Introduction:

Public health and econimic problems are affected by a number of reasons i am now going to analysize how storms and other severe weather events play a part. Storms and severe weather conditions causes fatalities and injuries and substantial property damage. Hence to minimze damages we should analyse the given data.

This project requires us to analyse the U.S. National Oceanic and Atmospheric Administration’s (NOAA) storm database. This database tracks when and where major storms and weather events occur in the United States, estimated of any fatalities, injuries, and property damage figures are also provided.

Synopsis:

This report will provide a better insight into Storms and severe weather events in United States and the Fatalities, Injuries and property damages left behind. Two questions to be answered: 1 - which types of events are most harmful to population health? 2 - which types of events have the greatest economic consequences?

Loading the data into R:

library(knitr)
library(markdown)
library(rmarkdown)
library(plyr)
library(stats)
repdata_data_StormData <- read.csv("C:/Users/hp.000/Desktop/DATA SCIENCE/Reproducible Research/week4/repdata_data_StormData.csv/repdata_data_StormData.csv")
storm<-repdata_data_StormData
dim(storm)
## [1] 902297     37
names(storm)
##  [1] "STATE__"    "BGN_DATE"   "BGN_TIME"   "TIME_ZONE"  "COUNTY"    
##  [6] "COUNTYNAME" "STATE"      "EVTYPE"     "BGN_RANGE"  "BGN_AZI"   
## [11] "BGN_LOCATI" "END_DATE"   "END_TIME"   "COUNTY_END" "COUNTYENDN"
## [16] "END_RANGE"  "END_AZI"    "END_LOCATI" "LENGTH"     "WIDTH"     
## [21] "F"          "MAG"        "FATALITIES" "INJURIES"   "PROPDMG"   
## [26] "PROPDMGEXP" "CROPDMG"    "CROPDMGEXP" "WFO"        "STATEOFFIC"
## [31] "ZONENAMES"  "LATITUDE"   "LONGITUDE"  "LATITUDE_E" "LONGITUDE_"
## [36] "REMARKS"    "REFNUM"
str(storm)
## 'data.frame':    902297 obs. of  37 variables:
##  $ STATE__   : num  1 1 1 1 1 1 1 1 1 1 ...
##  $ BGN_DATE  : Factor w/ 16335 levels "1/1/1966 0:00:00",..: 6523 6523 4242 11116 2224 2224 2260 383 3980 3980 ...
##  $ BGN_TIME  : Factor w/ 3608 levels "00:00:00 AM",..: 272 287 2705 1683 2584 3186 242 1683 3186 3186 ...
##  $ TIME_ZONE : Factor w/ 22 levels "ADT","AKS","AST",..: 7 7 7 7 7 7 7 7 7 7 ...
##  $ COUNTY    : num  97 3 57 89 43 77 9 123 125 57 ...
##  $ COUNTYNAME: Factor w/ 29601 levels "","5NM E OF MACKINAC BRIDGE TO PRESQUE ISLE LT MI",..: 13513 1873 4598 10592 4372 10094 1973 23873 24418 4598 ...
##  $ STATE     : Factor w/ 72 levels "AK","AL","AM",..: 2 2 2 2 2 2 2 2 2 2 ...
##  $ EVTYPE    : Factor w/ 985 levels "   HIGH SURF ADVISORY",..: 834 834 834 834 834 834 834 834 834 834 ...
##  $ BGN_RANGE : num  0 0 0 0 0 0 0 0 0 0 ...
##  $ BGN_AZI   : Factor w/ 35 levels "","  N"," NW",..: 1 1 1 1 1 1 1 1 1 1 ...
##  $ BGN_LOCATI: Factor w/ 54429 levels "","- 1 N Albion",..: 1 1 1 1 1 1 1 1 1 1 ...
##  $ END_DATE  : Factor w/ 6663 levels "","1/1/1993 0:00:00",..: 1 1 1 1 1 1 1 1 1 1 ...
##  $ END_TIME  : Factor w/ 3647 levels ""," 0900CST",..: 1 1 1 1 1 1 1 1 1 1 ...
##  $ COUNTY_END: num  0 0 0 0 0 0 0 0 0 0 ...
##  $ COUNTYENDN: logi  NA NA NA NA NA NA ...
##  $ END_RANGE : num  0 0 0 0 0 0 0 0 0 0 ...
##  $ END_AZI   : Factor w/ 24 levels "","E","ENE","ESE",..: 1 1 1 1 1 1 1 1 1 1 ...
##  $ END_LOCATI: Factor w/ 34506 levels "","- .5 NNW",..: 1 1 1 1 1 1 1 1 1 1 ...
##  $ LENGTH    : num  14 2 0.1 0 0 1.5 1.5 0 3.3 2.3 ...
##  $ WIDTH     : num  100 150 123 100 150 177 33 33 100 100 ...
##  $ F         : int  3 2 2 2 2 2 2 1 3 3 ...
##  $ MAG       : num  0 0 0 0 0 0 0 0 0 0 ...
##  $ FATALITIES: num  0 0 0 0 0 0 0 0 1 0 ...
##  $ INJURIES  : num  15 0 2 2 2 6 1 0 14 0 ...
##  $ PROPDMG   : num  25 2.5 25 2.5 2.5 2.5 2.5 2.5 25 25 ...
##  $ PROPDMGEXP: Factor w/ 19 levels "","-","?","+",..: 17 17 17 17 17 17 17 17 17 17 ...
##  $ CROPDMG   : num  0 0 0 0 0 0 0 0 0 0 ...
##  $ CROPDMGEXP: Factor w/ 9 levels "","?","0","2",..: 1 1 1 1 1 1 1 1 1 1 ...
##  $ WFO       : Factor w/ 542 levels ""," CI","$AC",..: 1 1 1 1 1 1 1 1 1 1 ...
##  $ STATEOFFIC: Factor w/ 250 levels "","ALABAMA, Central",..: 1 1 1 1 1 1 1 1 1 1 ...
##  $ ZONENAMES : Factor w/ 25112 levels "","                                                                                                               "| __truncated__,..: 1 1 1 1 1 1 1 1 1 1 ...
##  $ LATITUDE  : num  3040 3042 3340 3458 3412 ...
##  $ LONGITUDE : num  8812 8755 8742 8626 8642 ...
##  $ LATITUDE_E: num  3051 0 0 0 0 ...
##  $ LONGITUDE_: num  8806 0 0 0 0 ...
##  $ REMARKS   : Factor w/ 436774 levels "","-2 at Deer Park\n",..: 1 1 1 1 1 1 1 1 1 1 ...
##  $ REFNUM    : num  1 2 3 4 5 6 7 8 9 10 ...

Wrangling the Data:

varsNedeed <- c("EVTYPE", "FATALITIES", "INJURIES", "PROPDMG", "PROPDMGEXP", "CROPDMG", "CROPDMGEXP")
storm <- storm[varsNedeed]
dim(storm)
## [1] 902297      7
names(storm)
## [1] "EVTYPE"     "FATALITIES" "INJURIES"   "PROPDMG"    "PROPDMGEXP"
## [6] "CROPDMG"    "CROPDMGEXP"
str(storm)
## 'data.frame':    902297 obs. of  7 variables:
##  $ EVTYPE    : Factor w/ 985 levels "   HIGH SURF ADVISORY",..: 834 834 834 834 834 834 834 834 834 834 ...
##  $ FATALITIES: num  0 0 0 0 0 0 0 0 1 0 ...
##  $ INJURIES  : num  15 0 2 2 2 6 1 0 14 0 ...
##  $ PROPDMG   : num  25 2.5 25 2.5 2.5 2.5 2.5 2.5 25 25 ...
##  $ PROPDMGEXP: Factor w/ 19 levels "","-","?","+",..: 17 17 17 17 17 17 17 17 17 17 ...
##  $ CROPDMG   : num  0 0 0 0 0 0 0 0 0 0 ...
##  $ CROPDMGEXP: Factor w/ 9 levels "","?","0","2",..: 1 1 1 1 1 1 1 1 1 1 ...

Total for Property Damage

#Refactor of variable PROPDNGEXP
unique(storm$PROPDMGEXP)
##  [1] K M   B m + 0 5 6 ? 4 2 3 h 7 H - 1 8
## Levels:  - ? + 0 1 2 3 4 5 6 7 8 B h H K m M
storm$PROPDMGEXP <- mapvalues(storm$PROPDMGEXP, from = c("K", "M","", "B", "m", "+", "0", "5", "6", "?", "4", "2", "3", "h", "7", "H", "-", "1", "8"), to = c(10^3, 10^6, 1, 10^9, 10^6, 0,1,10^5, 10^6, 0, 10^4, 10^2, 10^3, 10^2, 10^7, 10^2, 0, 10, 10^8))
storm$PROPDMGEXP <- as.numeric(as.character(storm$PROPDMGEXP))
storm$PROPDMGTOTAL <- (storm$PROPDMG * storm$PROPDMGEXP)/1000000000
#Refactor of variable CROPDMGEXP variable
unique(storm$CROPDMGEXP)
## [1]   M K m B ? 0 k 2
## Levels:  ? 0 2 B k K m M
storm$CROPDMGEXP <- mapvalues(storm$CROPDMGEXP, from = c("","M", "K", "m", "B", "?", "0", "k","2"), to = c(1,10^6, 10^3, 10^6, 10^9, 0, 1, 10^3, 10^2))
storm$CROPDMGEXP <- as.numeric(as.character(storm$CROPDMGEXP))
storm$CROPDMGTOTAL <- (storm$CROPDMG * storm$CROPDMGEXP)/1000000000

Processing the data for analysis Events are most harmful to population Health?

#Fatalities
sumFatalities <- aggregate(FATALITIES ~ EVTYPE, data = storm,  FUN="sum")
dim(sumFatalities)
## [1] 985   2
#Ordering Number of Fatalities and defining the top 10 Weather events
fatalities10events <- sumFatalities[order(-sumFatalities$FATALITIES), ][1:10, ]
dim(fatalities10events)
## [1] 10  2
fatalities10events
##             EVTYPE FATALITIES
## 834        TORNADO       5633
## 130 EXCESSIVE HEAT       1903
## 153    FLASH FLOOD        978
## 275           HEAT        937
## 464      LIGHTNING        816
## 856      TSTM WIND        504
## 170          FLOOD        470
## 585    RIP CURRENT        368
## 359      HIGH WIND        248
## 19       AVALANCHE        224
#BarPlot of the 10 Fatalities Events most harmful to population Health
par(mfrow = c(1,1), mar = c(12, 4, 3, 2), mgp = c(3, 1, 0), cex = 0.8)
barplot(fatalities10events$FATALITIES, names.arg = fatalities10events$EVTYPE, las = 3, main = "10 Fatalities Highest Events", ylab = "Number of Fatalities")

Injuries:

#Number of Injuries per type of Event (EVTYPE)
sumInjuries <- aggregate(INJURIES ~ EVTYPE, data = storm,  FUN="sum")
dim(sumInjuries)
## [1] 985   2
#Ordering Number of INJURIES and defining the top 10 Weather events in this category
injuries10events <- sumInjuries[order(-sumInjuries$INJURIES), ][1:10, ]
dim(injuries10events)
## [1] 10  2
injuries10events
##                EVTYPE INJURIES
## 834           TORNADO    91346
## 856         TSTM WIND     6957
## 170             FLOOD     6789
## 130    EXCESSIVE HEAT     6525
## 464         LIGHTNING     5230
## 275              HEAT     2100
## 427         ICE STORM     1975
## 153       FLASH FLOOD     1777
## 760 THUNDERSTORM WIND     1488
## 244              HAIL     1361
#BarPlot of the 10 INJURIES Events most harmful to population Health.
par(mfrow = c(1,1), mar = c(12, 6, 3, 2), mgp = c(4, 1, 0), cex = 0.8)
barplot(injuries10events$INJURIES, names.arg = injuries10events$EVTYPE, las = 3, main = "10 Injuries Highest Events", ylab = "Number of Injuries")

Which type of Events have the greatest Economic consequences?

To determine which type of events have the greatest econimic consequences the variables, PROPDMG (Property Damage) and CROPDMG (Crop Damage) have to be taken into consideration

#Calculation of property Damage
sumPropertyDamage <- aggregate(PROPDMGTOTAL ~ EVTYPE, data = storm,  FUN="sum")
dim(sumPropertyDamage)
## [1] 985   2
#Top 10 highest Property damage Events
propdmg10Total <- sumPropertyDamage[order(-sumPropertyDamage$PROPDMGTOTAL), ][1:10, ]
propdmg10Total
##                EVTYPE PROPDMGTOTAL
## 170             FLOOD   144.657710
## 411 HURRICANE/TYPHOON    69.305840
## 834           TORNADO    56.947381
## 670       STORM SURGE    43.323536
## 153       FLASH FLOOD    16.822674
## 244              HAIL    15.735268
## 402         HURRICANE    11.868319
## 848    TROPICAL STORM     7.703891
## 972      WINTER STORM     6.688497
## 359         HIGH WIND     5.270046
#BarPlot of the top 10 events most harmful to population economic
par(mfrow = c(1,1), mar = c(12, 6, 3, 2), mgp = c(3, 1, 0), cex = 0.8)
barplot(propdmg10Total$PROPDMGTOTAL, names.arg = propdmg10Total$EVTYPE, las = 3, main = "10 Property Damages Highest Events", ylab = "Damage Property Values (in Billions)")

Crop Damage

#Calculation of crop damage
sumCropDamage <- aggregate(CROPDMGTOTAL ~ EVTYPE, data = storm,  FUN="sum")
dim(sumCropDamage)
## [1] 985   2
#Top 10 highest crop damage events
cropdmg10Total <- sumCropDamage[order(-sumCropDamage$CROPDMGTOTAL), ][1:10, ]
cropdmg10Total
##                EVTYPE CROPDMGTOTAL
## 95            DROUGHT    13.972566
## 170             FLOOD     5.661968
## 590       RIVER FLOOD     5.029459
## 427         ICE STORM     5.022113
## 244              HAIL     3.025954
## 402         HURRICANE     2.741910
## 411 HURRICANE/TYPHOON     2.607873
## 153       FLASH FLOOD     1.421317
## 140      EXTREME COLD     1.292973
## 212      FROST/FREEZE     1.094086
#BarPlot of the 10 Crop Damage Events most harmful to population economic.
par(mfrow = c(1,1), mar = c(10, 6, 3, 2), mgp = c(3, 1, 0), cex = 0.6)
barplot(cropdmg10Total$CROPDMGTOTAL, names.arg = cropdmg10Total$EVTYPE, las = 2, main = "10 Crop Damages Highest Events", ylab = "Damage Crop Values (in Billions) ")

Results:

Question 1 The results tells us that Tornados causes the highest number of Fatalities and Injuries.

Question 2 The results tells us that Floods causes highest Property Damage.

The results tells us that Droughts causes highest Crop damages.