policytree introduction


Binary treatment effect estimation and policy learning

[1] 0.6392099 0.7619908 0.7124756 0.6863965 0.8472532 0.1378475
[1] -0.20507306 -0.17951938 -0.01481747 -0.14825344  0.06430986  0.21154274
W
   0    1 
4908 5092 

             [,1]        [,2]       [,3]        [,4]        [,5]       [,6]
[1,]  0.784426777  0.95872075 -0.5719365 -1.29523073  1.49015980 -0.3758897
[2,]  0.779628799  0.72349907 -1.1636251  1.43670437 -2.36100510  0.7750034
[3,] -0.017241292  0.13581579 -0.9074379  0.09009495 -1.02175957 -0.1619632
[4,] -0.004632896  1.22737455 -0.7833259  0.98047781  1.31845154  1.2058850
[5,] -0.451543128 -0.06580124 -1.7132178 -1.13824828  1.26972966 -0.1876438
[6,] -1.078862699 -0.72691445  1.8332843  1.22486612  0.02184471 -1.4344583
            [,7]       [,8]        [,9]      [,10]
[1,] -0.02572405  2.6317785 -0.04566386 -0.3197411
[2,] -2.26148341  0.4765856  2.29394108 -0.5321064
[3,] -0.39681674  0.4286189  1.21300794  0.3447469
[4,]  1.23718453 -1.1726293  1.82930248  0.6559452
[5,]  2.14352705 -1.5545898  0.37919106 -1.1356779
[6,] -1.85855945 -0.8198074  0.89547417 -1.9386003
policy_tree object 
Tree depth:  2 
Actions:  1: control 2: treated 
Variable splits: 
(1) split_variable: X2  split_value: 0.534778 
  (2) split_variable: X1  split_value: 0.627123 
    (4) * action: 2 
    (5) * action: 1 
  (3) split_variable: X1  split_value: -1.31902 
    (6) * action: 2 
    (7) * action: 1 


Multi-action treatment effect estimation (Zhou, Athey and Wager, 2018)

The following example is from the 3-action DGP from section 6.4.1 in Zhou, Athey and Wager (2018)

  action          Y        X.1       X.2       X.3        X.4
1      0 -1.2247222 0.75254947 0.8783117 0.3180328 0.07811779
2      2  3.7847432 0.21775649 0.9671132 0.7302644 0.26106458
3      1  2.8208815 0.75926056 0.7084679 0.8069856 0.87489642
4      0  0.2818341 0.01368435 0.3487733 0.2184962 0.12315543
5      0 -0.1698533 0.75518226 0.2770627 0.5429598 0.13204391
6      1  2.2243984 0.33342050 0.5498841 0.5284039 0.71499512
           0          1           2
1 -2.1456331 0.28933957  2.02875155
2 -2.5025713 0.27356647  2.45900008
3  1.2483877 0.07367266 -1.15622199
4 -0.6198447 0.29013045 -0.04416951
5 -2.2018440 0.29136768  2.29718431
6  1.1851891 0.32668998 -1.13604132


Policy learning

Cross-fitted Augmented Inverse Propensity Weighted Learning (CAIPWL) with the optimal depth 2 tree

          0         1         2
1 -1.712859 0.6430332 1.8534440
2 -1.507405 0.1254383 8.2745133
3  2.723504 3.6378895 0.8491398
4 -3.802252 1.9665333 1.8141032
5  1.477444 0.3473808 1.6365853
6  2.646381 2.5034549 0.8105063
policy_tree object 
Tree depth:  2 
Actions:  1: 0 2: 1 3: 2 
Variable splits: 
(1) split_variable: X5  split_value: 0.602384 
  (2) split_variable: X7  split_value: 0.352353 
    (4) * action: 3 
    (5) * action: 1 
  (3) split_variable: X7  split_value: 0.744548 
    (6) * action: 2 
    (7) * action: 3 
[1] 3 3 1 3 1 3


Efficient Policy Learning - Binary Treatment and Instrumental Variables (Wager and Athey, 2017)

The following example is from section 5.2 in Wager and Athey (2017).

  W Z        tau          Y        X.1         X.2
1 0 0 -0.2666420  0.5927068 -0.8102200  0.46671594
2 0 0  0.5412761  0.9463330  2.0825523 -0.07374747
3 0 1 -0.3644244  0.4684493  0.1018880  0.16926315
4 0 0 -0.5000000 -0.3173146 -1.0826638 -2.02495981
5 0 0 -0.2409265  2.3584731 -0.6996321  0.51814692
6 0 1 -0.4681670  0.5878648 -0.6293105  0.06366600
        control    treated
[1,]  0.3631107 -0.3631107
[2,]  1.7595999 -1.7595999
[3,] -1.8003242  1.8003242
[4,] -1.8187049  1.8187049
[5,]  4.8398261 -4.8398261
[6,] -3.9837949  3.9837949

Find the depth-2 tree which solves (2):

policy_tree object 
Tree depth:  2 
Actions:  1: control 2: treated 
Variable splits: 
(1) split_variable: X1  split_value: -0.22769 
  (2) split_variable: X6  split_value: 0.580364 
    (4) * action: 2 
    (5) * action: 1 
  (3) split_variable: X1  split_value: 0.149089 
    (6) * action: 1 
    (7) * action: 2 

Evaluate the policy on held out data:

[1] 1 0 1 1 1 0
[1] 0.06127335

2019-12-26