Comandos_R_0574

Alejandro Henao Ruiz

12/17/2019

Carga de datos

## [1] "asignacionfinal" "consolidado"
## # A tibble: 6 x 5
##     nro comision delegacion                     ie             formador
##   <dbl> <chr>    <chr>                          <chr>          <chr>   
## 1     1 UNODC    REINO UNIDO DE GRAN BRETAÑA    MADRE LAURA 18 JUANJO  
## 2     2 UNODC    ESTADOS UNIDOS MEXICANOS       REY 17         MP      
## 3     3 UNODC    REPÚBLICA FEDERAL DE ALEMANIA  REY 18         MP      
## 4     4 UNODC    REPÚBLICA PORTUGUESA           CONCEJO 13     LAURA   
## 5     5 UNODC    ESTADOS UNIDOS DE NORTEAMÉRICA PAÚL 17        MP      
## 6     6 UNODC    REPÚBLICA FRANCESA             REY 19         MP
## Classes 'tbl_df', 'tbl' and 'data.frame':    323 obs. of  5 variables:
##  $ nro       : num  1 2 3 4 5 6 7 8 9 10 ...
##  $ comision  : chr  "UNODC" "UNODC" "UNODC" "UNODC" ...
##  $ delegacion: chr  "REINO UNIDO DE GRAN BRETAÑA" "ESTADOS UNIDOS MEXICANOS" "REPÚBLICA FEDERAL DE ALEMANIA" "REPÚBLICA PORTUGUESA" ...
##  $ ie        : chr  "MADRE LAURA 18" "REY 17" "REY 18" "CONCEJO 13" ...
##  $ formador  : chr  "JUANJO" "MP" "MP" "LAURA" ...
##       nro          comision          delegacion             ie           
##  Min.   :  1.0   Length:323         Length:323         Length:323        
##  1st Qu.: 81.5   Class :character   Class :character   Class :character  
##  Median :162.0   Mode  :character   Mode  :character   Mode  :character  
##  Mean   :171.2                                                           
##  3rd Qu.:242.5                                                           
##  Max.   :394.0                                                           
##    formador        
##  Length:323        
##  Class :character  
##  Mode  :character  
##                    
##                    
## 
## [1] "nro"        "comision"   "delegacion" "ie"         "formador"
## # A tibble: 6 x 7
##   formador      ie        delegados presidentes secretarios comunicaciones  kids
##   <chr>         <chr>         <dbl>       <dbl>       <dbl>          <dbl> <dbl>
## 1 Luis Guiller… IE Santa…        15           4           3              0    22
## 2 Luis Guiller… IE Lucre…        25           3           0              0    10
## 3 Luis Guiller… IE Mater…        20           2           1              0    25
## 4 Angie Marcel… IE Monse…        11           2           0              0     0
## 5 Angie Marcel… IE Lola …        13           3           0              0     0
## 6 Angie Marcel… IE CEFA          31           0           0              2     0
## Classes 'tbl_df', 'tbl' and 'data.frame':    21 obs. of  7 variables:
##  $ formador      : chr  "Luis Guillermo Brand Rendón" "Luis Guillermo Brand Rendón" "Luis Guillermo Brand Rendón" "Angie Marcela Nanez Alvarado" ...
##  $ ie            : chr  "IE Santa Catalina de Siena" "IE Lucrecio Jaramillo Vélez" "IE Mater Dei" "IE Monseñor Gerardo Valencia" ...
##  $ delegados     : num  15 25 20 11 13 31 16 24 23 16 ...
##  $ presidentes   : num  4 3 2 2 3 0 0 0 0 0 ...
##  $ secretarios   : num  3 0 1 0 0 0 0 0 0 0 ...
##  $ comunicaciones: num  0 0 0 0 0 2 2 2 2 0 ...
##  $ kids          : num  22 10 25 0 0 0 0 12 0 0 ...
##    formador              ie              delegados      presidentes   
##  Length:21          Length:21          Min.   : 0.00   Min.   :0.000  
##  Class :character   Class :character   1st Qu.:15.00   1st Qu.:0.000  
##  Mode  :character   Mode  :character   Median :20.00   Median :0.000  
##                                        Mean   :17.95   Mean   :1.095  
##                                        3rd Qu.:22.00   3rd Qu.:2.000  
##                                        Max.   :31.00   Max.   :4.000  
##   secretarios     comunicaciones        kids       
##  Min.   :0.0000   Min.   :0.0000   Min.   : 0.000  
##  1st Qu.:0.0000   1st Qu.:0.0000   1st Qu.: 0.000  
##  Median :0.0000   Median :0.0000   Median : 0.000  
##  Mean   :0.1905   Mean   :0.9048   Mean   : 3.429  
##  3rd Qu.:0.0000   3rd Qu.:2.0000   3rd Qu.: 0.000  
##  Max.   :3.0000   Max.   :6.0000   Max.   :25.000
## [1] "formador"       "ie"             "delegados"      "presidentes"   
## [5] "secretarios"    "comunicaciones" "kids"
## 
## Attaching package: 'dplyr'
## The following objects are masked from 'package:stats':
## 
##     filter, lag
## The following objects are masked from 'package:base':
## 
##     intersect, setdiff, setequal, union
## ── Attaching packages ──────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────── tidyverse 1.3.0 ──
## ✓ ggplot2 3.2.1     ✓ readr   1.3.1
## ✓ tibble  2.1.3     ✓ stringr 1.4.0
## ✓ tidyr   1.0.0     ✓ forcats 0.4.0
## ── Conflicts ─────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────── tidyverse_conflicts() ──
## x dplyr::filter() masks stats::filter()
## x dplyr::lag()    masks stats::lag()
##  [1] "anio"          "mes"           "dane"          "tipo_servicio"
##  [5] "comuna"        "nucleo"        "nombre"        "pre_jardin"   
##  [9] "jardin"        "transicion"    "primero"       "segundo"      
## [13] "tercero"       "cuarto"        "quinto"        "sexto"        
## [17] "septimo"       "octavo"        "noveno"        "decimo"       
## [21] "once"          "doce"          "trece"         "catorce"      
## [25] "clei0"         "clei1"         "clei2"         "clei3"        
## [29] "clei4"         "clei5"         "clei6"         "aceleracion"

Transformacion de los datos

## [1] "numeric"
## 'data.frame':    32 obs. of  11 variables:
##  $ mpg : num  21 21 22.8 21.4 18.7 18.1 14.3 24.4 22.8 19.2 ...
##  $ cyl : num  6 6 4 6 8 6 8 4 4 6 ...
##  $ disp: num  160 160 108 258 360 ...
##  $ hp  : num  110 110 93 110 175 105 245 62 95 123 ...
##  $ drat: num  3.9 3.9 3.85 3.08 3.15 2.76 3.21 3.69 3.92 3.92 ...
##  $ wt  : num  2.62 2.88 2.32 3.21 3.44 ...
##  $ qsec: num  16.5 17 18.6 19.4 17 ...
##  $ vs  : logi  FALSE FALSE TRUE TRUE FALSE TRUE ...
##  $ am  : logi  TRUE TRUE TRUE FALSE FALSE FALSE ...
##  $ gear: num  4 4 4 3 3 3 3 4 4 4 ...
##  $ carb: num  4 4 1 1 2 1 4 2 2 4 ...
##       Country       GDP.PC       GDP.US.bill         GDP.Growth..  
##  Argentina: 1   Min.   : 5600   Min.   :     13.7   Min.   :0.800  
##  Belize   : 1   1st Qu.: 8300   1st Qu.:     37.1   1st Qu.:2.000  
##  Bolivia  : 1   Median :13300   Median :     75.7   Median :2.800  
##  Brazil   : 1   Mean   :14053   Mean   : 188693.0   Mean   :2.959  
##  Chile    : 1   3rd Qu.:19900   3rd Qu.:    309.2   3rd Qu.:4.200  
##  Colombia : 1   Max.   :25400   Max.   :2055000.0   Max.   :5.400  
##  (Other)  :11                                                      
##  Services...GDP  Creat.Ind...GDP   Inflation       Unemployment   
##  Min.   :50.00   Min.   :1.000   Min.   : 0.400   Min.   : 2.300  
##  1st Qu.:56.90   1st Qu.:2.000   1st Qu.: 1.600   1st Qu.: 5.500  
##  Median :62.20   Median :2.600   Median : 3.400   Median : 6.700  
##  Mean   :62.64   Mean   :3.291   Mean   : 4.365   Mean   : 6.794  
##  3rd Qu.:64.90   3rd Qu.:3.950   3rd Qu.: 4.300   3rd Qu.: 8.100  
##  Max.   :82.00   Max.   :7.400   Max.   :25.700   Max.   :11.800  
##                  NA's   :6                                        
##  X..pop.below.poverty.line Internet.penetration...population   Median.age   
##  Min.   : 4.20             Min.   :38.20                     Min.   :22.10  
##  1st Qu.:21.70             1st Qu.:57.70                     1st Qu.:25.70  
##  Median :25.70             Median :69.70                     Median :28.20  
##  Mean   :27.65             Mean   :68.42                     Mean   :28.28  
##  3rd Qu.:32.70             3rd Qu.:79.90                     3rd Qu.:31.30  
##  Max.   :59.30             Max.   :93.10                     Max.   :35.00  
##                                                                             
##   X..pop.25.54   Education.invest...GDP
##  Min.   :34.12   Min.   :2.800         
##  1st Qu.:39.23   1st Qu.:4.400         
##  Median :40.19   Median :5.000         
##  Mean   :39.88   Mean   :5.082         
##  3rd Qu.:41.08   3rd Qu.:5.900         
##  Max.   :44.03   Max.   :7.400         
## 
##       mpg             cyl             disp             hp       
##  Min.   :10.40   Min.   :4.000   Min.   : 71.1   Min.   : 52.0  
##  1st Qu.:15.43   1st Qu.:4.000   1st Qu.:120.8   1st Qu.: 96.5  
##  Median :19.20   Median :6.000   Median :196.3   Median :123.0  
##  Mean   :20.09   Mean   :6.188   Mean   :230.7   Mean   :146.7  
##  3rd Qu.:22.80   3rd Qu.:8.000   3rd Qu.:326.0   3rd Qu.:180.0  
##  Max.   :33.90   Max.   :8.000   Max.   :472.0   Max.   :335.0  
##       drat             wt             qsec           vs         
##  Min.   :2.760   Min.   :1.513   Min.   :14.50   Mode :logical  
##  1st Qu.:3.080   1st Qu.:2.581   1st Qu.:16.89   FALSE:18       
##  Median :3.695   Median :3.325   Median :17.71   TRUE :14       
##  Mean   :3.597   Mean   :3.217   Mean   :17.85                  
##  3rd Qu.:3.920   3rd Qu.:3.610   3rd Qu.:18.90                  
##  Max.   :4.930   Max.   :5.424   Max.   :22.90                  
##      am               gear            carb      
##  Mode :logical   Min.   :3.000   Min.   :1.000  
##  FALSE:19        1st Qu.:3.000   1st Qu.:2.000  
##  TRUE :13        Median :4.000   Median :2.000  
##                  Mean   :3.688   Mean   :2.812  
##                  3rd Qu.:4.000   3rd Qu.:4.000  
##                  Max.   :5.000   Max.   :8.000

Operadores para comparar y ubicar datos

##                 mpg cyl  disp  hp drat        wt  qsec    vs    am gear carb
## Datsun 710     22.8   4 108.0  93 3.85 1052.3341 18.61  TRUE  TRUE    4    1
## Merc 240D      24.4   4 146.7  62 3.69 1446.9594 20.00  TRUE FALSE    4    2
## Merc 230       22.8   4 140.8  95 3.92 1428.8157 22.90  TRUE FALSE    4    2
## Fiat 128       32.4   4  78.7  66 4.08  997.9030 19.47  TRUE  TRUE    4    1
## Honda Civic    30.4   4  75.7  52 4.93  732.5516 18.52  TRUE  TRUE    4    2
## Toyota Corolla 33.9   4  71.1  65 4.22  832.3419 19.90  TRUE  TRUE    4    1
## Toyota Corona  21.5   4 120.1  97 3.70 1118.1050 20.01  TRUE FALSE    3    1
## Fiat X1-9      27.3   4  79.0  66 4.08  877.7011 18.90  TRUE  TRUE    4    1
## Porsche 914-2  26.0   4 120.3  91 4.43  970.6875 16.70 FALSE  TRUE    5    2
## Lotus Europa   30.4   4  95.1 113 3.77  686.2851 16.90  TRUE  TRUE    5    2
## Volvo 142E     21.4   4 121.0 109 4.11 1260.9866 18.60  TRUE  TRUE    4    2
##       Country GDP.PC GDP.US.bill GDP.Growth.. Services...GDP Creat.Ind...GDP
## 1   Argentina  20900       637.7          2.9           60.9             3.8
## 4      Brazil  15600   2055000.0          1.0           72.8             2.6
## 5       Chile  24500       277.0          1.5           64.3             2.2
## 7  Costa Rica  16900        58.1          3.2           73.5             2.0
## 12     Mexico  19900   1149000.0          2.0           64.0             7.4
## 14     Panama  25400        61.8          5.4           82.0             6.3
## 17    Uruguay  22400        58.4          3.1           68.8             1.0
##    Inflation Unemployment X..pop.below.poverty.line
## 1       25.7          8.1                      25.7
## 4        3.4         11.8                       4.2
## 5        2.2          7.0                      14.4
## 7        1.6          8.1                      21.7
## 12       6.0          3.6                      46.2
## 14       0.9          5.5                      23.0
## 17       6.2          7.3                       9.7
##    Internet.penetration...population Median.age X..pop.25.54
## 1                               93.1       31.7        39.38
## 4                               70.7       32.0        43.86
## 5                               77.5       34.4        43.08
## 7                               86.7       31.3        44.03
## 12                              65.0       28.3        40.81
## 14                              69.7       29.2        40.35
## 17                              88.2       35.0        39.34
##    Education.invest...GDP
## 1                     5.9
## 4                     5.9
## 5                     4.9
## 7                     7.1
## 12                    5.3
## 14                    3.2
## 17                    4.4
##         Country GDP.PC GDP.US.bill GDP.Growth.. Services...GDP Creat.Ind...GDP
## NA         <NA>     NA          NA           NA             NA              NA
## NA.1       <NA>     NA          NA           NA             NA              NA
## 7    Costa Rica  16900        58.1          3.2           73.5             2.0
## 8       Ecuador  11500       102.3          2.7           56.9             2.0
## NA.2       <NA>     NA          NA           NA             NA              NA
## NA.3       <NA>     NA          NA           NA             NA              NA
## NA.4       <NA>     NA          NA           NA             NA              NA
## NA.5       <NA>     NA          NA           NA             NA              NA
## 16         Peru  13300       215.2          2.5           56.8             1.5
## 17      Uruguay  22400        58.4          3.1           68.8             1.0
##      Inflation Unemployment X..pop.below.poverty.line
## NA          NA           NA                        NA
## NA.1        NA           NA                        NA
## 7          1.6          8.1                      21.7
## 8          0.4          4.6                      21.5
## NA.2        NA           NA                        NA
## NA.3        NA           NA                        NA
## NA.4        NA           NA                        NA
## NA.5        NA           NA                        NA
## 16         2.8          6.7                      22.7
## 17         6.2          7.3                       9.7
##      Internet.penetration...population Median.age X..pop.25.54
## NA                                  NA         NA           NA
## NA.1                                NA         NA           NA
## 7                                 86.7       31.3        44.03
## 8                                 79.9       27.7        39.59
## NA.2                                NA         NA           NA
## NA.3                                NA         NA           NA
## NA.4                                NA         NA           NA
## NA.5                                NA         NA           NA
## 16                                67.6       28.0        40.19
## 17                                88.2       35.0        39.34
##      Education.invest...GDP
## NA                       NA
## NA.1                     NA
## 7                       7.1
## 8                       5.0
## NA.2                     NA
## NA.3                     NA
## NA.4                     NA
## NA.5                     NA
## 16                      3.8
## 17                      4.4
##       Country GDP.PC GDP.US.bill GDP.Growth.. Services...GDP Creat.Ind...GDP
## 1   Argentina  20900       637.7          2.9           60.9             3.8
## 7  Costa Rica  16900        58.1          3.2           73.5             2.0
## 15   Paraguay   9800        29.6          4.3           54.5             4.1
##    Inflation Unemployment X..pop.below.poverty.line
## 1       25.7          8.1                      25.7
## 7        1.6          8.1                      21.7
## 15       3.6          6.5                      22.2
##    Internet.penetration...population Median.age X..pop.25.54
## 1                               93.1       31.7        39.38
## 7                               86.7       31.3        44.03
## 15                              89.6       28.2        41.08
##    Education.invest...GDP
## 1                     5.9
## 7                     7.1
## 15                    5.0
##    Creat.Ind...GDP
## 1              3.8
## 7              2.0
## 15             4.1
## ------------------------------------------------------------------------------
## You have loaded plyr after dplyr - this is likely to cause problems.
## If you need functions from both plyr and dplyr, please load plyr first, then dplyr:
## library(plyr); library(dplyr)
## ------------------------------------------------------------------------------
## 
## Attaching package: 'plyr'
## The following objects are masked from 'package:dplyr':
## 
##     arrange, count, desc, failwith, id, mutate, rename, summarise,
##     summarize
## The following object is masked from 'package:purrr':
## 
##     compact
##        Country GDP.PC GDP.US.bill GDP.Growth.. Services...GDP AporteEcNja
## 1    Argentina  20900       637.7          2.9           60.9         3.8
## 2       Belize   8300      1854.0          0.8           62.2          NA
## 3      Bolivia   7500        37.1          4.2           50.0          NA
## 4       Brazil  15600   2055000.0          1.0           72.8         2.6
## 5        Chile  24500       277.0          1.5           64.3         2.2
## 6     Colombia  14500       309.2          1.8           61.4         3.3
## 7   Costa Rica  16900        58.1          3.2           73.5         2.0
## 8      Ecuador  11500       102.3          2.7           56.9         2.0
## 9  El Salvador   8900        28.0          2.4           64.9          NA
## 10   Guatemala   8100        75.7          2.8           63.2          NA
## 11    Honduras   5600        22.9          4.8           57.8          NA
## 12      Mexico  19900   1149000.0          2.0           64.0         7.4
## 13   Nicaragua   5800        13.7          4.9           50.8          NA
## 14      Panama  25400        61.8          5.4           82.0         6.3
## 15    Paraguay   9800        29.6          4.3           54.5         4.1
## 16        Peru  13300       215.2          2.5           56.8         1.5
## 17     Uruguay  22400        58.4          3.1           68.8         1.0
##    Inflation Unemployment X..pop.below.poverty.line
## 1       25.7          8.1                      25.7
## 2        1.1         10.1                      41.0
## 3        2.8          4.0                      38.6
## 4        3.4         11.8                       4.2
## 5        2.2          7.0                      14.4
## 6        4.3         10.5                      28.0
## 7        1.6          8.1                      21.7
## 8        0.4          4.6                      21.5
## 9        1.0          7.0                      32.7
## 10       4.4          2.3                      59.3
## 11       3.9          5.9                      29.6
## 12       6.0          3.6                      46.2
## 13       3.9          6.5                      29.6
## 14       0.9          5.5                      23.0
## 15       3.6          6.5                      22.2
## 16       2.8          6.7                      22.7
## 17       6.2          7.3                       9.7
##    Internet.penetration...population Median.age X..pop.25.54
## 1                               93.1       31.7        39.38
## 2                               52.3       22.7        36.62
## 3                               78.6       24.3        37.48
## 4                               70.7       32.0        43.86
## 5                               77.5       34.4        43.08
## 6                               63.2       30.0        41.91
## 7                               86.7       31.3        44.03
## 8                               79.9       27.7        39.59
## 9                               57.7       27.1        39.23
## 10                              42.1       22.1        34.12
## 11                              38.2       23.0        36.63
## 12                              65.0       28.3        40.81
## 13                              43.0       25.7        40.24
## 14                              69.7       29.2        40.35
## 15                              89.6       28.2        41.08
## 16                              67.6       28.0        40.19
## 17                              88.2       35.0        39.34
##    Education.invest...GDP
## 1                     5.9
## 2                     7.4
## 3                     7.3
## 4                     5.9
## 5                     4.9
## 6                     4.5
## 7                     7.1
## 8                     5.0
## 9                     3.5
## 10                    2.8
## 11                    5.9
## 12                    5.3
## 13                    4.5
## 14                    3.2
## 15                    5.0
## 16                    3.8
## 17                    4.4

#Factores

##                    mpg cyl disp  hp drat       wt  qsec    vs    am gear carb
## Mazda RX4         21.0   6  160 110 3.90 1188.412 16.46 FALSE  TRUE    4    4
## Mazda RX4 Wag     21.0   6  160 110 3.90 1304.078 17.02 FALSE  TRUE    4    4
## Datsun 710        22.8   4  108  93 3.85 1052.334 18.61  TRUE  TRUE    4    1
## Hornet 4 Drive    21.4   6  258 110 3.08 1458.299 19.44  TRUE FALSE    3    1
## Hornet Sportabout 18.7   8  360 175 3.15 1560.357 17.02 FALSE FALSE    3    2
## Valiant           18.1   6  225 105 2.76 1569.429 20.22  TRUE FALSE    3    1
##                 mpg cyl  disp  hp drat        wt qsec    vs   am gear carb
## Porsche 914-2  26.0   4 120.3  91 4.43  970.6875 16.7 FALSE TRUE    5    2
## Lotus Europa   30.4   4  95.1 113 3.77  686.2851 16.9  TRUE TRUE    5    2
## Ford Pantera L 15.8   8 351.0 264 4.22 1437.8876 14.5 FALSE TRUE    5    4
## Ferrari Dino   19.7   6 145.0 175 3.62 1256.4506 15.5 FALSE TRUE    5    6
## Maserati Bora  15.0   8 301.0 335 3.54 1619.3245 14.6 FALSE TRUE    5    8
## Volvo 142E     21.4   4 121.0 109 4.11 1260.9866 18.6  TRUE TRUE    4    2
## Observations: 32
## Variables: 11
## $ mpg  <dbl> 21.0, 21.0, 22.8, 21.4, 18.7, 18.1, 14.3, 24.4, 22.8, 19.2, 17.8…
## $ cyl  <dbl> 6, 6, 4, 6, 8, 6, 8, 4, 4, 6, 6, 8, 8, 8, 8, 8, 8, 4, 4, 4, 4, 8…
## $ disp <dbl> 160.0, 160.0, 108.0, 258.0, 360.0, 225.0, 360.0, 146.7, 140.8, 1…
## $ hp   <dbl> 110, 110, 93, 110, 175, 105, 245, 62, 95, 123, 123, 180, 180, 18…
## $ drat <dbl> 3.90, 3.90, 3.85, 3.08, 3.15, 2.76, 3.21, 3.69, 3.92, 3.92, 3.92…
## $ wt   <dbl> 1188.4118, 1304.0778, 1052.3341, 1458.2992, 1560.3575, 1569.4293…
## $ qsec <dbl> 16.46, 17.02, 18.61, 19.44, 17.02, 20.22, 15.84, 20.00, 22.90, 1…
## $ vs   <lgl> FALSE, FALSE, TRUE, TRUE, FALSE, TRUE, FALSE, TRUE, TRUE, TRUE, …
## $ am   <lgl> TRUE, TRUE, TRUE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALS…
## $ gear <dbl> 4, 4, 4, 3, 3, 3, 3, 4, 4, 4, 4, 3, 3, 3, 3, 3, 3, 4, 4, 4, 3, 3…
## $ carb <dbl> 4, 4, 1, 1, 2, 1, 4, 2, 2, 4, 4, 3, 3, 3, 4, 4, 4, 1, 2, 1, 1, 2…
## Observations: 17
## Variables: 13
## $ Country                           <fct> Argentina, Belize, Bolivia, Brazil,…
## $ GDP.PC                            <int> 20900, 8300, 7500, 15600, 24500, 14…
## $ GDP.US.bill                       <dbl> 637.7, 1854.0, 37.1, 2055000.0, 277…
## $ GDP.Growth..                      <dbl> 2.9, 0.8, 4.2, 1.0, 1.5, 1.8, 3.2, …
## $ Services...GDP                    <dbl> 60.9, 62.2, 50.0, 72.8, 64.3, 61.4,…
## $ Creat.Ind...GDP                   <dbl> 3.8, NA, NA, 2.6, 2.2, 3.3, 2.0, 2.…
## $ Inflation                         <dbl> 25.7, 1.1, 2.8, 3.4, 2.2, 4.3, 1.6,…
## $ Unemployment                      <dbl> 8.1, 10.1, 4.0, 11.8, 7.0, 10.5, 8.…
## $ X..pop.below.poverty.line         <dbl> 25.7, 41.0, 38.6, 4.2, 14.4, 28.0, …
## $ Internet.penetration...population <dbl> 93.1, 52.3, 78.6, 70.7, 77.5, 63.2,…
## $ Median.age                        <dbl> 31.7, 22.7, 24.3, 32.0, 34.4, 30.0,…
## $ X..pop.25.54                      <dbl> 39.38, 36.62, 37.48, 43.86, 43.08, …
## $ Education.invest...GDP            <dbl> 5.9, 7.4, 7.3, 5.9, 4.9, 4.5, 7.1, …

Listas

## [1] 1 2 3 4 5 6 7 8
##      [,1] [,2] [,3]
## [1,]    1    4    7
## [2,]    2    5    8
## [3,]    3    6    9
##                 mpg cyl disp  hp drat       wt  qsec    vs    am gear carb
## Mazda RX4      21.0   6  160 110 3.90 1188.412 16.46 FALSE  TRUE    4    4
## Mazda RX4 Wag  21.0   6  160 110 3.90 1304.078 17.02 FALSE  TRUE    4    4
## Datsun 710     22.8   4  108  93 3.85 1052.334 18.61  TRUE  TRUE    4    1
## Hornet 4 Drive 21.4   6  258 110 3.08 1458.299 19.44  TRUE FALSE    3    1
## [[1]]
## [1] 1 2 3 4 5 6 7 8
## 
## [[2]]
##      [,1] [,2] [,3]
## [1,]    1    4    7
## [2,]    2    5    8
## [3,]    3    6    9
## 
## [[3]]
##                 mpg cyl disp  hp drat       wt  qsec    vs    am gear carb
## Mazda RX4      21.0   6  160 110 3.90 1188.412 16.46 FALSE  TRUE    4    4
## Mazda RX4 Wag  21.0   6  160 110 3.90 1304.078 17.02 FALSE  TRUE    4    4
## Datsun 710     22.8   4  108  93 3.85 1052.334 18.61  TRUE  TRUE    4    1
## Hornet 4 Drive 21.4   6  258 110 3.08 1458.299 19.44  TRUE FALSE    3    1

Tipos de visualizaciones en EDA

#- Qué es EDA: Exploratory Data Analysis - Analisis exploratorio de Datos: importancia de visualizar los datos antes de enfocarnos en las formulas estadisticas
#- El cuarteto de Anscombe- Anscombe’s quartet- nos dice la importancia de visualizar los datos antes de enfocarnos en las formulas estadisticas

#- las principales visualizaciones en EDA son el HISTOGRAMA, EL GRAFICO DE DISPERSION -Scatterplot, BOX PLOT

#- El histograma nos permite visualizar la distribucion de las frecuencias de una variable, el histograma organiza de menor a mayor, diferente al grafico de barras que organiza en el orden como queramos. 
#- Con el Scatterplot cruzamos variables continuas o datos numericos, y los puntos no los podemos unir como si lo hacemos en graficos de lineas, el scatterplot obedece a un x,y de coordenada, ejemplo podria ser un conjuntos de datos de un supermercado que nos indica el numero de cajas y el tiempo de espera. Ubicamos la variable independiente en el eje X y la variable dependiente en el eje Y, en el ejemplo anterior ubicariamos el numero de cajas en el eje X y el tiempo de espera en el eje Y.

#- el Boxplot nos muestra 5 elementos claves en estadistica descriptiva que son el minimo, el maximo, el primer cuartil, la mediana o segundo cuartir y el tercer cuartil

#- Los 5 puntos clave en estadística descriptiva se pueden visualizar en el box plot:
#- Primer cuartil: es el piso de la caja o línea inferior.
#- Tercer cuartil: es el techo de la caja o línea superior.
#- Mediana: es la línea que se encuentra dentro de la caja.
#- Mínimo: la extensión inferior de la caja.
#- Máximo: la extensión superior de la caja.

#- Ejemplos

#- EDA Scatterplot mtcars

plot(cars$mpg ~ cars$cyl, xlab = "Cilindros", ylab = "Millas por galon", main = "Relacion Clindros y Millas por Galon")

## `stat_bin()` using `bins = 30`. Pick better value with `binwidth`.

## `stat_bin()` using `bins = 30`. Pick better value with `binwidth`.

## `stat_bin()` using `bins = 30`. Pick better value with `binwidth`.

## Warning: Removed 6 rows containing non-finite values (stat_bin).
## Warning: Removed 2 rows containing missing values (geom_bar).

#Visualizacion con el dataset de Economia Naranja

## Warning: Removed 6 rows containing non-finite values (stat_bin).

## [1] 14052.94
## Warning: Removed 6 rows containing non-finite values (stat_boxplot).

## Warning: Removed 6 rows containing missing values (geom_point).

## 
## Attaching package: 'plotly'
## The following objects are masked from 'package:plyr':
## 
##     arrange, mutate, rename, summarise
## The following object is masked from 'package:ggplot2':
## 
##     last_plot
## The following object is masked from 'package:stats':
## 
##     filter
## The following object is masked from 'package:graphics':
## 
##     layout
## Warning: Removed 6 rows containing missing values (geom_point).