install.packages(c("table1", "compareGroups","GGally","gridExtra","gapminder","ggthemes","ggplot2"))
library(SNPassoc)
## Loading required package: haplo.stats
## Loading required package: survival
## Loading required package: mvtnorm
## Loading required package: parallel
## Registered S3 method overwritten by 'SNPassoc':
## method from
## summary.haplo.glm haplo.stats
library(haplo.stats)
library(survival)
library(mvtnorm)
library(parallel)
library(gapminder)
library(ggplot2)
library(ggthemes)
library(gridExtra)
library(table1)
##
## Attaching package: 'table1'
## The following objects are masked from 'package:base':
##
## units, units<-
library(compareGroups)
t = "C:\\Users\\Thuan Nguyen\\OneDrive\\R in BUH\\Dataset thuc hanh\\PISA Data Vietnam 2015.csv"
pisa = read.csv(t)
dim(pisa)
## [1] 5826 18
table1(~Region + Area + SchoolType + Math + Read + Science | Area, data = pisa)
| REMOTE (n=410) |
RURAL (n=2368) |
URBAN (n=3048) |
Overall (n=5826) |
|
|---|---|---|---|---|
| Region | ||||
| CENTRAL | 198 (48.3%) | 857 (36.2%) | 951 (31.2%) | 2006 (34.4%) |
| NORTH | 148 (36.1%) | 764 (32.3%) | 1046 (34.3%) | 1958 (33.6%) |
| SOUTH | 64 (15.6%) | 747 (31.5%) | 1051 (34.5%) | 1862 (32.0%) |
| Area | ||||
| REMOTE | 410 (100%) | 0 (0%) | 0 (0%) | 410 (7.0%) |
| RURAL | 0 (0%) | 2368 (100%) | 0 (0%) | 2368 (40.6%) |
| URBAN | 0 (0%) | 0 (0%) | 3048 (100%) | 3048 (52.3%) |
| SchoolType | ||||
| Mean (SD) | 3.00 (0.00) | 2.89 (0.464) | 2.80 (0.600) | 2.85 (0.528) |
| Median [Min, Max] | 3.00 [3.00, 3.00] | 3.00 [1.00, 3.00] | 3.00 [1.00, 3.00] | 3.00 [1.00, 3.00] |
| Missing | 0 (0%) | 0 (0%) | 35 (1.1%) | 35 (0.6%) |
| Math | ||||
| Mean (SD) | 450 (82.0) | 500 (81.9) | 499 (79.3) | 496 (81.5) |
| Median [Min, Max] | 446 [216, 696] | 498 [273, 818] | 497 [202, 820] | 493 [202, 820] |
| Read | ||||
| Mean (SD) | 440 (76.0) | 491 (67.6) | 496 (69.6) | 490 (70.6) |
| Median [Min, Max] | 439 [233, 643] | 490 [292, 744] | 495 [107, 718] | 489 [107, 744] |
| Science | ||||
| Mean (SD) | 482 (74.4) | 529 (75.5) | 527 (72.8) | 525 (75.0) |
| Median [Min, Max] | 475 [307, 698] | 529 [335, 807] | 525 [293, 799] | 524 [293, 807] |
temp = compareGroups(Area ~ PARED + WEALTH + Math + Read + Science, data = pisa)
createTable(temp)
##
## --------Summary descriptives table by 'Area'---------
##
## ________________________________________________________
## REMOTE RURAL URBAN p.overall
## N=410 N=2368 N=3048
## ¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯
## PARED 7.90 (3.69) 9.38 (3.47) 9.56 (3.48) <0.001
## WEALTH -3.00 (1.25) -2.22 (1.08) -2.12 (1.16) <0.001
## Math 450 (82.0) 500 (81.9) 499 (79.3) <0.001
## Read 440 (76.0) 491 (67.6) 496 (69.6) <0.001
## Science 482 (74.4) 529 (75.5) 527 (72.8) <0.001
## ¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯
#Simple histogram of Math using ggplot2
p1 = ggplot(data = pisa,aes(x=Math))
p1 = p1 + geom_histogram(fill="blue",color="white")
p1+labs(x="Math Score",y="Number of students")
## `stat_bin()` using `bins = 30`. Pick better value with `binwidth`.
# Simple histogram of Math with probability and density line
p2 = ggplot(pisa, aes(x=Math))
p2 = p2 + geom_histogram(aes(y = ..density..), color = "white", fill = "blue")
p2 = p2 + geom_density(col="red")
p2+ labs(x = "Math score", y = "Probability")
## `stat_bin()` using `bins = 30`. Pick better value with `binwidth`.
# Histogram of Math by Gender
p3 = ggplot(pisa, aes(x = Math, fill = Gender))
p3 = p3 + geom_histogram(position = "dodge")
p3 + labs(x="Math Score",y="Number of students")
## `stat_bin()` using `bins = 30`. Pick better value with `binwidth`.
p4 = ggplot(pisa, aes(x = Math, fill = Area, color = Area))
p4 = p4 + geom_density(alpha = 0.1)
p4 + labs(x = "Math Score", y = "Density")
grid.arrange(p1, p2, p3, p4, ncol = 2)
## `stat_bin()` using `bins = 30`. Pick better value with `binwidth`.
## `stat_bin()` using `bins = 30`. Pick better value with `binwidth`.
## `stat_bin()` using `bins = 30`. Pick better value with `binwidth`.
#Number of students by Area
p5 = ggplot(pisa, aes(x = Area, fill = Area, col = Area))
p5 = p5 + geom_bar(position = "dodge")
p5
# Number of student by Area and Gender - dodge
p6 = ggplot(pisa,aes(x = Area, fill = Gender, col = Gender))
p6 = p6 + geom_bar(position = "dodge")
p6
#Stack bar
p7 = ggplot(pisa, aes(x = Area, fill = Gender, col = Gender))
p7 = p7 + geom_bar(position = "stack")
p7
# Stack bar by Region, Area and Gender
p8 = ggplot(pisa, aes(x = Area, fill = Gender, col = Gender))
p8 = p8 + geom_bar(position = "stack") + facet_grid(~Region)
p8
grid.arrange(p5, p6, p7, p8, ncol = 2)
#Simple boxplot for Math by Gender
p9 = ggplot(pisa, aes(x = Gender, y = Math, fill = Gender))
p9 = p9 + geom_boxplot()
p9
#Boxplot for Math by Gender and Area
p10 = ggplot(pisa, aes(x = Gender, y = Math, fill = Gender))
p10 = p10 + geom_boxplot() + facet_grid(~Area)
p10
#Simple Boxplot for Math by Area, Gender with jitter
p11 = ggplot(pisa, aes(x = Gender, y = Math, fill = Gender, col = Gender))
p11 = p11 + geom_boxplot(col = "black") + geom_jitter(alpha = 0.1)
p11 = p11 + facet_grid(~Area)
p11
grid.arrange(p9, p10, p11, ncol = 3)
#Simple correlation between WEALTH and Science
p = ggplot(pisa, aes(x = WEALTH, y = Science))
p + geom_point()
## Warning: Removed 15 rows containing missing values (geom_point).
#Simple correlation between Wealth and Math by Area
p = ggplot(pisa, aes(x = WEALTH, y = Science, col = Area))
p + geom_point()
## Warning: Removed 15 rows containing missing values (geom_point).
#Simple correlation between Wealth and Math by Area and Smooth
p = ggplot(pisa, aes(x = WEALTH, y = Science, col = Area))
p + geom_point() + geom_smooth(method = "lm", se = F)
## Warning: Removed 15 rows containing non-finite values (stat_smooth).
## Warning: Removed 15 rows containing missing values (geom_point).
#Correlation between Math, Science, Read by Area
library(GGally)
## Registered S3 method overwritten by 'GGally':
## method from
## +.gg ggplot2
dat = pisa[, c("Area", "Math", "Science", "Read")]
p = ggpairs(dat, mapping = aes(color = Area))
p
## `stat_bin()` using `bins = 30`. Pick better value with `binwidth`.
## `stat_bin()` using `bins = 30`. Pick better value with `binwidth`.
## `stat_bin()` using `bins = 30`. Pick better value with `binwidth`.
#Correlation between Math, Science, Read by Gender
library(GGally)
dat = pisa[, c("Gender", "Math", "Science", "Read")]
p = ggpairs(dat, mapping = aes(color = Gender))
p
## `stat_bin()` using `bins = 30`. Pick better value with `binwidth`.
## `stat_bin()` using `bins = 30`. Pick better value with `binwidth`.
## `stat_bin()` using `bins = 30`. Pick better value with `binwidth`.