MDN dashboard

Row

Kampanje recall

preserve4879cf1bc334c7f2

Row

preservec5a5399d168473cf

Column

Alder 15-34

preserve1bbe5eee3b43e27f

Alder 35-48

preserve5e125d2e246c0195

Alder 49+

preserve00a2b67783e1f9e3





Om rapporten
========================================

Laget av: Robert Ruud for PointOut AS

Oslo, desember 2019

Arbeidet er gjort i Rstudio og programmer benyttet er:

RStudio Team (2015). RStudio: Integrated Development for R. RStudio, Inc., Boston, MA URL http://www.rstudio.com/.

<div class="knitr-options" data-fig-width="576" data-fig-height="460"></div>

To cite R in publications use:

R Core Team (2019). R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. URL https://www.R-project.org/.

A BibTeX entry for LaTeX users is

@Manual{, title = {R: A Language and Environment for Statistical Computing}, author = {{R Core Team}}, organization = {R Foundation for Statistical Computing}, address = {Vienna, Austria}, year = {2019}, url = {https://www.R-project.org/}, }

We have invested a lot of time and effort in creating R, please cite it when using it for data analysis. See also ‘citation(“pkgname”)’ for citing R packages.



To cite package ‘dplyr’ in publications use:

Hadley Wickham, Romain François, Lionel Henry and Kirill Müller (2019). dplyr: A Grammar of Data Manipulation. http://dplyr.tidyverse.org, https://github.com/tidyverse/dplyr.

A BibTeX entry for LaTeX users is

@Manual{, title = {dplyr: A Grammar of Data Manipulation}, author = {Hadley Wickham and Romain François and Lionel Henry and Kirill Müller}, year = {2019}, note = {http://dplyr.tidyverse.org, https://github.com/tidyverse/dplyr}, }



To cite ggplot2 in publications, please use:

H. Wickham. ggplot2: Elegant Graphics for Data Analysis. Springer-Verlag New York, 2016.

A BibTeX entry for LaTeX users is

@Book{, author = {Hadley Wickham}, title = {ggplot2: Elegant Graphics for Data Analysis}, publisher = {Springer-Verlag New York}, year = {2016}, isbn = {978-3-319-24277-4}, url = {https://ggplot2.tidyverse.org}, }



To cite plotly in publications use:

Carson Sievert (2018) plotly for R. https://plotly-r.com

A BibTeX entry for LaTeX users is

@Manual{, title = {plotly for R}, author = {Carson Sievert}, year = {2018}, url = {https://plotly-r.com}, } ```

---
title: "MDN Dashboard"
output: 
  flexdashboard::flex_dashboard:
      source_code: embed
      theme: spacelab
---

```{r setup, include=FALSE}
library(flexdashboard)
library(knitr)
library(ggplot2)
library(plotly)
library(dplyr)
library(tidyverse)
library(rsconnect)
library(shiny)
library(ggradar)
```




```{r}
load("mdn13test.Rdata")
load("prosentfil.Rdata")

```

MDN dashboard
=====================================


Row
-------------------------------

### Kampanje recall

```{r echo=FALSE}
k1 <- mdn13test %>% group_by(Kino=factor(kino3u),        recall=factor(recall)) %>% tally %>% complete(recall) %>% mutate(pct=n/sum(n)*100) %>% filter(Kino=="1" & recall=="1") %>% mutate(navn = paste("Kino"))
k2 <- mdn13test %>% group_by(TV=factor(TVuke),           recall=factor(recall)) %>% tally %>% complete(recall) %>% mutate(pct=n/sum(n)*100) %>% filter(TV=="1" & recall=="1") %>% mutate(navn = paste("TV"))
k3 <- mdn13test %>% group_by(OLV=factor(OLVuke),         recall=factor(recall)) %>% tally %>% complete(recall) %>% mutate(pct=n/sum(n)*100) %>% filter(OLV=="1" & recall=="1") %>% mutate(navn = paste("OLV"))
k4 <- mdn13test %>% group_by(OOH=factor(OOHuke),         recall=factor(recall)) %>% tally %>% complete(recall) %>% mutate(pct=n/sum(n)*100) %>% filter(OOH=="1" & recall=="1") %>% mutate(navn = paste("OOH"))
k5 <- mdn13test %>% group_by(SoMe=factor(SoMeuke),       recall=factor(recall)) %>% tally %>% complete(recall) %>% mutate(pct=n/sum(n)*100) %>% filter(SoMe=="1" & recall=="1") %>% mutate(navn = paste("SoMe"))
k6 <- mdn13test %>% group_by(Avis=factor(AVISuke),       recall=factor(recall)) %>% tally %>% complete(recall) %>% mutate(pct=n/sum(n)*100) %>% filter(Avis=="1" & recall=="1") %>% mutate(navn = paste("Avis"))
k7 <- mdn13test %>% group_by(Display=factor(DISPLAYuke), recall=factor(recall)) %>% tally %>% complete(recall) %>% mutate(pct=n/sum(n)*100) %>% filter(Display=="1" & recall=="1") %>% mutate(navn = paste("Display"))
k8 <- mdn13test %>% group_by(Magasin=factor(Magasinuke), recall=factor(recall)) %>% tally %>% complete(recall) %>% mutate(pct=n/sum(n)*100) %>% filter(Magasin=="1" & recall=="1") %>% mutate(navn = paste("Magasin"))
k9 <- mdn13test %>% group_by(Radio=factor(Radiouke),     recall=factor(recall)) %>% tally %>% complete(recall) %>% mutate(pct=n/sum(n)*100) %>% filter(Radio=="1" & recall=="1") %>% mutate(navn = paste("Radio"))

kanaltab <- rbind(k1,k2,k3,k4,k5,k6,k7,k8,k9)


```
```{r}
KinoNei <-
  mdn13test %>% group_by(
    Kino = factor(kino3u),
    testmedie = factor(medium),
    recall = factor(recall)
  ) %>% tally %>% complete(recall) %>% mutate(pct = n / sum(n) * 100) %>% filter(Kino ==
                                                                                   "0" &
                                                                                   testmedie == "Video 31+ sek" &
                                                                                   recall == "1") %>% mutate(navn = paste("Ikke kino siste 3 uker"))
KinoJa <-
  mdn13test %>% group_by(
    Kino = factor(kino3u),
    testmedie = factor(medium),
    recall = factor(recall)
  ) %>% tally %>% complete(recall) %>% mutate(pct = n / sum(n) * 100) %>% filter(Kino ==
                                                                                   "1" &
                                                                                   testmedie == "Video 31+ sek" &
                                                                                   recall == "1") %>% mutate(navn = paste("Kino siste 3 uker"))
TVNei <-
  mdn13test %>% group_by(
    TV = factor(TVuke),
    testmedie = factor(medium),
    recall = factor(recall)
  ) %>% tally %>% complete(recall) %>% mutate(pct = n / sum(n) * 100) %>% filter(TV ==
                                                                                   "0" &
                                                                                   testmedie == "Video 31+ sek" &
                                                                                   recall == "1") %>% mutate(navn = paste("Ikke TV sist uke"))

TVJa <-
  mdn13test %>% group_by(
    TV = factor(TVuke),
    testmedie = factor(medium),
    recall = factor(recall)
  ) %>% tally %>% complete(recall) %>% mutate(pct = n / sum(n) * 100) %>% filter(TV ==
                                                                                   "1" &
                                                                                   testmedie == "Video 31+ sek" &
                                                                                   recall == "1") %>% mutate(navn = paste("TV sist uke"))

TVogKinoJa <-
  mdn13test %>% group_by(
    TV = factor(TVuke),
    Kino = factor(kino3u),
    testmedie = factor(medium),
    recall = factor(recall)
  ) %>% tally %>% complete(recall) %>% mutate(pct = n / sum(n) * 100) %>% filter(TV ==
                                                                                   "1" &
                                                                                   Kino == "1" &
                                                                                   testmedie == "Video 31+ sek" &
                                                                                   recall == "1") %>% mutate(navn = paste("TV sist uke og kino siste 3"))


tvkino <- rbind(KinoNei,KinoJa,TVNei,TVJa,TVogKinoJa)
```





```{r echo=FALSE}
plotkanal <- ggplot(data = tvkino, mapping = aes(x = navn, y = pct, fill = pct))

plotkanal <- plotkanal + geom_bar(stat = "identity", colour = "#FF6666", fill = "#FF6666" , position = "dodge") + theme_dark() + ggtitle("Recall hos Kino og TV publikum - filmlengde 31+ sek") + xlab("") + ylab("Recall %")+ geom_hline(yintercept=mean(kanaltab$pct), linetype="dotted", color = "yellow") + geom_text(aes(label = round(pct, 1)))+theme(axis.text.x=element_text(angle=45,hjust=1))+ coord_cartesian(
ylim = c(20, 70))

ggplotly(plotkanal)
```

Row
-------------------------------

```{r echo=FALSE}
plot1 <- ggplot(subset(prosentfil, kanal %in% c("TV","Radio","Kino","SoMe","Nettavis","Avis")),aes(x = utsagn, y = value, fill = factor(kanal))) +
    geom_col(aes(y = value)+ position_stack(reverse = TRUE)) + scale_fill_manual(values=c("#999999","#ff6666","#26927b","#ffc000","#993300","#1c5b72"))+
    ggtitle("Holdning til reklame i forskjellige kanaler") + coord_flip() + theme(legend.position="bottom") + scale_y_continuous(labels = scales::percent)
```



```{r echo=FALSE}
ggplotly(plot1)
```



Column {.tabset .tabset-fade}
-------------------------------------

### Alder 15-34

```{r echo=FALSE}
k11534 <-
  mdn13test %>% filter(aldgrp == "15-34") %>% group_by(
    Kino = factor(kino3u),
    medium = factor(medium),
    recall = factor(recall)
  ) %>% tally %>% complete(recall) %>% mutate(pct = n / sum(n) * 100) %>% filter(Kino == "1" & medium=="Video 31+ sek" & recall == "1") %>% mutate(navn = paste("Kino"))
k21534 <-
  mdn13test %>% filter(aldgrp == "15-34") %>% group_by(
    TV = factor(TVuke),
    video = factor(video),
    recall = factor(recall)
  ) %>% tally %>% complete(recall) %>% mutate(pct = n / sum(n) * 100) %>% filter(TV == "1" & video=="1" & recall == "1") %>% mutate(navn = paste("TV"))
k31534 <-
  mdn13test %>% filter(aldgrp == "15-34") %>% group_by(
    OLV = factor(OLVuke),
    medium = factor(medium),
    recall = factor(recall)
  ) %>% tally %>% complete(recall) %>% mutate(pct = n / sum(n) * 100) %>% filter(OLV ==
                                                                                   "1" & medium=="OLV" & recall == "1") %>% mutate(navn = paste("OLV"))
k41534 <-
  mdn13test %>% filter(aldgrp == "15-34") %>% group_by(
    OOH = factor(OOHuke),
    medium = factor(medium),
    recall = factor(recall)
  ) %>% tally %>% complete(recall) %>% mutate(pct = n / sum(n) * 100) %>% filter(OOH ==
                                                                                   "1"  & medium=="OOH" & recall == "1") %>% mutate(navn = paste("OOH"))
k51534 <-
  mdn13test %>% filter(aldgrp == "15-34") %>% group_by(
    SoMe = factor(SoMeuke),
    medium = factor(medium),
    recall = factor(recall)
  ) %>% tally %>% complete(recall) %>% mutate(pct = n / sum(n) * 100) %>% filter(SoMe ==
                                                                                   "1" & medium=="SoMe" & recall == "1") %>% mutate(navn = paste("SoMe"))
k61534 <-
  mdn13test %>% filter(aldgrp == "15-34") %>% group_by(
    Avis = factor(AVISuke),
    medium = factor(medium),
    recall = factor(recall)
  ) %>% tally %>% complete(recall) %>% mutate(pct = n / sum(n) * 100) %>% filter(Avis ==
                                                                                   "1" & medium=="Avis" & recall == "1") %>% mutate(navn = paste("Avis"))

k71534 <-
  mdn13test %>% filter(aldgrp == "15-34") %>% group_by(
    Display = factor(DISPLAYuke),
    medium = factor(medium),
    recall = factor(recall)
  ) %>% tally %>% complete(recall) %>% mutate(pct = n / sum(n) * 100) %>% filter(Display ==
                                                                                   "1" & medium=="Web" & recall == "1") %>% mutate(navn = paste("Display"))

k81534 <-
  mdn13test %>% filter(aldgrp == "15-34") %>% group_by(
    Magasin = factor(Magasinuke),
    medium = factor(medium),
    recall = factor(recall)
  ) %>% tally %>% complete(recall) %>% mutate(pct = n / sum(n) * 100) %>% filter(Magasin ==
                                                                                   "1" & medium=="Magasin" & recall == "1") %>% mutate(navn = paste("Magasin"))

k91534 <-
  mdn13test %>% filter(aldgrp == "15-34") %>% group_by(
    Radio = factor(Radiouke),
    audio = factor(audio),
    recall = factor(recall)
  ) %>% tally %>% complete(recall) %>% mutate(pct = n / sum(n) * 100) %>% filter(Radio ==
                                                                                   "1" & audio=="1" & recall == "1") %>% mutate(navn = paste("Radio"))

kanaltab1534 <-
  rbind(
    k11534,
    k21534,
    k31534,
    k41534,
    k51534,
    k61534,
    k71534,
    k81534,
    k91534
  )


```

```{r echo=FALSE}
plotkanal1534 <- ggplot(data = kanaltab1534, mapping = aes(x = navn, y = pct, fill = pct))

plotkanal1534 <- plotkanal1534 + geom_bar(stat = "identity", colour = "#FF6666", fill = "#FF6666" , position = "dodge") + theme_dark() + ggtitle("Recall 15-34 kanaler brukt siste uke") + xlab("kampanjer") + ylab("Recall %") + geom_hline(yintercept=mean(kanaltab$pct), linetype="dotted", color = "yellow") + geom_text(aes(label = round(pct, 1)))+theme(axis.text.x=element_text(angle=45,hjust=1))+ coord_cartesian(
ylim = c(0, 60))

ggplotly(plotkanal1534)
```

### Alder 35-48

```{r echo=FALSE}
k13548 <-
  mdn13test %>% filter(aldgrp == "35-48") %>% group_by(
    Kino = factor(kino3u),
    medium = factor(medium),
    recall = factor(recall)
  ) %>% tally %>% complete(recall) %>% mutate(pct = n / sum(n) * 100) %>% filter(Kino == "1" & medium=="Video 31+ sek" & recall == "1") %>% mutate(navn = paste("Kino"))
k23548 <-
  mdn13test %>% filter(aldgrp == "35-48") %>% group_by(
    TV = factor(TVuke),
    video = factor(video),
    recall = factor(recall)
  ) %>% tally %>% complete(recall) %>% mutate(pct = n / sum(n) * 100) %>% filter(TV == "1" & video=="1" & recall == "1") %>% mutate(navn = paste("TV"))
k33548 <-
  mdn13test %>% filter(aldgrp == "35-48") %>% group_by(
    OLV = factor(OLVuke),
    medium = factor(medium),
    recall = factor(recall)
  ) %>% tally %>% complete(recall) %>% mutate(pct = n / sum(n) * 100) %>% filter(OLV ==
                                                                                   "1" & medium=="OLV" & recall == "1") %>% mutate(navn = paste("OLV"))
k43548 <-
  mdn13test %>% filter(aldgrp == "35-48") %>% group_by(
    OOH = factor(OOHuke),
    medium = factor(medium),
    recall = factor(recall)
  ) %>% tally %>% complete(recall) %>% mutate(pct = n / sum(n) * 100) %>% filter(OOH ==
                                                                                   "1"  & medium=="OOH" & recall == "1") %>% mutate(navn = paste("OOH"))
k53548 <-
  mdn13test %>% filter(aldgrp == "35-48") %>% group_by(
    SoMe = factor(SoMeuke),
    medium = factor(medium),
    recall = factor(recall)
  ) %>% tally %>% complete(recall) %>% mutate(pct = n / sum(n) * 100) %>% filter(SoMe ==
                                                                                   "1" & medium=="SoMe" & recall == "1") %>% mutate(navn = paste("SoMe"))
k63548 <-
  mdn13test %>% filter(aldgrp == "35-48") %>% group_by(
    Avis = factor(AVISuke),
    medium = factor(medium),
    recall = factor(recall)
  ) %>% tally %>% complete(recall) %>% mutate(pct = n / sum(n) * 100) %>% filter(Avis ==
                                                                                   "1" & medium=="Avis" & recall == "1") %>% mutate(navn = paste("Avis"))

k73548 <-
  mdn13test %>% filter(aldgrp == "35-48") %>% group_by(
    Display = factor(DISPLAYuke),
    medium = factor(medium),
    recall = factor(recall)
  ) %>% tally %>% complete(recall) %>% mutate(pct = n / sum(n) * 100) %>% filter(Display ==
                                                                                   "1" & medium=="Web" & recall == "1") %>% mutate(navn = paste("Display"))

k83548 <-
  mdn13test %>% filter(aldgrp == "35-48") %>% group_by(
    Magasin = factor(Magasinuke),
    medium = factor(medium),
    recall = factor(recall)
  ) %>% tally %>% complete(recall) %>% mutate(pct = n / sum(n) * 100) %>% filter(Magasin ==
                                                                                   "1" & medium=="Magasin" & recall == "1") %>% mutate(navn = paste("Magasin"))

k93548 <-
  mdn13test %>% filter(aldgrp == "35-48") %>% group_by(
    Radio = factor(Radiouke),
    audio = factor(audio),
    recall = factor(recall)
  ) %>% tally %>% complete(recall) %>% mutate(pct = n / sum(n) * 100) %>% filter(Radio ==
                                                                                   "1" & audio=="1" & recall == "1") %>% mutate(navn = paste("Radio"))

kanaltab3548 <-
  rbind(
    k13548,
    k23548,
    k33548,
    k43548,
    k53548,
    k63548,
    k73548,
    k83548,
    k93548
  )


```

```{r echo=FALSE}
plotkanal3548 <- ggplot(data = kanaltab3548, mapping = aes(x = navn, y = pct, fill = pct))

plotkanal3548 <- plotkanal3548 + geom_bar(stat = "identity", colour = "#FF6666", fill = "#FF6666" , position = "dodge") + theme_dark() + ggtitle("Recall 35-48 kanaler brukt siste uke") + xlab("kampanjer") + ylab("Recall %") + geom_hline(yintercept=mean(kanaltab$pct), linetype="dotted", color = "yellow") + geom_text(aes(label = round(pct, 1)))+theme(axis.text.x=element_text(angle=45,hjust=1))+ coord_cartesian(
ylim = c(0, 70))

ggplotly(plotkanal3548)
```



### Alder 49+

```{r echo=FALSE}
k149pluss <-
  mdn13test %>% filter(aldgrp == "49+") %>% group_by(
    Kino = factor(kino3u),
    medium = factor(medium),
    recall = factor(recall)
  ) %>% tally %>% complete(recall) %>% mutate(pct = n / sum(n) * 100) %>% filter(Kino == "1" & medium=="Video 31+ sek" & recall == "1") %>% mutate(navn = paste("Kino"))
k249pluss <-
  mdn13test %>% filter(aldgrp == "49+") %>% group_by(
    TV = factor(TVuke),
    video = factor(video),
    recall = factor(recall)
  ) %>% tally %>% complete(recall) %>% mutate(pct = n / sum(n) * 100) %>% filter(TV == "1" & video=="1" & recall == "1") %>% mutate(navn = paste("TV"))
k349pluss <-
  mdn13test %>% filter(aldgrp == "49+") %>% group_by(
    OLV = factor(OLVuke),
    medium = factor(medium),
    recall = factor(recall)
  ) %>% tally %>% complete(recall) %>% mutate(pct = n / sum(n) * 100) %>% filter(OLV ==
                                                                                   "1" & medium=="OLV" & recall == "1") %>% mutate(navn = paste("OLV"))
k449pluss <-
  mdn13test %>% filter(aldgrp == "49+") %>% group_by(
    OOH = factor(OOHuke),
    medium = factor(medium),
    recall = factor(recall)
  ) %>% tally %>% complete(recall) %>% mutate(pct = n / sum(n) * 100) %>% filter(OOH ==
                                                                                   "1"  & medium=="OOH" & recall == "1") %>% mutate(navn = paste("OOH"))
k549pluss <-
  mdn13test %>% filter(aldgrp == "49+") %>% group_by(
    SoMe = factor(SoMeuke),
    medium = factor(medium),
    recall = factor(recall)
  ) %>% tally %>% complete(recall) %>% mutate(pct = n / sum(n) * 100) %>% filter(SoMe ==
                                                                                   "1" & medium=="SoMe" & recall == "1") %>% mutate(navn = paste("SoMe"))
k649pluss <-
  mdn13test %>% filter(aldgrp == "49+") %>% group_by(
    Avis = factor(AVISuke),
    medium = factor(medium),
    recall = factor(recall)
  ) %>% tally %>% complete(recall) %>% mutate(pct = n / sum(n) * 100) %>% filter(Avis ==
                                                                                   "1" & medium=="Avis" & recall == "1") %>% mutate(navn = paste("Avis"))

k749pluss <-
  mdn13test %>% filter(aldgrp == "49+") %>% group_by(
    Display = factor(DISPLAYuke),
    medium = factor(medium),
    recall = factor(recall)
  ) %>% tally %>% complete(recall) %>% mutate(pct = n / sum(n) * 100) %>% filter(Display ==
                                                                                   "1" & medium=="Web" & recall == "1") %>% mutate(navn = paste("Display"))

k849pluss <-
  mdn13test %>% filter(aldgrp == "49+") %>% group_by(
    Magasin = factor(Magasinuke),
    medium = factor(medium),
    recall = factor(recall)
  ) %>% tally %>% complete(recall) %>% mutate(pct = n / sum(n) * 100) %>% filter(Magasin ==
                                                                                   "1" & medium=="Magasin" & recall == "1") %>% mutate(navn = paste("Magasin"))

k949pluss <-
  mdn13test %>% filter(aldgrp == "49+") %>% group_by(
    Radio = factor(Radiouke),
    audio = factor(audio),
    recall = factor(recall)
  ) %>% tally %>% complete(recall) %>% mutate(pct = n / sum(n) * 100) %>% filter(Radio ==
                                                                                   "1" & audio=="1" & recall == "1") %>% mutate(navn = paste("Radio"))

kanaltab49pluss <-
  rbind(
    k149pluss,
    k249pluss,
    k349pluss,
    k449pluss,
    k549pluss,
    k649pluss,
    k749pluss,
    k849pluss,
    k949pluss
  )


```



```{r echo=FALSE}
plotkanal49pluss <- ggplot(data = kanaltab49pluss, mapping = aes(x = navn, y = pct, fill = pct))

plotkanal49pluss <- plotkanal49pluss + geom_bar(stat = "identity", colour = "#FF6666", fill = "#FF6666" , position = "dodge") + theme_dark() + ggtitle("Recall 49+ kanaler brukt siste uke") + xlab("kampanjer") + ylab("Recall %") + geom_hline(yintercept=mean(kanaltab$pct), linetype="dotted", color = "yellow") + geom_text(aes(label = round(pct, 1)))+theme(axis.text.x=element_text(angle=45,hjust=1))+ coord_cartesian(
ylim = c(0, 70))

ggplotly(plotkanal49pluss)

```



```{r eval=FALSE, include=FALSE}
#allspdata <- mdn13test[c(1,19:29,122)]
#allspdata
#
#allspdata %>% mutate_each(funs(mean), -c("utvalg","AMIProRspId.1","aldgrp")) -> sptab
#
#mcdspdata <- allspdata[which(allspdata$utvalg=="MacDonalds"),]
#
#mcdspdata %>% mutate_each(funs(mean), -c("utvalg","AMIProRspId.1","aldgrp")) -> mcdsptab
#
#
#allout <- sptab[, names(sptab)!= c("utvalg","AMIProRspId.1","aldgrp")] %>% summarize_all(.,funs(mean))%>% mutate(navn = paste("Alle"))
#mcdout <- mcdsptab[, names(mcdsptab)!= c("utvalg","AMIProRspId.1","aldgrp")] %>% summarize_all(.,funs(mean))%>% mutate(navn = paste("McDonalds"))
#
#spidertab <- rbind(allout,mcdout) 
#spidertab$utvalg <- spidertab$AMIProRspId.1 <- spidertab$aldgrp <- NULL
#spidertab <- as_tibble(spidertab)
#
#plotdata <- spidertab %>%
#  
#plotdata
#
# generate radar chart
#ggradar(spidertab, 
#        grid.label.size = 4,
#        axis.label.size = 4, 
#        group.point.size = 5,
#        group.line.width = 1.5,
#        legend.text.size= 10) +
#  labs(title = "Mammals, size, and sleep")
```







```




Om rapporten
========================================

Laget av: Robert Ruud for PointOut AS

Oslo, desember 2019

Arbeidet er gjort i Rstudio og programmer benyttet er:

RStudio Team (2015). RStudio: Integrated Development for R. RStudio, Inc., Boston, MA URL http://www.rstudio.com/.

```{r echo=FALSE}
citation()
citation("dplyr")
citation("ggplot2")
citation("plotly")
```