Interactive Data Visualization

Row

Airquality Analysis

Temp

Temperature in New York

153

Temperature Distribution

Total Temp May

2032

Total Temp June

2373

Total Temp July

2601

Row

Monthly Temperatures

Months with higher Temperatures

Temp vs Solar.R

Scatterplot

Data Table

Pivot Table

Summary Report

Column(data-width=100)

Max Temp Month

97

Average Solar Radiation

334

Average Wind

10

Average Ozone

42.1

Column

Report

  • This is a report on “r length(airquality$Temp)” temperature measurements.

  • The average Solar.R “r mean(airquality$Solar.R)”.

  • The average Wind “r mean(airquality$Wind)”.

This report was generated on “r format(Sys.Date(),format=”%B%d%Y").

Created by: Data Scientist at DAK consult.

Confidential: Highly

---
title: "Airquality Measurement in New York"
output: 
  flexdashboard::flex_dashboard:
    theme: cerulean
    orientation: rows
    vertical_layout: fill
    social: ["twitter","facebook","menu"]
    source_code: embed
---

```{r setup, include=FALSE}
library(flexdashboard)
library(knitr)
library(DT)
library(rpivotTable)
library(ggplot2)
library(plotly)
library(dplyr)
library(openintro)
library(highcharter)
library(ggvis)
#read in data
library(datasets)
data(airquality)
#my colors
mycolors<-c("blue","#FFC125","darkgreen","darkorange")

```

Interactive Data Visualization
=======================================================================


Row {data-width=650}
-----------------------------------------------------------------------

### Airquality Analysis

```{r}
valueBox(paste("Temp"),color="cold")

```

### Temperature in New York

```{r}
valueBox(length(airquality$Month),icon="fa-user")

```

### Temperature Distribution

```{r}
gauge(airquality$Temp,
            min=56,
            max=97,
            gaugeSectors(success=c(80,97),
                         warning=c(65,80),
                         danger=c(56,65),
                         colors=c("green","yellow","red")))
```

### Total Temp May

```{r}
valueBox(sum(subset(airquality$Temp,airquality$Month=="5")),icon="fa-user-times",color="orange")

```

### Total Temp June

```{r}
valueBox(sum(subset(airquality$Temp,airquality$Month=="6")),icon="fa-user-plus",color="yellow")

```

### Total Temp July

```{r}
valueBox(sum(subset(airquality$Temp,airquality$Month=="7")),icon="fa-user-times",color="lightgreen")

```


Row {data-width=350}
-----------------------------------------------------------------------

### Monthly Temperatures

```{r}
  p1<-airquality%>%
  group_by(Month)%>%
  summarise(count=sum(Temp))%>%
              plot_ly(x=~Month,
                      y=~count,
                      color="yellow",
                      type="bar")%>%
              layout(xaxis=list(title="Month"),
                     yaxis=list(title="Count"))
  p1          
  
```

### Months with higher Temperatures

```{r}
p2<-airquality%>%
  group_by(Month)%>%
  summarise(count=mean(Temp))%>%
  filter(count>75)%>%
  plot_ly(labels=~Month,
          values=~count,
          marker=list(colors=mycolors))%>%
  add_pie(hole=0.4)%>%
  layout(xaxis=list(zeroline=F,showline=F,showticklabels=F,showgrid=F),
         yaxis=list(zeroline=F,showline=F,showticklabels=F,showgrid=F))
p2

```

### Temp vs Solar.R

```{r}
p3<-plot_ly(airquality,
            x=~Temp,y=~Solar.R,
            test=paste("Temp:",airquality$Temp,
                       "Solar.R:",airquality$Solar.R),
            type="bar")%>%
  layout(xaxis=list(title="Temp"),yaxis=list(title="Solar.R"))
p3

```

### Scatterplot

```{r}
airquality <- airquality %>% 
  filter(!is.na(Solar.R))
fit<-lm(Solar.R~Temp,data=airquality)

p4<-plot_ly(airquality,x=airquality$Temp,y=airquality$Solar.R,type="scatter",mode="markers")%>%
  layout(xaxis=list(title="Temp"),yaxis=list(title="Solar.R"))%>%
  add_lines(x =airquality$Temp, y = fitted(loess(airquality$Solar.R~airquality$Temp)),
            name="Loess Smoother",color="red",showlegend=T,line=list(2))
p4

```

Data Table
=======================================================================

```{r}
datatable(airquality,caption="Temp Data",rownames=T,filter="top",options=list(pageLength=25))

```

Pivot Table
========================================================================

```{r}
rpivotTable(airquality,
            aggregatorName="Count",
            cols="Temp",
            rows="Month",
            renderName="Heatmap")

```

Summary Report
========================================================================

Column(data-width=100)
------------------------------------------------------------------------

### Max Temp Month

```{r}
valueBox(max(airquality$Temp),icon="fa-user")

``` 

### Average Solar Radiation

```{r}
valueBox(max(airquality$Solar.R),icon="fa-area-chart")

``` 

### Average Wind

```{r}
valueBox(round(mean(airquality$Wind),digits=2),icon="fa-area-chart")

``` 

### Average Ozone

```{r}
valueBox(round(mean(airquality$Ozone,na.rm=TRUE),digits=2),icon="fa-area-chart")

``` 

Column
--------------------------------------------------------------------

### Report

* This is a report on "r length(airquality$Temp)" temperature measurements.

* The average Solar.R "r mean(airquality$Solar.R)".

* The average Wind "r mean(airquality$Wind)".

This report was generated on "r format(Sys.Date(),format="%B%d%Y").

Created by: Data Scientist at DAK consult.

Confidential: Highly