Measles in FL data

### read in data ###
M.FL <- read.csv("C:/Users/Lisa/Desktop/677/Measles/M.FL.csv", stringsAsFactors = FALSE)

### this is what the data looks like ###
head(M.FL)
##   YEAR WEEK CASE
## 1 1927    1    -
## 2 1927    2    -
## 3 1927    3    -
## 4 1927    4    -
## 5 1927    5    -
## 6 1927    6    -

### change all unavailalble CASE data (-) to NA ###
for (i in 1:length(M.FL$CASE)) {
    if (M.FL$CASE[i] == "-") {
        M.FL$CASE[i] <- NA
    }
}

M.FL$CASE <- as.numeric(M.FL$CASE)
M.FL$YEAR <- as.numeric(M.FL$YEAR)
M.FL$WEEK <- formatC(M.FL$WEEK, width = 2, flag = "0")

### this is what the data looks like now ###
head(M.FL)
##   YEAR WEEK CASE
## 1 1927   01   NA
## 2 1927   02   NA
## 3 1927   03   NA
## 4 1927   04   NA
## 5 1927   05   NA
## 6 1927   06   NA

### create an ID for YEAR & WEEK together - YEAR.WEEK ###
YR.WK <- as.character(paste(M.FL[, 1], M.FL[, 2], sep = "."))
M.FL <- data.frame(M.FL, YR.WK)

### find yearly CASE totals ###

M.FLs <- as.array(split(M.FL, M.FL$YEAR))

CASE.YR <- rep(NA, length(unique(M.FL$YEAR)))

for (i in 1:length(unique(M.FL$YEAR))) {
    CASE.YR[i] <- sum(M.FLs[[i]][, 3], na.rm = TRUE)
}

CASE.YR <- data.frame(YEAR = c(min(M.FL$YEAR):max(M.FL$YEAR)), CASE.YR)

### Merge data into one dataframe containing weekly and yearly CASE
### numbers ### CASE.YR is total of CASEs for that year ###
M.FL <- merge(M.FL, CASE.YR)
head(M.FL, 106)
##     YEAR WEEK CASE   YR.WK CASE.YR
## 1   1927   01   NA 1927.01      19
## 2   1927   02   NA 1927.02      19
## 3   1927   03   NA 1927.03      19
## 4   1927   04   NA 1927.04      19
## 5   1927   05   NA 1927.05      19
## 6   1927   06   NA 1927.06      19
## 7   1927   07   NA 1927.07      19
## 8   1927   08   NA 1927.08      19
## 9   1927   09   NA 1927.09      19
## 10  1927   10   NA 1927.10      19
## 11  1927   11   NA 1927.11      19
## 12  1927   12   NA 1927.12      19
## 13  1927   13   NA 1927.13      19
## 14  1927   14   NA 1927.14      19
## 15  1927   15   NA 1927.15      19
## 16  1927   16   NA 1927.16      19
## 17  1927   17   NA 1927.17      19
## 18  1927   18   NA 1927.18      19
## 19  1927   19   NA 1927.19      19
## 20  1927   20   NA 1927.20      19
## 21  1927   21   NA 1927.21      19
## 22  1927   22   NA 1927.22      19
## 23  1927   23   NA 1927.23      19
## 24  1927   24   NA 1927.24      19
## 25  1927   25   NA 1927.25      19
## 26  1927   26   NA 1927.26      19
## 27  1927   27   NA 1927.27      19
## 28  1927   28   NA 1927.28      19
## 29  1927   29   NA 1927.29      19
## 30  1927   30   NA 1927.30      19
## 31  1927   31   NA 1927.31      19
## 32  1927   32   NA 1927.32      19
## 33  1927   33   NA 1927.33      19
## 34  1927   34   NA 1927.34      19
## 35  1927   35   NA 1927.35      19
## 36  1927   36   NA 1927.36      19
## 37  1927   37   NA 1927.37      19
## 38  1927   38   NA 1927.38      19
## 39  1927   39   NA 1927.39      19
## 40  1927   40   NA 1927.40      19
## 41  1927   41   NA 1927.41      19
## 42  1927   42   NA 1927.42      19
## 43  1927   43   NA 1927.43      19
## 44  1927   44   NA 1927.44      19
## 45  1927   45   NA 1927.45      19
## 46  1927   46   NA 1927.46      19
## 47  1927   47    2 1927.47      19
## 48  1927   48    1 1927.48      19
## 49  1927   49    3 1927.49      19
## 50  1927   50   NA 1927.50      19
## 51  1927   51    5 1927.51      19
## 52  1927   52    8 1927.52      19
## 53  1928   01    3 1928.01    1715
## 54  1928   02    7 1928.02    1715
## 55  1928   03    6 1928.03    1715
## 56  1928   04   13 1928.04    1715
## 57  1928   05    7 1928.05    1715
## 58  1928   06   24 1928.06    1715
## 59  1928   07   19 1928.07    1715
## 60  1928   08   16 1928.08    1715
## 61  1928   09   11 1928.09    1715
## 62  1928   10   32 1928.10    1715
## 63  1928   11   48 1928.11    1715
## 64  1928   12   70 1928.12    1715
## 65  1928   13   66 1928.13    1715
## 66  1928   14   42 1928.14    1715
## 67  1928   15   81 1928.15    1715
## 68  1928   16   92 1928.16    1715
## 69  1928   17   94 1928.17    1715
## 70  1928   18  142 1928.18    1715
## 71  1928   19  101 1928.19    1715
## 72  1928   20   70 1928.20    1715
## 73  1928   21  133 1928.21    1715
## 74  1928   22  175 1928.22    1715
## 75  1928   23   79 1928.23    1715
## 76  1928   24  118 1928.24    1715
## 77  1928   25   92 1928.25    1715
## 78  1928   26   21 1928.26    1715
## 79  1928   27   47 1928.27    1715
## 80  1928   28   35 1928.28    1715
## 81  1928   29    9 1928.29    1715
## 82  1928   30    4 1928.30    1715
## 83  1928   31   13 1928.31    1715
## 84  1928   32   NA 1928.32    1715
## 85  1928   33    1 1928.33    1715
## 86  1928   34    2 1928.34    1715
## 87  1928   35   NA 1928.35    1715
## 88  1928   36    6 1928.36    1715
## 89  1928   37   NA 1928.37    1715
## 90  1928   38   NA 1928.38    1715
## 91  1928   39   NA 1928.39    1715
## 92  1928   40    3 1928.40    1715
## 93  1928   41   NA 1928.41    1715
## 94  1928   42    2 1928.42    1715
## 95  1928   43   NA 1928.43    1715
## 96  1928   44    6 1928.44    1715
## 97  1928   45    2 1928.45    1715
## 98  1928   46   NA 1928.46    1715
## 99  1928   47    4 1928.47    1715
## 100 1928   48    3 1928.48    1715
## 101 1928   49    6 1928.49    1715
## 102 1928   50    5 1928.50    1715
## 103 1928   51    5 1928.51    1715
## 104 1928   52   NA 1928.52    1715
## 105 1929   01   10 1929.01    1127
## 106 1929   02    2 1929.02    1127

### create plots of weekly and yearly CASE numbers in 'lattice' ###
require(lattice)
## Loading required package: lattice
plot.wk <- barchart(CASE ~ YR.WK, data = M.FL, horizontal = FALSE, xlab = "WEEK")
plot.yr <- barchart(CASE.YR ~ YEAR, data = M.FL, horizontal = FALSE, col = "black", 
    xlab = "YEAR")
print(plot.wk, position = c(0.01, 0.47, 0.65, 0.99), more = TRUE)
print(plot.yr, position = c(0.01, 0, 0.65, 0.5), more = FALSE)

plot of chunk unnamed-chunk-1


### same plots plotted using 'plot' ###
par(mfrow = c(2, 1), mar = c(4, 4, 1, 1))
plot(M.FL$YR.WK, M.FL$CASE, type = "p", pch = ".", xlab = "WEEK")
plot(M.FL$YEAR, M.FL$CASE.YR, type = "b", pch = 16, xlab = "YEAR")

plot of chunk unnamed-chunk-1



### split the data by year and plot CASE numbers by week for each year ###
### note that CASEs for each month are NOT plotted on the same scale ###
M.FLc <- M.FL[complete.cases(M.FL), ]
M.FLcs <- as.array(split(M.FLc, M.FLc$YEAR))

par(mfrow = c(1, 1))
for (i in 1:length(unique(M.FLc$YEAR))) {
    plot(M.FLcs[[i]][, 2], M.FLcs[[i]][, 3], type = "b", xlab = M.FLcs[[i]][1, 
        1], ylab = "Cases", pch = 16)
}

plot of chunk unnamed-chunk-1 plot of chunk unnamed-chunk-1 plot of chunk unnamed-chunk-1 plot of chunk unnamed-chunk-1 plot of chunk unnamed-chunk-1 plot of chunk unnamed-chunk-1 plot of chunk unnamed-chunk-1 plot of chunk unnamed-chunk-1 plot of chunk unnamed-chunk-1 plot of chunk unnamed-chunk-1 plot of chunk unnamed-chunk-1 plot of chunk unnamed-chunk-1 plot of chunk unnamed-chunk-1 plot of chunk unnamed-chunk-1 plot of chunk unnamed-chunk-1 plot of chunk unnamed-chunk-1 plot of chunk unnamed-chunk-1 plot of chunk unnamed-chunk-1 plot of chunk unnamed-chunk-1 plot of chunk unnamed-chunk-1 plot of chunk unnamed-chunk-1 plot of chunk unnamed-chunk-1 plot of chunk unnamed-chunk-1 plot of chunk unnamed-chunk-1 plot of chunk unnamed-chunk-1 plot of chunk unnamed-chunk-1 plot of chunk unnamed-chunk-1 plot of chunk unnamed-chunk-1 plot of chunk unnamed-chunk-1 plot of chunk unnamed-chunk-1 plot of chunk unnamed-chunk-1 plot of chunk unnamed-chunk-1 plot of chunk unnamed-chunk-1 plot of chunk unnamed-chunk-1 plot of chunk unnamed-chunk-1 plot of chunk unnamed-chunk-1 plot of chunk unnamed-chunk-1 plot of chunk unnamed-chunk-1 plot of chunk unnamed-chunk-1 plot of chunk unnamed-chunk-1 plot of chunk unnamed-chunk-1 plot of chunk unnamed-chunk-1 plot of chunk unnamed-chunk-1 plot of chunk unnamed-chunk-1 plot of chunk unnamed-chunk-1 plot of chunk unnamed-chunk-1 plot of chunk unnamed-chunk-1 plot of chunk unnamed-chunk-1 plot of chunk unnamed-chunk-1 plot of chunk unnamed-chunk-1 plot of chunk unnamed-chunk-1 plot of chunk unnamed-chunk-1 plot of chunk unnamed-chunk-1 plot of chunk unnamed-chunk-1 plot of chunk unnamed-chunk-1 plot of chunk unnamed-chunk-1