preservef483203436625e7d
preserve228b13b80eadf1a5
preserve525f8c8537a67d95
preserveb8dc53f1fbe964be
###Holdning til reklame i kanaler
preservec1c059c3303cd11a
preserve1832ac1c800a846f
preserved4677c4bd5e30dcd
preserve0fd47a0c58120f15
preserve84effcbf8fded30c
Laget av: Robert Ruud for PointOut AS
Oslo, desember 2019
Arbeidet er gjort i Rstudio og programmer benyttet er:
RStudio Team (2015). RStudio: Integrated Development for R. RStudio, Inc., Boston, MA URL http://www.rstudio.com/.
To cite R in publications use:
R Core Team (2019). R: A language and environment for statistical
computing. R Foundation for Statistical Computing, Vienna, Austria.
URL https://www.R-project.org/.
A BibTeX entry for LaTeX users is
@Manual{,
title = {R: A Language and Environment for Statistical Computing},
author = {{R Core Team}},
organization = {R Foundation for Statistical Computing},
address = {Vienna, Austria},
year = {2019},
url = {https://www.R-project.org/},
}
We have invested a lot of time and effort in creating R, please cite it
when using it for data analysis. See also 'citation("pkgname")' for
citing R packages.
To cite package 'dplyr' in publications use:
Hadley Wickham, Romain François, Lionel Henry and Kirill Müller
(2019). dplyr: A Grammar of Data Manipulation.
http://dplyr.tidyverse.org, https://github.com/tidyverse/dplyr.
A BibTeX entry for LaTeX users is
@Manual{,
title = {dplyr: A Grammar of Data Manipulation},
author = {Hadley Wickham and Romain François and Lionel Henry and Kirill Müller},
year = {2019},
note = {http://dplyr.tidyverse.org, https://github.com/tidyverse/dplyr},
}
To cite ggplot2 in publications, please use:
H. Wickham. ggplot2: Elegant Graphics for Data Analysis.
Springer-Verlag New York, 2016.
A BibTeX entry for LaTeX users is
@Book{,
author = {Hadley Wickham},
title = {ggplot2: Elegant Graphics for Data Analysis},
publisher = {Springer-Verlag New York},
year = {2016},
isbn = {978-3-319-24277-4},
url = {https://ggplot2.tidyverse.org},
}
To cite plotly in publications use:
Carson Sievert (2018) plotly for R. https://plotly-r.com
A BibTeX entry for LaTeX users is
@Manual{,
title = {plotly for R},
author = {Carson Sievert},
year = {2018},
url = {https://plotly-r.com},
}
---
title: "MDN Dashboard"
output:
flexdashboard::flex_dashboard:
source_code: embed
theme: spacelab
---
```{r setup, include=FALSE}
library(flexdashboard)
library(knitr)
library(ggplot2)
library(plotly)
library(dplyr)
library(tidyverse)
library(rsconnect)
library(shiny)
library(ggradar)
```
```{r}
load("mdn13test.Rdata")
load("prosentfil.Rdata")
```
MDN dashboard
=====================================
Row
-------------------------------
### Kampanje recall
```{r echo=FALSE}
k1 <- mdn13test %>% group_by(Kino=factor(kino3u), recall=factor(recall)) %>% tally %>% complete(recall) %>% mutate(pct=n/sum(n)*100) %>% filter(Kino=="1" & recall=="1") %>% mutate(navn = paste("Kino"))
k2 <- mdn13test %>% group_by(TV=factor(TVuke), recall=factor(recall)) %>% tally %>% complete(recall) %>% mutate(pct=n/sum(n)*100) %>% filter(TV=="1" & recall=="1") %>% mutate(navn = paste("TV"))
k3 <- mdn13test %>% group_by(OLV=factor(OLVuke), recall=factor(recall)) %>% tally %>% complete(recall) %>% mutate(pct=n/sum(n)*100) %>% filter(OLV=="1" & recall=="1") %>% mutate(navn = paste("OLV"))
k4 <- mdn13test %>% group_by(OOH=factor(OOHuke), recall=factor(recall)) %>% tally %>% complete(recall) %>% mutate(pct=n/sum(n)*100) %>% filter(OOH=="1" & recall=="1") %>% mutate(navn = paste("OOH"))
k5 <- mdn13test %>% group_by(SoMe=factor(SoMeuke), recall=factor(recall)) %>% tally %>% complete(recall) %>% mutate(pct=n/sum(n)*100) %>% filter(SoMe=="1" & recall=="1") %>% mutate(navn = paste("SoMe"))
k6 <- mdn13test %>% group_by(Avis=factor(AVISuke), recall=factor(recall)) %>% tally %>% complete(recall) %>% mutate(pct=n/sum(n)*100) %>% filter(Avis=="1" & recall=="1") %>% mutate(navn = paste("Avis"))
k7 <- mdn13test %>% group_by(Display=factor(DISPLAYuke), recall=factor(recall)) %>% tally %>% complete(recall) %>% mutate(pct=n/sum(n)*100) %>% filter(Display=="1" & recall=="1") %>% mutate(navn = paste("Display"))
k8 <- mdn13test %>% group_by(Magasin=factor(Magasinuke), recall=factor(recall)) %>% tally %>% complete(recall) %>% mutate(pct=n/sum(n)*100) %>% filter(Magasin=="1" & recall=="1") %>% mutate(navn = paste("Magasin"))
k9 <- mdn13test %>% group_by(Radio=factor(Radiouke), recall=factor(recall)) %>% tally %>% complete(recall) %>% mutate(pct=n/sum(n)*100) %>% filter(Radio=="1" & recall=="1") %>% mutate(navn = paste("Radio"))
kanaltab <- rbind(k1,k2,k3,k4,k5,k6,k7,k8,k9)
```
```{r echo=FALSE}
plotkanal <- ggplot(data = kanaltab, mapping = aes(x = navn, y = pct, fill = pct))
plotkanal <- plotkanal + geom_bar(stat = "identity", colour = "#FF6666", fill = "#FF6666" , position = "dodge") + theme_dark() + ggtitle("Recall kampanjer etter kanaler brukt siste uke") + xlab("kampanjer") + ylab("Recall %")+ geom_hline(yintercept=mean(kanaltab$pct), linetype="dotted", color = "yellow") + geom_text(aes(label = round(pct, 1)))+theme(axis.text.x=element_text(angle=45,hjust=1))+ coord_cartesian(
ylim = c(30, 60))
ggplotly(plotkanal)
```
Row {.tabset .tabset-fade}
-------------------------------------
### Alder 15-34
```{r echo=FALSE}
k11534 <- mdn13test %>% filter(aldgrp=="15-34") %>%group_by(Kino=factor(kino3u),recall=factor(recall)) %>% tally %>% complete(recall) %>% mutate(pct=n/sum(n)*100) %>% filter(Kino=="1" & recall=="1") %>% mutate(navn = paste("Kino"))
k21534 <- mdn13test %>% filter(aldgrp=="15-34") %>%group_by(TV=factor(TVuke),recall=factor(recall)) %>% tally %>% complete(recall) %>% mutate(pct=n/sum(n)*100) %>% filter(TV=="1" & recall=="1") %>% mutate(navn = paste("TV"))
k31534 <- mdn13test %>% filter(aldgrp=="15-34") %>%group_by(OLV=factor(OLVuke),recall=factor(recall)) %>% tally %>% complete(recall) %>% mutate(pct=n/sum(n)*100) %>% filter(OLV=="1" & recall=="1") %>% mutate(navn = paste("OLV"))
k41534 <- mdn13test %>% filter(aldgrp=="15-34") %>%group_by(OOH=factor(OOHuke),recall=factor(recall)) %>% tally %>% complete(recall) %>% mutate(pct=n/sum(n)*100) %>% filter(OOH=="1" & recall=="1") %>% mutate(navn = paste("OOH"))
k51534 <- mdn13test %>% filter(aldgrp=="15-34") %>%group_by(SoMe=factor(SoMeuke),recall=factor(recall)) %>% tally %>% complete(recall) %>% mutate(pct=n/sum(n)*100) %>% filter(SoMe=="1" & recall=="1") %>% mutate(navn = paste("SoMe"))
k61534 <- mdn13test %>% filter(aldgrp=="15-34") %>%group_by(Avis=factor(AVISuke),recall=factor(recall)) %>% tally %>% complete(recall) %>% mutate(pct=n/sum(n)*100) %>% filter(Avis=="1" & recall=="1") %>% mutate(navn = paste("Avis"))
k71534 <- mdn13test %>% filter(aldgrp=="15-34") %>%group_by(Display=factor(DISPLAYuke),recall=factor(recall)) %>% tally %>% complete(recall) %>% mutate(pct=n/sum(n)*100) %>% filter(Display=="1" & recall=="1") %>% mutate(navn = paste("Display"))
k81534 <- mdn13test %>% filter(aldgrp=="15-34") %>%group_by(Magasin=factor(Magasinuke),recall=factor(recall)) %>% tally %>% complete(recall) %>% mutate(pct=n/sum(n)*100) %>% filter(Magasin=="1" & recall=="1") %>% mutate(navn = paste("Magasin"))
k91534 <- mdn13test %>% filter(aldgrp=="15-34") %>%group_by(Radio=factor(Radiouke),recall=factor(recall)) %>% tally %>% complete(recall) %>% mutate(pct=n/sum(n)*100) %>% filter(Radio=="1" & recall=="1") %>% mutate(navn = paste("Radio"))
kanaltab1534 <-
rbind(
k11534,
k21534,
k31534,
k41534,
k51534,
k61534,
k71534,
k81534,
k91534
)
```
```{r echo=FALSE}
plotkanal1534 <- ggplot(data = kanaltab1534, mapping = aes(x = navn, y = pct, fill = pct))
plotkanal1534 <- plotkanal1534 + geom_bar(stat = "identity", colour = "#FF6666", fill = "#FF6666" , position = "dodge") + theme_dark() + ggtitle("Recall 15-34 kanaler brukt siste uke") + xlab("kampanjer") + ylab("Recall %") + geom_hline(yintercept=mean(kanaltab$pct), linetype="dotted", color = "yellow") + geom_text(aes(label = round(pct, 1)))+theme(axis.text.x=element_text(angle=45,hjust=1))+ coord_cartesian(
ylim = c(30, 60))
ggplotly(plotkanal1534)
```
### Alder 35-48
```{r echo=FALSE}
k13548 <- mdn13test %>% filter(aldgrp=="35-48") %>%group_by(Kino=factor(kino3u),recall=factor(recall)) %>% tally %>% complete(recall) %>% mutate(pct=n/sum(n)*100) %>% filter(Kino=="1" & recall=="1") %>% mutate(navn = paste("Kino"))
k23548 <- mdn13test %>% filter(aldgrp=="35-48") %>%group_by(TV=factor(TVuke),recall=factor(recall)) %>% tally %>% complete(recall) %>% mutate(pct=n/sum(n)*100) %>% filter(TV=="1" & recall=="1") %>% mutate(navn = paste("TV"))
k33548 <- mdn13test %>% filter(aldgrp=="35-48") %>%group_by(OLV=factor(OLVuke),recall=factor(recall)) %>% tally %>% complete(recall) %>% mutate(pct=n/sum(n)*100) %>% filter(OLV=="1" & recall=="1") %>% mutate(navn = paste("OLV"))
k43548 <- mdn13test %>% filter(aldgrp=="35-48") %>%group_by(OOH=factor(OOHuke),recall=factor(recall)) %>% tally %>% complete(recall) %>% mutate(pct=n/sum(n)*100) %>% filter(OOH=="1" & recall=="1") %>% mutate(navn = paste("OOH"))
k53548 <- mdn13test %>% filter(aldgrp=="35-48") %>%group_by(SoMe=factor(SoMeuke),recall=factor(recall)) %>% tally %>% complete(recall) %>% mutate(pct=n/sum(n)*100) %>% filter(SoMe=="1" & recall=="1") %>% mutate(navn = paste("SoMe"))
k63548 <- mdn13test %>% filter(aldgrp=="35-48") %>%group_by(Avis=factor(AVISuke),recall=factor(recall)) %>% tally %>% complete(recall) %>% mutate(pct=n/sum(n)*100) %>% filter(Avis=="1" & recall=="1") %>% mutate(navn = paste("Avis"))
k73548 <- mdn13test %>% filter(aldgrp=="35-48") %>%group_by(Display=factor(DISPLAYuke),recall=factor(recall)) %>% tally %>% complete(recall) %>% mutate(pct=n/sum(n)*100) %>% filter(Display=="1" & recall=="1") %>% mutate(navn = paste("Display"))
k83548 <- mdn13test %>% filter(aldgrp=="35-48") %>%group_by(Magasin=factor(Magasinuke),recall=factor(recall)) %>% tally %>% complete(recall) %>% mutate(pct=n/sum(n)*100) %>% filter(Magasin=="1" & recall=="1") %>% mutate(navn = paste("Magasin"))
k93548 <- mdn13test %>% filter(aldgrp=="35-48") %>%group_by(Radio=factor(Radiouke),recall=factor(recall)) %>% tally %>% complete(recall) %>% mutate(pct=n/sum(n)*100) %>% filter(Radio=="1" & recall=="1") %>% mutate(navn = paste("Radio"))
kanaltab3548 <-
rbind(
k13548,
k23548,
k33548,
k43548,
k53548,
k63548,
k73548,
k83548,
k93548
)
```
```{r echo=FALSE}
plotkanal3548 <- ggplot(data = kanaltab3548, mapping = aes(x = navn, y = pct, fill = pct))
plotkanal3548 <- plotkanal3548 + geom_bar(stat = "identity", colour = "#FF6666", fill = "#FF6666" , position = "dodge") + theme_dark() + ggtitle("Recall 35-48 kanaler brukt siste uke") + xlab("kampanjer") + ylab("Recall %") + geom_hline(yintercept=mean(kanaltab$pct), linetype="dotted", color = "yellow") + geom_text(aes(label = round(pct, 1)))+theme(axis.text.x=element_text(angle=45,hjust=1))+ coord_cartesian(
ylim = c(30, 60))
ggplotly(plotkanal3548)
```
### Alder 49+
```{r echo=FALSE}
k149pluss <- mdn13test %>% filter(aldgrp=="49+") %>%group_by(Kino=factor(kino3u),recall=factor(recall)) %>% tally %>% complete(recall) %>% mutate(pct=n/sum(n)*100) %>% filter(Kino=="1" & recall=="1") %>% mutate(navn = paste("Kino"))
k249pluss <- mdn13test %>% filter(aldgrp=="49+") %>%group_by(TV=factor(TVuke),recall=factor(recall)) %>% tally %>% complete(recall) %>% mutate(pct=n/sum(n)*100) %>% filter(TV=="1" & recall=="1") %>% mutate(navn = paste("TV"))
k349pluss <- mdn13test %>% filter(aldgrp=="49+") %>%group_by(OLV=factor(OLVuke),recall=factor(recall)) %>% tally %>% complete(recall) %>% mutate(pct=n/sum(n)*100) %>% filter(OLV=="1" & recall=="1") %>% mutate(navn = paste("OLV"))
k449pluss <- mdn13test %>% filter(aldgrp=="49+") %>%group_by(OOH=factor(OOHuke),recall=factor(recall)) %>% tally %>% complete(recall) %>% mutate(pct=n/sum(n)*100) %>% filter(OOH=="1" & recall=="1") %>% mutate(navn = paste("OOH"))
k549pluss <- mdn13test %>% filter(aldgrp=="49+") %>%group_by(SoMe=factor(SoMeuke),recall=factor(recall)) %>% tally %>% complete(recall) %>% mutate(pct=n/sum(n)*100) %>% filter(SoMe=="1" & recall=="1") %>% mutate(navn = paste("SoMe"))
k649pluss <- mdn13test %>% filter(aldgrp=="49+") %>%group_by(Avis=factor(AVISuke),recall=factor(recall)) %>% tally %>% complete(recall) %>% mutate(pct=n/sum(n)*100) %>% filter(Avis=="1" & recall=="1") %>% mutate(navn = paste("Avis"))
k749pluss <- mdn13test %>% filter(aldgrp=="49+") %>%group_by(Display=factor(DISPLAYuke),recall=factor(recall)) %>% tally %>% complete(recall) %>% mutate(pct=n/sum(n)*100) %>% filter(Display=="1" & recall=="1") %>% mutate(navn = paste("Display"))
k849pluss <- mdn13test %>% filter(aldgrp=="49+") %>%group_by(Magasin=factor(Magasinuke),recall=factor(recall)) %>% tally %>% complete(recall) %>% mutate(pct=n/sum(n)*100) %>% filter(Magasin=="1" & recall=="1") %>% mutate(navn = paste("Magasin"))
k949pluss <- mdn13test %>% filter(aldgrp=="49+") %>%group_by(Radio=factor(Radiouke),recall=factor(recall)) %>% tally %>% complete(recall) %>% mutate(pct=n/sum(n)*100) %>% filter(Radio=="1" & recall=="1") %>% mutate(navn = paste("Radio"))
kanaltab49pluss <-
rbind(
k149pluss,
k249pluss,
k349pluss,
k449pluss,
k549pluss,
k649pluss,
k749pluss,
k849pluss,
k949pluss
)
```
```{r echo=FALSE}
plotkanal49pluss <- ggplot(data = kanaltab49pluss, mapping = aes(x = navn, y = pct, fill = pct))
plotkanal49pluss <- plotkanal49pluss + geom_bar(stat = "identity", colour = "#FF6666", fill = "#FF6666" , position = "dodge") + theme_dark() + ggtitle("Recall 49+ kanaler brukt siste uke") + xlab("kampanjer") + ylab("Recall %") + geom_hline(yintercept=mean(kanaltab$pct), linetype="dotted", color = "yellow") + geom_text(aes(label = round(pct, 1)))+theme(axis.text.x=element_text(angle=45,hjust=1))+ coord_cartesian(
ylim = c(30, 60))
ggplotly(plotkanal49pluss)
```
###Holdning til reklame i kanaler
```{r}
plot1 <- ggplot(subset(prosentfil, kanal %in% c("TV","Radio","Kino","SoMe","Nettavis","Avis")),aes(x = utsagn, y = value, fill = factor(kanal))) +
geom_col(aes(y = value)+ position_stack(reverse = TRUE)) + scale_fill_manual(values=c("#999999","#ff6666","#26927b","#ffc000","#993300","#1c5b72"))+
ggtitle("Holdning til reklame i forskjellige kanaler") + coord_flip() + theme(legend.position="bottom") + scale_y_continuous(labels = scales::percent)
```
```{r echo=FALSE}
ggplotly(plot1)
```
```{r eval=FALSE, include=FALSE}
#allspdata <- mdn13test[c(1,19:29,122)]
#allspdata
#
#allspdata %>% mutate_each(funs(mean), -c("utvalg","AMIProRspId.1","aldgrp")) -> sptab
#
#mcdspdata <- allspdata[which(allspdata$utvalg=="MacDonalds"),]
#
#mcdspdata %>% mutate_each(funs(mean), -c("utvalg","AMIProRspId.1","aldgrp")) -> mcdsptab
#
#
#allout <- sptab[, names(sptab)!= c("utvalg","AMIProRspId.1","aldgrp")] %>% summarize_all(.,funs(mean))%>% mutate(navn = paste("Alle"))
#mcdout <- mcdsptab[, names(mcdsptab)!= c("utvalg","AMIProRspId.1","aldgrp")] %>% summarize_all(.,funs(mean))%>% mutate(navn = paste("McDonalds"))
#
#spidertab <- rbind(allout,mcdout)
#spidertab$utvalg <- spidertab$AMIProRspId.1 <- spidertab$aldgrp <- NULL
#spidertab <- as_tibble(spidertab)
#
#plotdata <- spidertab %>%
#
#plotdata
#
# generate radar chart
#ggradar(spidertab,
# grid.label.size = 4,
# axis.label.size = 4,
# group.point.size = 5,
# group.line.width = 1.5,
# legend.text.size= 10) +
# labs(title = "Mammals, size, and sleep")
```
Row
-------------------------------
### McDonalds recall
```{r echo=FALSE}
k1mcd <- filter(mdn13test,utvalg=="MacDonalds") %>% group_by(Kino=factor(kino3u),recall=factor(recall)) %>% tally %>% complete(recall) %>% mutate(pct=n/sum(n)*100) %>% filter(Kino=="1" & recall=="1") %>% mutate(navn = paste("Kino"))
k2mcd <- filter(mdn13test,utvalg=="MacDonalds") %>% group_by(TV=factor(TVuke),recall=factor(recall)) %>% tally %>% complete(recall) %>% mutate(pct=n/sum(n)*100) %>% filter(TV=="1" & recall=="1") %>% mutate(navn = paste("TV"))
k3mcd <- filter(mdn13test,utvalg=="MacDonalds") %>% group_by(OLV=factor(OLVuke),recall=factor(recall)) %>% tally %>% complete(recall) %>% mutate(pct=n/sum(n)*100) %>% filter(OLV=="1" & recall=="1") %>% mutate(navn = paste("OLV"))
k4mcd <- filter(mdn13test,utvalg=="MacDonalds") %>% group_by(OOH=factor(OOHuke),recall=factor(recall)) %>% tally %>% complete(recall) %>% mutate(pct=n/sum(n)*100) %>% filter(OOH=="1" & recall=="1") %>% mutate(navn = paste("OOH"))
k5mcd <- filter(mdn13test,utvalg=="MacDonalds") %>% group_by(SoMe=factor(SoMeuke),recall=factor(recall)) %>% tally %>% complete(recall) %>% mutate(pct=n/sum(n)*100) %>% filter(SoMe=="1" & recall=="1") %>% mutate(navn = paste("SoMe"))
k6mcd <- filter(mdn13test,utvalg=="MacDonalds") %>% group_by(Avis=factor(AVISuke),recall=factor(recall)) %>% tally %>% complete(recall) %>% mutate(pct=n/sum(n)*100) %>% filter(Avis=="1" & recall=="1") %>% mutate(navn = paste("Avis"))
k7mcd <- filter(mdn13test,utvalg=="MacDonalds") %>% group_by(Display=factor(DISPLAYuke),recall=factor(recall)) %>% tally %>% complete(recall) %>% mutate(pct=n/sum(n)*100) %>% filter(Display=="1" & recall=="1") %>% mutate(navn = paste("Display"))
k8mcd <- filter(mdn13test,utvalg=="MacDonalds") %>% group_by(Magasin=factor(Magasinuke),recall=factor(recall)) %>% tally %>% complete(recall) %>% mutate(pct=n/sum(n)*100) %>% filter(Magasin=="1" & recall=="1") %>% mutate(navn = paste("Magasin"))
k9mcd <- filter(mdn13test,utvalg=="MacDonalds") %>% group_by(Radio=factor(Radiouke),recall=factor(recall)) %>% tally %>% complete(recall) %>% mutate(pct=n/sum(n)*100) %>% filter(Radio=="1" & recall=="1") %>% mutate(navn = paste("Radio"))
kanaltabmcd <-
rbind(
k1mcd,
k2mcd,
k3mcd,
k4mcd,
k5mcd,
k6mcd,
k7mcd,
k8mcd,
k9mcd
)
```
```{r echo=FALSE}
plotkanalmcd <- ggplot(data = kanaltabmcd, mapping = aes(x = navn, y = pct, fill = pct))
plotkanalmcd <- plotkanalmcd + geom_bar(stat = "identity", colour = "#FF6666", fill = "#FF6666" , position = "dodge") + theme_dark() + ggtitle("Recall MCD etter kanaler brukt siste uke") + xlab("kampanjer") + ylab("Recall %") + geom_hline(yintercept=mean(kanaltabmcd$pct), linetype="dotted", color = "yellow") + geom_text(aes(label = round(pct, 1)))+theme(axis.text.x=element_text(angle=45,hjust=1))+ coord_cartesian(
ylim = c(30, 80))
ggplotly(plotkanalmcd)
```
Row {.tabset .tabset-fade}
-------------------------------------
### Alder 15-34
```{r echo=FALSE}
k11534mcd <- mdn13test %>% filter(utvalg=="MacDonalds",aldgrp=="15-34") %>%group_by(Kino=factor(kino3u),recall=factor(recall)) %>% tally %>% complete(recall) %>% mutate(pct=n/sum(n)*100) %>% filter(Kino=="1" & recall=="1") %>% mutate(navn = paste("Kino"))
k21534mcd <- mdn13test %>% filter(utvalg=="MacDonalds",aldgrp=="15-34") %>%group_by(TV=factor(TVuke),recall=factor(recall)) %>% tally %>% complete(recall) %>% mutate(pct=n/sum(n)*100) %>% filter(TV=="1" & recall=="1") %>% mutate(navn = paste("TV"))
k31534mcd <- mdn13test %>% filter(utvalg=="MacDonalds",aldgrp=="15-34") %>%group_by(OLV=factor(OLVuke),recall=factor(recall)) %>% tally %>% complete(recall) %>% mutate(pct=n/sum(n)*100) %>% filter(OLV=="1" & recall=="1") %>% mutate(navn = paste("OLV"))
k41534mcd <- mdn13test %>% filter(utvalg=="MacDonalds",aldgrp=="15-34") %>%group_by(OOH=factor(OOHuke),recall=factor(recall)) %>% tally %>% complete(recall) %>% mutate(pct=n/sum(n)*100) %>% filter(OOH=="1" & recall=="1") %>% mutate(navn = paste("OOH"))
k51534mcd <- mdn13test %>% filter(utvalg=="MacDonalds",aldgrp=="15-34") %>%group_by(SoMe=factor(SoMeuke),recall=factor(recall)) %>% tally %>% complete(recall) %>% mutate(pct=n/sum(n)*100) %>% filter(SoMe=="1" & recall=="1") %>% mutate(navn = paste("SoMe"))
k61534mcd <- mdn13test %>% filter(utvalg=="MacDonalds",aldgrp=="15-34") %>%group_by(Avis=factor(AVISuke),recall=factor(recall)) %>% tally %>% complete(recall) %>% mutate(pct=n/sum(n)*100) %>% filter(Avis=="1" & recall=="1") %>% mutate(navn = paste("Avis"))
k71534mcd <- mdn13test %>% filter(utvalg=="MacDonalds",aldgrp=="15-34") %>%group_by(Display=factor(DISPLAYuke),recall=factor(recall)) %>% tally %>% complete(recall) %>% mutate(pct=n/sum(n)*100) %>% filter(Display=="1" & recall=="1") %>% mutate(navn = paste("Display"))
k81534mcd <- mdn13test %>% filter(utvalg=="MacDonalds",aldgrp=="15-34") %>%group_by(Magasin=factor(Magasinuke),recall=factor(recall)) %>% tally %>% complete(recall) %>% mutate(pct=n/sum(n)*100) %>% filter(Magasin=="1" & recall=="1") %>% mutate(navn = paste("Magasin"))
k91534mcd <- mdn13test %>% filter(utvalg=="MacDonalds",aldgrp=="15-34") %>%group_by(Radio=factor(Radiouke),recall=factor(recall)) %>% tally %>% complete(recall) %>% mutate(pct=n/sum(n)*100) %>% filter(Radio=="1" & recall=="1") %>% mutate(navn = paste("Radio"))
kanaltab1534mcd <- rbind(k11534mcd,k21534mcd,k31534mcd,k41534mcd,k51534mcd,k61534mcd,k71534mcd,k81534mcd,k91534mcd)
```
```{r echo=FALSE}
plotkanal1534mcd <- ggplot(data = kanaltab1534mcd, mapping = aes(x = navn, y = pct, fill = pct))
plotkanal1534mcd <- plotkanal1534mcd + geom_bar(stat = "identity", colour = "#FF6666", fill = "#FF6666" , position = "dodge") + theme_dark() + ggtitle("Recall 15-34 kanaler brukt siste uke") + xlab("kampanjer") + ylab("Recall %") + geom_hline(yintercept=mean(kanaltabmcd$pct), linetype="dotted", color = "yellow") + geom_text(aes(label = round(pct, 1)))+theme(axis.text.x=element_text(angle=45,hjust=1))+ coord_cartesian(
ylim = c(30, 80))
ggplotly(plotkanal1534mcd)
```
### Alder 35-48
```{r echo=FALSE}
k13548mcd <- mdn13test %>% filter(utvalg=="MacDonalds",aldgrp=="35-48") %>%group_by(Kino=factor(kino3u),recall=factor(recall)) %>% tally %>% complete(recall) %>% mutate(pct=n/sum(n)*100) %>% filter(Kino=="1" & recall=="1") %>% mutate(navn = paste("Kino"))
k23548mcd <- mdn13test %>% filter(utvalg=="MacDonalds",aldgrp=="35-48") %>%group_by(TV=factor(TVuke),recall=factor(recall)) %>% tally %>% complete(recall) %>% mutate(pct=n/sum(n)*100) %>% filter(TV=="1" & recall=="1") %>% mutate(navn = paste("TV"))
k33548mcd <- mdn13test %>% filter(utvalg=="MacDonalds",aldgrp=="35-48") %>%group_by(OLV=factor(OLVuke),recall=factor(recall)) %>% tally %>% complete(recall) %>% mutate(pct=n/sum(n)*100) %>% filter(OLV=="1" & recall=="1") %>% mutate(navn = paste("OLV"))
k43548mcd <- mdn13test %>% filter(utvalg=="MacDonalds",aldgrp=="35-48") %>%group_by(OOH=factor(OOHuke),recall=factor(recall)) %>% tally %>% complete(recall) %>% mutate(pct=n/sum(n)*100) %>% filter(OOH=="1" & recall=="1") %>% mutate(navn = paste("OOH"))
k53548mcd <- mdn13test %>% filter(utvalg=="MacDonalds",aldgrp=="35-48") %>%group_by(SoMe=factor(SoMeuke),recall=factor(recall)) %>% tally %>% complete(recall) %>% mutate(pct=n/sum(n)*100) %>% filter(SoMe=="1" & recall=="1") %>% mutate(navn = paste("SoMe"))
k63548mcd <- mdn13test %>% filter(utvalg=="MacDonalds",aldgrp=="35-48") %>%group_by(Avis=factor(AVISuke),recall=factor(recall)) %>% tally %>% complete(recall) %>% mutate(pct=n/sum(n)*100) %>% filter(Avis=="1" & recall=="1") %>% mutate(navn = paste("Avis"))
k73548mcd <- mdn13test %>% filter(utvalg=="MacDonalds",aldgrp=="35-48") %>%group_by(Display=factor(DISPLAYuke),recall=factor(recall)) %>% tally %>% complete(recall) %>% mutate(pct=n/sum(n)*100) %>% filter(Display=="1" & recall=="1") %>% mutate(navn = paste("Display"))
k83548mcd <- mdn13test %>% filter(utvalg=="MacDonalds",aldgrp=="35-48") %>%group_by(Magasin=factor(Magasinuke),recall=factor(recall)) %>% tally %>% complete(recall) %>% mutate(pct=n/sum(n)*100) %>% filter(Magasin=="1" & recall=="1") %>% mutate(navn = paste("Magasin"))
k93548mcd <- mdn13test %>% filter(utvalg=="MacDonalds",aldgrp=="35-48") %>%group_by(Radio=factor(Radiouke),recall=factor(recall)) %>% tally %>% complete(recall) %>% mutate(pct=n/sum(n)*100) %>% filter(Radio=="1" & recall=="1") %>% mutate(navn = paste("Radio"))
kanaltab3548mcd <-
rbind(
k13548mcd,
k23548mcd,
k33548mcd,
k43548mcd,
k53548mcd,
k63548mcd,
k73548mcd,
k83548mcd,
k93548mcd
)
```
```{r echo=FALSE}
plotkanal3548mcd <- ggplot(data = kanaltab3548mcd, mapping = aes(x = navn, y = pct, fill = pct))
plotkanal3548mcd <- plotkanal3548mcd + geom_bar(stat = "identity", colour = "#FF6666", fill = "#FF6666" , position = "dodge") + theme_dark() + ggtitle("Recall 35-48 kanaler brukt siste uke") + xlab("kampanjer") + ylab("Recall %") + geom_hline(yintercept=mean(kanaltabmcd$pct), linetype="dotted", color = "yellow") + geom_text(aes(label = round(pct, 1)))+theme(axis.text.x=element_text(angle=45,hjust=1))+ coord_cartesian(
ylim = c(30, 80))
ggplotly(plotkanal3548mcd)
```
### Alder 49+
```{r echo=FALSE}
k149plussmcd <- mdn13test %>% filter(utvalg=="MacDonalds",aldgrp=="49+") %>%group_by(Kino=factor(kino3u),recall=factor(recall)) %>% tally %>% complete(recall) %>% mutate(pct=n/sum(n)*100) %>% filter(Kino=="1" & recall=="1") %>% mutate(navn = paste("Kino"))
k249plussmcd <- mdn13test %>% filter(utvalg=="MacDonalds",aldgrp=="49+") %>%group_by(TV=factor(TVuke),recall=factor(recall)) %>% tally %>% complete(recall) %>% mutate(pct=n/sum(n)*100) %>% filter(TV=="1" & recall=="1") %>% mutate(navn = paste("TV"))
k349plussmcd <- mdn13test %>% filter(utvalg=="MacDonalds",aldgrp=="49+") %>%group_by(OLV=factor(OLVuke),recall=factor(recall)) %>% tally %>% complete(recall) %>% mutate(pct=n/sum(n)*100) %>% filter(OLV=="1" & recall=="1") %>% mutate(navn = paste("OLV"))
k449plussmcd <- mdn13test %>% filter(utvalg=="MacDonalds",aldgrp=="49+") %>%group_by(OOH=factor(OOHuke),recall=factor(recall)) %>% tally %>% complete(recall) %>% mutate(pct=n/sum(n)*100) %>% filter(OOH=="1" & recall=="1") %>% mutate(navn = paste("OOH"))
k549plussmcd <- mdn13test %>% filter(utvalg=="MacDonalds",aldgrp=="49+") %>%group_by(SoMe=factor(SoMeuke),recall=factor(recall)) %>% tally %>% complete(recall) %>% mutate(pct=n/sum(n)*100) %>% filter(SoMe=="1" & recall=="1") %>% mutate(navn = paste("SoMe"))
k649plussmcd <- mdn13test %>% filter(utvalg=="MacDonalds",aldgrp=="49+") %>%group_by(Avis=factor(AVISuke),recall=factor(recall)) %>% tally %>% complete(recall) %>% mutate(pct=n/sum(n)*100) %>% filter(Avis=="1" & recall=="1") %>% mutate(navn = paste("Avis"))
k749plussmcd <- mdn13test %>% filter(utvalg=="MacDonalds",aldgrp=="49+") %>%group_by(Display=factor(DISPLAYuke),recall=factor(recall)) %>% tally %>% complete(recall) %>% mutate(pct=n/sum(n)*100) %>% filter(Display=="1" & recall=="1") %>% mutate(navn = paste("Display"))
k849plussmcd <- mdn13test %>% filter(utvalg=="MacDonalds",aldgrp=="49+") %>%group_by(Magasin=factor(Magasinuke),recall=factor(recall)) %>% tally %>% complete(recall) %>% mutate(pct=n/sum(n)*100) %>% filter(Magasin=="1" & recall=="1") %>% mutate(navn = paste("Magasin"))
k949plussmcd <- mdn13test %>% filter(utvalg=="MacDonalds",aldgrp=="49+") %>%group_by(Radio=factor(Radiouke),recall=factor(recall)) %>% tally %>% complete(recall) %>% mutate(pct=n/sum(n)*100) %>% filter(Radio=="1" & recall=="1") %>% mutate(navn = paste("Radio"))
kanaltab49plussmcd <-
rbind(
k149plussmcd,
k249plussmcd,
k349plussmcd,
k449plussmcd,
k549plussmcd,
k649plussmcd,
k749plussmcd,
k849plussmcd,
k949plussmcd
)
```
```{r echo=FALSE}
plotkanal49plussmcd <- ggplot(data = kanaltab49plussmcd, mapping = aes(x = navn, y = pct, fill = pct))
plotkanal49plussmcd <- plotkanal49plussmcd + geom_bar(stat = "identity", colour = "#FF6666", fill = "#FF6666" , position = "dodge") + theme_dark() + ggtitle("Recall 49+ kanaler brukt siste uke") + xlab("kampanjer") + ylab("Recall %") + geom_hline(yintercept=mean(kanaltabmcd$pct), linetype="dotted", color = "yellow") + geom_text(aes(label = round(pct, 1)))+theme(axis.text.x=element_text(angle=45,hjust=1))+ coord_cartesian(
ylim = c(30, 80))
ggplotly(plotkanal49plussmcd)
```
Om rapporten
========================================
Laget av: Robert Ruud for PointOut AS
Oslo, desember 2019
Arbeidet er gjort i Rstudio og programmer benyttet er:
RStudio Team (2015). RStudio: Integrated Development for R. RStudio, Inc., Boston, MA URL http://www.rstudio.com/.
```{r echo=FALSE}
citation()
citation("dplyr")
citation("ggplot2")
citation("plotly")
```