使うライブラリ
library(gsheet)
データの在処は表示しない
データの読み込み
data_ <- gsheet2tbl(url)
data.md <- data_[1:9,]
colnames(data.md) <- c("Date", "Day", "Temp", "Off_Fuji", "Off_Ctr", "Off_Rbw",
"Bch_Fuji", "Bch_Ctr", "Bch_Rbw")
DT::datatable(data.md[c(1:9)])
表の凡例 Temp: Water temperature, Off: Offshore, Bch: Beach, Fuji: Fuji TV, Ctr: Center, Rbw: Rainbow bridge
par(family = "HiraKakuProN-W3") #Macintoshの場合
par(oma = c(0, 0, 4, 0))
par(mfrow=c(2,3))
plot(data_$Day, data_$Offshore_Fuji, xlim = c(0,50), ylim=c(0,500),
type = "b", pch = 4, col = 1, xlab = "Day", ylab = "Length (mm) ",
main = "沖・フジTV側")
plot(data_$Day, data_$Offshore_Center, xlim = c(0,50), ylim = c(0,500),
type = "b", pch = 4, col = 1, xlab = "Day", ylab = "Length (mm) ",
main = "沖・中央")
plot(data_$Day, data_$Offshore_Rainbow, xlim = c(0,50), ylim = c(0,500),
type = "b", pch = 4, col = 1, xlab = "Day", ylab = "Length (mm) ",
main = "沖・レインボー側")
plot(data_$Day, data_$Beach_Fuji, xlim=c(0,50), ylim=c(0,500), type = "b",
pch = 4, col = 1, xlab = "Day", ylab = "Length (mm) ",
main = "浜・フジTV側")
plot(data_$Day, data_$Beach_Center, xlim=c(0,50), ylim=c(0,500),
type = "b", pch = 4, col = 1, xlab = "Day", ylab = "Length (mm) ",
main = "浜・中央")
plot(data_$Day, data_$Beach_Rainbow, xlim = c(0,50), ylim = c(0,500),
type = "b", pch = 4, col = 1, xlab = "Day", ylab = "Length (mm) ",
main = "浜・レインボー側")
\(length = a \times b^{day}\)
# 指数回帰の係数を推定する
exp.b.f <- nls(Bch_Fuji ~ a*b^Day, data = data.md, start = list(a = 1, b = 1))
exp.b.c <- nls(Bch_Ctr ~ a*b^Day, data = data.md, start = list(a = 1, b = 1))
exp.b.r <- nls(Bch_Rbw ~ a*b^Day, data = data.md, start = list(a = 1, b = 1))
exp.o.f <- nls(Off_Fuji ~ a*b^Day, data = data.md, start = list(a = 1, b = 1))
exp.o.c <- nls(Off_Ctr ~ a*b^Day, data = data.md, start = list(a = 1, b = 1))
exp.o.r <- nls(Off_Rbw ~ a*b^Day, data = data.md, start = list(a = 1, b = 1))
# 推定値を格納する
sum.b.f <- summary(exp.b.f)
sum.b.c <- summary(exp.b.c)
sum.b.r <- summary(exp.b.r)
sum.o.f <- summary(exp.o.f)
sum.o.c <- summary(exp.o.c)
sum.o.r <- summary(exp.o.r)
b.f.a <- sum.b.f$coefficients[1,1]; b.f.b <- sum.b.f$coefficients[2,1]
b.c.a <- sum.b.c$coefficients[1,1]; b.c.b <- sum.b.c$coefficients[2,1]
b.r.a <- sum.b.r$coefficients[1,1]; b.r.b <- sum.b.r$coefficients[2,1]
o.f.a <- sum.o.f$coefficients[1,1]; o.f.b <- sum.o.f$coefficients[2,1]
o.c.a <- sum.o.c$coefficients[1,1]; o.c.b <- sum.o.c$coefficients[2,1]
o.r.a <- sum.o.r$coefficients[1,1]; o.r.b <- sum.o.r$coefficients[2,1]
沖・フジTV側
summary(exp.b.f)
##
## Formula: Bch_Fuji ~ a * b^Day
##
## Parameters:
## Estimate Std. Error t value Pr(>|t|)
## a 0.5109 0.5133 0.995 0.5015
## b 1.1632 0.1053 11.050 0.0575 .
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.8063 on 1 degrees of freedom
##
## Number of iterations to convergence: 11
## Achieved convergence tolerance: 3.574e-06
## (6 observations deleted due to missingness)
沖・中央
summary(exp.b.c)
##
## Formula: Bch_Ctr ~ a * b^Day
##
## Parameters:
## Estimate Std. Error t value Pr(>|t|)
## a 0.37882 0.25379 1.493 0.3758
## b 1.24096 0.07205 17.223 0.0369 *
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.5513 on 1 degrees of freedom
##
## Number of iterations to convergence: 7
## Achieved convergence tolerance: 4.653e-06
## (6 observations deleted due to missingness)
沖・レインボー側
summary(exp.b.r)
##
## Formula: Bch_Rbw ~ a * b^Day
##
## Parameters:
## Estimate Std. Error t value Pr(>|t|)
## a 0.37882 0.25379 1.493 0.3758
## b 1.24096 0.07205 17.223 0.0369 *
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.5513 on 1 degrees of freedom
##
## Number of iterations to convergence: 7
## Achieved convergence tolerance: 4.653e-06
## (6 observations deleted due to missingness)
浜・フジTV側
summary(exp.o.f)
##
## Formula: Off_Fuji ~ a * b^Day
##
## Parameters:
## Estimate Std. Error t value Pr(>|t|)
## a 0.5109 0.5133 0.995 0.5015
## b 1.1632 0.1053 11.050 0.0575 .
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.8063 on 1 degrees of freedom
##
## Number of iterations to convergence: 11
## Achieved convergence tolerance: 3.574e-06
## (6 observations deleted due to missingness)
浜・中央
summary(exp.o.c)
##
## Formula: Off_Ctr ~ a * b^Day
##
## Parameters:
## Estimate Std. Error t value Pr(>|t|)
## a 0.37882 0.25379 1.493 0.3758
## b 1.24096 0.07205 17.223 0.0369 *
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.5513 on 1 degrees of freedom
##
## Number of iterations to convergence: 7
## Achieved convergence tolerance: 4.653e-06
## (6 observations deleted due to missingness)
浜・レインボー側
summary(exp.o.r)
##
## Formula: Off_Rbw ~ a * b^Day
##
## Parameters:
## Estimate Std. Error t value Pr(>|t|)
## a 0.37882 0.25379 1.493 0.3758
## b 1.24096 0.07205 17.223 0.0369 *
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.5513 on 1 degrees of freedom
##
## Number of iterations to convergence: 7
## Achieved convergence tolerance: 4.653e-06
## (6 observations deleted due to missingness)
これらの結果をまとめると以下の通り
沖・フジTV側
沖・中央 沖・レインボー側 浜・フジTV側 浜・中央 浜・レインボー側例えば,20日後の長さの推定値を求めたい場合,\(length = a \times b^{day}\)であるから,aの値と,bの値の20乗をかけることで,長さの推定値が求まる。
仮に\(a = 0.38\), \(b = 1.24\)で20日後の長さを求めるのであれば,\(0.38 \times 1.24^{20} = 28.06\)となる。
# 作図する
plot(data.md$Day, data.md$Bch_Fuji, xlim = c(0,36), ylim = c(0,500),
pch = 0, col = 2,xlab = "Day", ylab = "Length (mm) ",
main = "Odaiba-nori Growth Estimate 2019-20")
par(new=T)
plot(data.md$Day, data.md$Bch_Ctr, xlim = c(0,36), ylim = c(0,500),
pch = 1, col = 2, axes = F, xlab = "", ylab = "")
par(new=T)
plot(data.md$Day, data.md$Bch_Rbw, xlim = c(0,36), ylim = c(0,500),
pch = 2, col = 2, axes = F, xlab = "", ylab = "")
par(new = T)
plot(data.md$Day, data.md$Off_Fuji, xlim = c(0,36), ylim = c(0,500),
pch = 0, col = 4, axes = F, xlab="", ylab="")
par(new = T)
plot(data.md$Day, data.md$Off_Ctr, xlim = c(0,36), ylim = c(0,500),
pch = 1, col = 4, axes = F, xlab = "", ylab = "")
par(new = T)
plot(data.md$Day, data.md$Off_Rbw, xlim = c(0,36), ylim = c(0,500),
pch = 2, col = 4, axes = F, xlab = "", ylab = "")
data.day <- c(1:36)
lines(data.day, b.f.a*b.f.b^data.day, col = 2, lty = 1, lwd = 2)
lines(data.day, b.c.a*b.c.b^data.day, col = 2, lty = 3, lwd = 2)
lines(data.day, b.r.a*b.r.b^data.day, col = 2, lty = 4, lwd = 2)
lines(data.day, o.f.a*o.f.b^data.day, col = 4, lty = 1, lwd = 2)
lines(data.day, o.c.a*o.c.b^data.day, col = 4, lty = 3, lwd = 2)
lines(data.day, o.r.a*o.r.b^data.day, col = 4, lty = 4, lwd = 2)
legend (0, 500,
c("Beach_Fuji", "Beach_Center", "Beach_Rainbow",
"Offshore_Fuji", "Offshore_Center", "Offshore_Rainbow"),
lwd = 1,
pch = c(0,1,2,0,1,2), lty = c(1,3,4,1,3,4), col = c(2,2,2,4,4,4),
bty = "n", bg = "n", cex = 0.8
)
# dec 29 (16days)
days <- 16
d29.b.f <- b.f.a*b.f.b^days; d29.b.c <- b.c.a*b.c.b^days
d29.b.r <- b.r.a*b.r.b^days; d29.o.f <- o.f.a*o.f.b^days
d29.o.c <- o.c.a*o.c.b^days; d29.o.r <- o.r.a*o.r.b^days
# Jan 3 (21days)
days <- 21
j3.b.f <- b.f.a*b.f.b^days; j3.b.c <- b.c.a*b.c.b^days
j3.b.r <- b.r.a*b.r.b^days; j3.o.f <- o.f.a*o.f.b^days
j3.o.c <- o.c.a*o.c.b^days; j3.o.r <- o.r.a*o.r.b^days
# Jan 8 (26days)
days <- 26
j8.b.f <- b.f.a*b.f.b^days; j8.b.c <- b.c.a*b.c.b^days
j8.b.r <- b.r.a*b.r.b^days; j8.o.f <- o.f.a*o.f.b^days
j8.o.c <- o.c.a*o.c.b^days; j8.o.r <- o.r.a*o.r.b^days
# Jan 11 (29days)
days <- 29
j11.b.f <- b.f.a*b.f.b^days; j11.b.c <- b.c.a*b.c.b^days
j11.b.r <- b.r.a*b.r.b^days; j11.o.f <- o.f.a*o.f.b^days
j11.o.c <- o.c.a*o.c.b^days; j11.o.r <- o.r.a*o.r.b^days
# Jan 16 (34days)
days <- 34
j16.b.f <- b.f.a*b.f.b^days; j16.b.c <- b.c.a*b.c.b^days
j16.b.r <- b.r.a*b.r.b^days; j16.o.f <- o.f.a*o.f.b^days
j16.o.c <- o.c.a*o.c.b^days; j16.o.r <- o.r.a*o.r.b^days
# Jan 18 (36days)
days <- 36
j18.b.f <- b.f.a*b.f.b^days; j18.b.c <- b.c.a*b.c.b^days
j18.b.r <- b.r.a*b.r.b^days; j18.o.f <- o.f.a*o.f.b^days
j18.o.c <- o.c.a*o.c.b^days; j18.o.r <- o.r.a*o.r.b^days
md.es.tab <- data.frame(t(
matrix(c(d29.b.f, d29.b.c, d29.b.r, d29.o.f, d29.o.c, d29.o.r,
j3.b.f, j3.b.c, j3.b.r, j3.o.f, j3.o.c, j3.o.r,
j8.b.f, j8.b.c, j8.b.r, j8.o.f, j8.o.c, j8.o.r,
j11.b.f, j11.b.c, j11.b.r, j11.o.f, j11.o.c, j11.o.r,
j16.b.f, j16.b.c, j16.b.r, j16.o.f, j16.o.c, j16.o.r,
j18.b.f, j18.b.c, j18.b.r, j18.o.f, j18.o.c, j18.o.r),
nrow = 6, ncol = 6)
))
colnames(md.es.tab) <- c( "Off_Fuji", "Off_Ctr", "Off_Rbw",
"Bch_Fuji", "Bch_Ctr", "Bch_Rbw")
rownames(md.es.tab) <- c("Dec.29", "Jan.03", "Jan.08",
"Jan.11", "Jan.16", "Jan.18")
DT::datatable(format(md.es.tab, digits = 2, nsmall = 2))
Dec.14 | |
---|---|
作業時刻 | 22:00-22-30 |
水温 | NA |
実測潮位 | 47cm |
参加者 | NA |
作業内容 | 沖に張った海苔網を1週間海面上にならないように下げた。 |
Dec.20 | |
---|---|
作業時刻 | 19:00-12:10 |
水温 | NA |
実測潮位 | 107cm |
参加者 | 委員長,副委員長,台場担当係長ほか6名 |
作業内容 | 沖に張った海苔網6枚のうち3枚を学校側のひびに移設。沖,学校側ともに潮位105cmの高さに張り直し。 |
. | . |
Dec.25 | |
---|---|
作業時刻 | 19:00-19:40 |
水温 | 14 |
実測潮位 | 108cm |
参加者 | 委員長,校長,副校長,5年担任,4年担任ほか9名(台場担当係長不在) |
作業内容 | 観察。学校側・フジテレビ側の網がやや高かったため海面より3cm下げた(105cmにそろえた)。 |
. |
. | . |