 -10.3 -12.6 -15.1 -11.8
[39,] 8.4 8.2 7.7 6.2 1.2 -2.3 -7.8 -11.4 -10.7 -11.6 -10.6 -7.9 -9.3 -14.7 -10.4 -8.0
[40,] 8.8 8.2 6.1 4.3 0.4 -4.9 -10.1 -10.3 -8.1 -8.7 -7.5 -7.2 -11.1 -12.2 -5.0 -3.2
[41,] 8.6 7.0 3.1 0.2 -2.9 -7.3 -4.6 -5.4 -6.0 -5.6 -5.3 -8.2 -12.5 -9.7 -0.4 -3.3
[42,] 5.6 5.1 3.6 -2.5 -5.0 -5.0 -4.1 -4.9 -5.2 -5.5 -8.7 -11.2 -12.6 -5.8 0.1 -1.7
[,17] [,18]
[1,] -3.4 -6.9
[2,] -2.3 -5.4
[3,] -1.7 -4.8
[4,] -1.1 -2.7
[5,] -0.7 -1.5
[6,] 0.6 -0.1
[7,] NA NA
[8,] NA NA
[9,] NA NA
[10,] NA NA
[11,] NA NA
[12,] NA NA
[13,] NA NA
[14,] NA NA
[15,] NA NA
[16,] NA NA
[17,] -0.8 NA
[18,] -1.2 NA
[19,] -1.0 NA
[20,] 0.0 NA
[21,] 0.7 NA
[22,] NA NA
[23,] NA NA
[24,] NA NA
[25,] NA NA
[26,] NA NA
[27,] NA NA
[28,] NA NA
[29,] NA NA
[30,] NA NA
[31,] NA NA
[32,] NA 1.4
[33,] NA 4.6
[34,] 4.9 0.0
[35,] 3.5 -7.5
[36,] -0.1 -11.6
[37,] -5.0 -12.8
[38,] -8.3 -15.3
[39,] -9.3 -16.0
[40,] -9.8 -15.5
[41,] -10.8 -16.4
[42,] -15.1 -13.0
, , 2
[,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10] [,11] [,12] [,13] [,14] [,15] [,16]
[1,] NA 12.3 12.4 NA 12.8 12.3 11.4 11.1 NA NA NA 8.5 NA 6.8 3.9 2.2
[2,] NA NA 12.9 NA 12.8 12.5 11.3 NA 10.7 9.1 9.1 NA 6.8 6.4 3.5 3.7
[3,] NA NA 12.5 NA NA 12.6 NA 10.8 10.3 9.4 10.0 8.8 7.7 6.4 5.4 4.7
[4,] NA NA 13.6 NA NA NA 12.2 10.9 11.2 9.9 10.0 7.4 6.4 5.9 5.5 5.3
[5,] NA NA 13.5 12.8 NA 12.5 11.8 11.0 10.4 9.1 8.0 6.7 7.1 6.2 6.0 5.4
[6,] NA NA NA 13.4 12.3 12.1 10.7 8.8 9.6 8.4 7.5 7.1 7.3 7.2 5.8 4.4
[7,] NA NA NA NA 12.6 13.3 8.7 8.1 7.7 7.1 6.3 6.4 7.6 NA 6.3 6.1
[8,] NA NA NA NA NA 12.6 7.3 6.5 7.1 6.1 5.7 5.7 7.6 6.7 6.9 NA
[9,] NA NA NA NA 10.2 8.5 5.3 5.7 6.8 5.2 4.2 4.2 5.5 7.4 7.3 NA
[10,] NA NA NA NA 10.5 3.8 4.6 5.4 6.0 4.5 3.3 2.9 5.5 6.9 6.8 NA
[11,] NA NA NA NA 12.8 5.4 6.2 7.4 4.9 3.5 3.1 3.3 4.7 6.8 7.2 NA
[12,] NA NA NA NA NA 13.0 8.4 4.6 4.3 3.5 2.8 3.5 3.2 4.4 7.3 NA
[13,] NA 8.2 NA NA NA 11.4 4.5 2.6 4.2 3.8 3.9 3.3 2.4 4.0 6.9 NA
[,17] [,18]
[1,] 2.4 -1.5
[2,] 3.2 0.1
[3,] 3.5 0.3
[4,] 3.8 2.2
[5,] 4.1 3.2
[6,] 5.0 4.2
[7,] NA NA
[8,] NA NA
[9,] NA NA
[10,] NA NA
[11,] NA NA
[12,] NA NA
[13,] NA NA
[ reached getOption("max.print") -- omitted 29 row(s) and 1342 matrix slice(s) ]
print(time)
function (x, ...)
UseMethod("time")
<bytecode: 0x0000004e85da8bd8>
<environment: namespace:stats>
#32. Image the spatial (2D) Turkey Map for November 2010. (size of time step and temporal resolution are important)