In August of 2012, news outlets ranging from the Washington Post to the Huffington Post ran a story about the rise of atheism in America. The source for the story was a poll that asked people, “Irrespective of whether you attend a place of worship or not, would you say you are a religious person, not a religious person or a convinced atheist?” This type of question, which asks people to classify themselves in one way or another, is common in polling and generates categorical data. In this lab we take a look at the atheism survey and explore what’s at play when making inference about population proportions using categorical data.
To access the press release for the poll, conducted by WIN-Gallup International, click on the following link:
Take a moment to review the report then address the following questions.
These appear to be sample statistics derived from a global poll.
We must assume that the poll sample is a representative sample of the global population.
Turn your attention to Table 6 (pages 15 and 16), which reports the sample size and response percentages for all 57 countries. While this is a useful format to summarize the data, we will base our analysis on the original data set of individual responses to the survey. Load this data set into R with the following command.
atheism correspond to?Each row represents a singel country and the percentage of athiests based on the given sample size.
To investigate the link between these two ways of organizing this data, take a look at the estimated proportion of atheists in the United States. Towards the bottom of Table 6, we see that this is 5%. We should be able to come to the same number using the atheism data.
us12 that contains only the rows in atheism associated with respondents to the 2012 survey from the United States. Next, calculate the proportion of atheist responses. Does it agree with the percentage in Table 6? If not, why?## ── Attaching packages ───────────────────────────────────────────────────────────────────────────────────── tidyverse 1.2.1 ──
## ✔ ggplot2 3.2.1 ✔ purrr 0.3.2
## ✔ tibble 2.1.3 ✔ dplyr 0.8.3
## ✔ tidyr 0.8.3 ✔ stringr 1.4.0
## ✔ readr 1.3.1 ✔ forcats 0.4.0
## ── Conflicts ──────────────────────────────────────────────────────────────────────────────────────── tidyverse_conflicts() ──
## ✖ dplyr::filter() masks stats::filter()
## ✖ dplyr::lag() masks stats::lag()
us12 <- subset(atheism, nationality == "United States" & year == "2012")
us12 %>% group_by(response) %>% count()## # A tibble: 2 x 2
## # Groups: response [2]
## response n
## <fct> <int>
## 1 atheist 50
## 2 non-atheist 952
## [1] 0.0499002
Yes, this agrees with the 5% in Table 6.
As was hinted at in Exercise 1, Table 6 provides statistics, that is, calculations made from the sample of 51,927 people. What we’d like, though, is insight into the population parameters. You answer the question, “What proportion of people in your sample reported being atheists?” with a statistic; while the question “What proportion of people on earth would report being atheists” is answered with an estimate of the parameter.
The inferential tools for estimating population proportion are analogous to those used for means in the last chapter: the confidence interval and the hypothesis test.
Random - sample data must come from a random sample; Normal - the distribution should be approximate normal and have at least 10 samples in each case; Independent - each sample should be independent from other sample.
Since data is from professional indepentent pollsters, I will assume they use proper random sampling; We have 5% of 1002 so have more than 10 cases in each group (atheist and non-atheist); There is no reason to believe there is dependence between any samples.
If the conditions for inference are reasonable, we can either calculate the standard error and construct the interval by hand, or allow the inference function to do it for us.
inference(us12$response, est = "proportion", type = "ci", method = "theoretical", success = "atheist")## Single proportion -- success: atheist
## Summary statistics:
## p_hat = 0.0499 ; n = 1002
## Check conditions: number of successes = 50 ; number of failures = 952
## Standard error = 0.0069
## 95 % Confidence interval = ( 0.0364 , 0.0634 )
Note that since the goal is to construct an interval estimate for a proportion, it’s necessary to specify what constitutes a “success”, which here is a response of "atheist".
Although formal confidence intervals and hypothesis tests don’t show up in the report, suggestions of inference appear at the bottom of page 7: “In general, the error margin for surveys of this kind is \(\pm\) 3-5% at 95% confidence”.
## [1] 0.0135
The margin of error is: 0.0135 or 1.35%
inference function, calculate confidence intervals for the proportion of atheists in 2012 in two other countries of your choice, and report the associated margins of error. Be sure to note whether the conditions for inference are met. It may be helpful to create new data sets for each of the two countries first, and then use these data sets in the inference function to construct the confidence intervals.ja12 <- subset(atheism, nationality == "Japan" & year == "2012")
be12 <- subset(atheism, nationality == "Belgium" & year == "2012")
inference(ja12$response, est = "proportion", type = "ci", method = "theoretical", success = "atheist")## Single proportion -- success: atheist
## Summary statistics:
## p_hat = 0.3069 ; n = 1212
## Check conditions: number of successes = 372 ; number of failures = 840
## Standard error = 0.0132
## 95 % Confidence interval = ( 0.281 , 0.3329 )
inference(be12$response, est = "proportion", type = "ci", method = "theoretical", success = "atheist")## Single proportion -- success: atheist
## Summary statistics:
## p_hat = 0.0797 ; n = 527
## Check conditions: number of successes = 42 ; number of failures = 485
## Standard error = 0.0118
## 95 % Confidence interval = ( 0.0566 , 0.1028 )
Japan: check assumptions … 31% out of 1200 means > 10 samples of each atheist and non-atheist; Data from random sampling and no dependence between observation; 95% confidence is ( 0.281 , 0.3329 ) with margin of error: 0.02595.
Belgium: check assumptions … 8% out of 528 means > 10 samples of each atheist and non-atheist; Data from random sampling and no dependence between observation; 95% confidence is ( 0.0566 , 0.1028 ) with margin of error: 0.0231.
Imagine you’ve set out to survey 1000 people on two questions: are you female? and are you left-handed? Since both of these sample proportions were calculated from the same sample size, they should have the same margin of error, right? Wrong! While the margin of error does change with sample size, it is also affected by the proportion.
Think back to the formula for the standard error: \(SE = \sqrt{p(1-p)/n}\). This is then used in the formula for the margin of error for a 95% confidence interval: \(ME = 1.96\times SE = 1.96\times\sqrt{p(1-p)/n}\). Since the population proportion \(p\) is in this \(ME\) formula, it should make sense that the margin of error is in some way dependent on the population proportion. We can visualize this relationship by creating a plot of \(ME\) vs. \(p\).
The first step is to make a vector p that is a sequence from 0 to 1 with each number separated by 0.01. We can then create a vector of the margin of error (me) associated with each of these values of p using the familiar approximate formula (\(ME = 2 \times SE\)). Lastly, we plot the two vectors against each other to reveal their relationship.
n <- 1000
p <- seq(0, 1, 0.01)
me <- 2 * sqrt(p * (1 - p)/n)
plot(me ~ p, ylab = "Margin of Error", xlab = "Population Proportion")p and me.Non-linear relationship where when p is small of very large, making 1-p very small, our margin of error calculation no longer holds. This probably demonstates why the condition that we have at least 10 cases in each state p and 1-p, which helps to avoid the side of the curve and keep us closer to the middle.
The textbook emphasizes that you must always check conditions before making inference. For inference on proportions, the sample proportion can be assumed to be nearly normal if it is based upon a random sample of independent observations and if both \(np \geq 10\) and \(n(1 - p) \geq 10\). This rule of thumb is easy enough to follow, but it makes one wonder: what’s so special about the number 10?
The short answer is: nothing. You could argue that we would be fine with 9 or that we really should be using 11. What is the “best” value for such a rule of thumb is, at least to some degree, arbitrary. However, when \(np\) and \(n(1-p)\) reaches 10 the sampling distribution is sufficiently normal to use confidence intervals and hypothesis tests that are based on that approximation.
We can investigate the interplay between \(n\) and \(p\) and the shape of the sampling distribution by using simulations. To start off, we simulate the process of drawing 5000 samples of size 1040 from a population with a true atheist proportion of 0.1. For each of the 5000 samples we compute \(\hat{p}\) and then plot a histogram to visualize their distribution.
p <- 0.1
n <- 1040
p_hats <- rep(0, 5000)
for(i in 1:5000){
samp <- sample(c("atheist", "non_atheist"), n, replace = TRUE, prob = c(p, 1-p))
p_hats[i] <- sum(samp == "atheist")/n
}
hist(p_hats, main = "p = 0.1, n = 1040", xlim = c(0, 0.18))## [1] 0.09969
## [1] 0.009287382
These commands build up the sampling distribution of \(\hat{p}\) using the familiar for loop. You can read the sampling procedure for the first line of code inside the for loop as, “take a sample of size \(n\) with replacement from the choices of atheist and non-atheist with probabilities \(p\) and \(1 - p\), respectively.” The second line in the loop says, “calculate the proportion of atheists in this sample and record this value.” The loop allows us to repeat this process 5,000 times to build a good representation of the sampling distribution.
mean to calculate summary statistics.The mean is very close to 0.1, with a standard deviation of 0.01. The shape is approximately normal and not to spread out.
par(mfrow = c(2, 2)) command before creating the histograms. You may need to expand the plot window to accommodate the larger two-by-two plot. Describe the three new sampling distributions. Based on these limited plots, how does \(n\) appear to affect the distribution of \(\hat{p}\)? How does \(p\) affect the sampling distribution?p <- 0.1
n <- 400
p_hats1 <- rep(0, 5000)
for(i in 1:5000){
samp <- sample(c("atheist", "non_atheist"), n, replace = TRUE, prob = c(p, 1-p))
p_hats1[i] <- sum(samp == "atheist")/n
}
p <- 0.02
n <- 1040
p_hats2 <- rep(0, 5000)
for(i in 1:5000){
samp <- sample(c("atheist", "non_atheist"), n, replace = TRUE, prob = c(p, 1-p))
p_hats2[i] <- sum(samp == "atheist")/n
}
p <- 0.02
n <- 400
p_hats3 <- rep(0, 5000)
for(i in 1:5000){
samp <- sample(c("atheist", "non_atheist"), n, replace = TRUE, prob = c(p, 1-p))
p_hats3[i] <- sum(samp == "atheist")/n
}
par(mfrow = c(2, 2))
hist(p_hats, main = "p = 0.1, n = 1040", xlim = c(0, 0.18))
hist(p_hats1, main = "p = 0.1, n = 400", xlim = c(0, 0.18))
hist(p_hats2, main = "p = 0.02, n = 1040", xlim = c(0, 0.18))
hist(p_hats3, main = "p = 0.02, n = 400", xlim = c(0, 0.18))p appears to shift the distribution along the x-axis with larger p to the right. n appears to affect the spread with smaller n having a broader spread.
Once you’re done, you can reset the layout of the plotting window by using the command par(mfrow = c(1, 1)) command or clicking on “Clear All” above the plotting window (if using RStudio). Note that the latter will get rid of all your previous plots.
Australia is fine; however, Ecuador is probaly at the critical point where our conditions are not being met. 2% of 400 is 8, whicvh is less than our rule of 10 cutoff. If we wanted to improve the survey, we probably need to try and acquire more sample from Ecuador if we want to make inferences and use the same as representing the population.
The question of atheism was asked by WIN-Gallup International in a similar survey that was conducted in 2005. (We assume here that sample sizes have remained the same.) Table 4 on page 13 of the report summarizes survey results from 2005 and 2012 for 39 countries.
Answer the following two questions using the inference function. As always, write out the hypotheses for any tests you conduct and outline the status of the conditions for inference.
a. Is there convincing evidence that Spain has seen a change in its atheism index between 2005 and 2012?
sp05 <- subset(atheism, nationality == "Spain" & year == "2005")
sp12 <- subset(atheism, nationality == "Spain" & year == "2012")
inference(sp05$response, est = "proportion", type = "ci", method = "theoretical", success = "atheist")## Single proportion -- success: atheist
## Summary statistics:
## p_hat = 0.1003 ; n = 1146
## Check conditions: number of successes = 115 ; number of failures = 1031
## Standard error = 0.0089
## 95 % Confidence interval = ( 0.083 , 0.1177 )
inference(sp12$response, est = "proportion", type = "ci", method = "theoretical", success = "atheist")## Single proportion -- success: atheist
## Summary statistics:
## p_hat = 0.09 ; n = 1145
## Check conditions: number of successes = 103 ; number of failures = 1042
## Standard error = 0.0085
## 95 % Confidence interval = ( 0.0734 , 0.1065 )
We see that the confidence intervals for Spain 2005 and 2012 overlap significantly. As such, we do NOT have evidence that the percent of atheists changed in spain between 2005 and 2012
*Hint:* Create a new data set for respondents from Spain. Form
confidence intervals for the true proportion of athiests in both
years, and determine whether they overlap.
**b.** Is there convincing evidence that the United States has seen a
change in its atheism index between 2005 and 2012?
us05 <- subset(atheism, nationality == "United States" & year == "2005")
us12 <- subset(atheism, nationality == "United States" & year == "2012")
inference(us05$response, est = "proportion", type = "ci", method = "theoretical", success = "atheist")## Single proportion -- success: atheist
## Summary statistics:
## p_hat = 0.01 ; n = 1002
## Check conditions: number of successes = 10 ; number of failures = 992
## Standard error = 0.0031
## 95 % Confidence interval = ( 0.0038 , 0.0161 )
inference(us12$response, est = "proportion", type = "ci", method = "theoretical", success = "atheist")## Single proportion -- success: atheist
## Summary statistics:
## p_hat = 0.0499 ; n = 1002
## Check conditions: number of successes = 50 ; number of failures = 952
## Standard error = 0.0069
## 95 % Confidence interval = ( 0.0364 , 0.0634 )
The confidence intervals for the US in 2005 and 2012 do not overlap, suggesting that it is very likely that the percent of atheist in the US did in fact change between 2005 and 2012
Out of 39 countries if we are assuming significance level of 0.05 (5%), we are saying that 1/20 times the result could have been due to chance. So ~2 of the 39 might be due to random chance vs an actual change.
At least ~5% of the population. Using the chart, I found 0.01 on the y-axis … went across to the point and then down to get the x-axis proportion.