Grading the professor

Many college courses conclude by giving students the opportunity to evaluate the course and the instructor anonymously. However, the use of these student evaluations as an indicator of course quality and teaching effectiveness is often criticized because these measures may reflect the influence of non-teaching related characteristics, such as the physical appearance of the instructor. The article titled, “Beauty in the classroom: instructors’ pulchritude and putative pedagogical productivity” (Hamermesh and Parker, 2005) found that instructors who are viewed to be better looking receive higher instructional ratings. (Daniel S. Hamermesh, Amy Parker, Beauty in the classroom: instructors pulchritude and putative pedagogical productivity, Economics of Education Review, Volume 24, Issue 4, August 2005, Pages 369-376, ISSN 0272-7757, 10.1016/j.econedurev.2004.07.013. http://www.sciencedirect.com/science/article/pii/S0272775704001165.)

In this lab we will analyze the data from this study in order to learn what goes into a positive professor evaluation.

The data

download.file("http://www.openintro.org/stat/data/evals.RData", destfile = "evals.RData")
load("evals.RData")
variable description
score average professor evaluation score: (1) very unsatisfactory - (5) excellent.
rank rank of professor: teaching, tenure track, tenured.
ethnicity ethnicity of professor: not minority, minority.
gender gender of professor: female, male.
language language of school where professor received education: english or non-english.
age age of professor.
cls_perc_eval percent of students in class who completed evaluation.
cls_did_eval number of students in class who completed evaluation.
cls_students total number of students in class.
cls_level class level: lower, upper.
cls_profs number of professors teaching sections in course in sample: single, multiple.
cls_credits number of credits of class: one credit (lab, PE, etc.), multi credit.
bty_f1lower beauty rating of professor from lower level female: (1) lowest - (10) highest.
bty_f1upper beauty rating of professor from upper level female: (1) lowest - (10) highest.
bty_f2upper beauty rating of professor from second upper level female: (1) lowest - (10) highest.
bty_m1lower beauty rating of professor from lower level male: (1) lowest - (10) highest.
bty_m1upper beauty rating of professor from upper level male: (1) lowest - (10) highest.
bty_m2upper beauty rating of professor from second upper level male: (1) lowest - (10) highest.
bty_avg average beauty rating of professor.
pic_outfit outfit of professor in picture: not formal, formal.
pic_color color of professor’s picture: color, black & white.

Exploring the data

  1. Is this an observational study or an experiment? The original research question posed in the paper is whether beauty leads directly to the differences in course evaluations. Given the study design, is it possible to answer this question as it is phrased? If not, rephrase the question.

Answer:

This is an observational study. Eventhough the data were gathered from end of semester student evaluations for a large sample of professors, only 6 students rated the professors’ physical appearance. Basically we are observing sample data collected from the University of Texas at Austin.

  1. Describe the distribution of score. Is the distribution skewed? What does that tell you about how students rate courses? Is this what you expected to see? Why, or why not?
hist(evals$score)

summary(evals$score)
##    Min. 1st Qu.  Median    Mean 3rd Qu.    Max. 
##   2.300   3.800   4.300   4.175   4.600   5.000

Answer

scores have a left skewed distribution with a mean of 4.175 and a median of 4.3. Most of the students rated the scores from 4-5 ratings. In general I feel like not many students want to give bad reviews on the professors. Even the minimum rating is 2.3 is just little below the half wich is not considered as really bad. I would expect to see a more normal distribution of scores, unless the sample was drawn from unusually good classes at UT Austin.

  1. Excluding score, select two other variables and describe their relationship using an appropriate visualization (scatterplot, side-by-side boxplots, or mosaic plot).

Answer:

I chose gender and beauty rating variable for the comparison. I have two side-by-side boxpolts for easy visualization of the relatinships of those two variables. It shows that female professors have higher average beauti rating compared to male professors.

library(ggplot2)
library(ggpubr)
## Loading required package: magrittr
male_beauty_level <- ggplot(evals, aes(gender, bty_m1lower))
figure_A <- male_beauty_level + geom_boxplot()

female_beauty_level <- ggplot(evals, aes(gender, bty_f1lower))
figure_B <- female_beauty_level + geom_boxplot()

figure <- ggarrange(figure_A, figure_B,
                    labels = c("A", "B"),
                    ncol = 2, nrow = 2)
figure

Simple linear regression

The fundamental phenomenon suggested by the study is that better looking teachers are evaluated more favorably. Let’s create a scatterplot to see if this appears to be the case:

plot(evals$score ~ evals$bty_avg)

Before we draw conclusions about the trend, compare the number of observations in the data frame with the approximate number of points on the scatterplot. Is anything awry?

  1. Replot the scatterplot, but this time use the function jitter() on the \(y\)- or the \(x\)-coordinate. (Use ?jitter to learn more.) What was misleading about the initial scatterplot?
plot(jitter(evals$score, factor = 1, amount=NULL) ~ evals$bty_avg)

  1. Let’s see if the apparent trend in the plot is something more than natural variation. Fit a linear model called m_bty to predict average professor score by average beauty rating and add the line to your plot using abline(m_bty). Write out the equation for the linear model and interpret the slope. Is average beauty score a statistically significant predictor? Does it appear to be a practically significant predictor?

Answer:

m_bty <- lm(score ~ bty_avg, data = evals)
plot(jitter(evals$score) ~ jitter(evals$bty_avg), ylab="Evaluation Score", xlab="Average Beauty Rating",
 main="Evaluation Scores and Average Beauty Rating")
abline(m_bty)

m_bty$coefficients
## (Intercept)     bty_avg 
##  3.88033795  0.06663704

\(\hat{score} = 3.88+0.07*bty\underline{}avg\)

With a slopw of 0.067 we would expect to see an increase of 0.067 in teh professor’s evaluation score for each increase of 1 point on the beauty rating scale.

  1. Use residual plots to evaluate whether the conditions of least squares regression are reasonable. Provide plots and comments for each one (see the Simple Regression Lab for a reminder of how to make these).

Answer:

par(mfrow=c(1,3))
plot(m_bty$residuals ~ evals$bty_avg)
abline(h = 0)

qqnorm(m_bty$residuals)
qqline(m_bty$residuals)

hist(m_bty$residuals)

Linearity

There does not seem to be an obvious pattern to the way the dots are scattered. This supports a linear relationship.

Constant variability

There appears to be more points below the horizontal than above. This suggests that variability is not constant.

Nearly normal residuals

When we plot the residuals, we see that they are not normal – they are left-skewed. That means there is a bias in the data. This condition is not met.

Multiple linear regression

The data set contains several variables on the beauty score of the professor: individual ratings from each of the six students who were asked to score the physical appearance of the professors and the average of these six scores. Let’s take a look at the relationship between one of these scores and the average beauty score.

plot(evals$bty_avg ~ evals$bty_f1lower)
cor(evals$bty_avg, evals$bty_f1lower)

As expected the relationship is quite strong - after all, the average score is calculated using the individual scores. We can actually take a look at the relationships between all beauty variables (columns 13 through 19) using the following command:

plot(evals[,13:19])

These variables are collinear (correlated), and adding more than one of these variables to the model would not add much value to the model. In this application and with these highly-correlated predictors, it is reasonable to use the average beauty score as the single representative of these variables.

In order to see if beauty is still a significant predictor of professor score after we’ve accounted for the gender of the professor, we can add the gender term into the model.

m_bty_gen <- lm(score ~ bty_avg + gender, data = evals)
summary(m_bty_gen)
## 
## Call:
## lm(formula = score ~ bty_avg + gender, data = evals)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -1.8305 -0.3625  0.1055  0.4213  0.9314 
## 
## Coefficients:
##             Estimate Std. Error t value Pr(>|t|)    
## (Intercept)  3.74734    0.08466  44.266  < 2e-16 ***
## bty_avg      0.07416    0.01625   4.563 6.48e-06 ***
## gendermale   0.17239    0.05022   3.433 0.000652 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 0.5287 on 460 degrees of freedom
## Multiple R-squared:  0.05912,    Adjusted R-squared:  0.05503 
## F-statistic: 14.45 on 2 and 460 DF,  p-value: 8.177e-07
  1. P-values and parameter estimates should only be trusted if the conditions for the regression are reasonable. Verify that the conditions for this model are reasonable using diagnostic plots.

Answer:

plot(abs(m_bty_gen$residuals) ~ m_bty_gen$fitted.values)

plot(m_bty_gen$residuals ~ c(1:nrow(evals)))

plot(evals$score ~ evals$gender)

plot(evals$score ~ evals$bty_avg)

  1. The residuals of the model is not normal as residual values for the the higher quantiles are less than what a normal distribution would predict
  2. There some outliers although overall, most of the residual values are close to the fitted values.
  3. The residuals based on the sequence when it was gathered shows that they were randomly gathered.
  4. There is a linear relationship between gender and evaluation score.
par(mfrow = c(1,2))
plot(evals$score ~ evals$gender)
plot(evals$score ~ evals$bty_avg)

  1. Is bty_avg still a significant predictor of score? Has the addition of gender to the model changed the parameter estimate for bty_avg?

Answer:

summary(m_bty_gen)
## 
## Call:
## lm(formula = score ~ bty_avg + gender, data = evals)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -1.8305 -0.3625  0.1055  0.4213  0.9314 
## 
## Coefficients:
##             Estimate Std. Error t value Pr(>|t|)    
## (Intercept)  3.74734    0.08466  44.266  < 2e-16 ***
## bty_avg      0.07416    0.01625   4.563 6.48e-06 ***
## gendermale   0.17239    0.05022   3.433 0.000652 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 0.5287 on 460 degrees of freedom
## Multiple R-squared:  0.05912,    Adjusted R-squared:  0.05503 
## F-statistic: 14.45 on 2 and 460 DF,  p-value: 8.177e-07

It does look like that the bty_avg is a significant predictor of scores. And gender made bty_avg more significant as the p-value computed is even smaller when compared to the model where we computed bty_avg as the sole variable.

Note that the estimate for gender is now called gendermale. You’ll see this name change whenever you introduce a categorical variable. The reason is that R recodes gender from having the values of female and male to being an indicator variable called gendermale that takes a value of \(0\) for females and a value of \(1\) for males. (Such variables are often referred to as “dummy” variables.)

As a result, for females, the parameter estimate is multiplied by zero, leaving the intercept and slope form familiar from simple regression.

\[ \begin{aligned} \widehat{score} &= \hat{\beta}_0 + \hat{\beta}_1 \times bty\_avg + \hat{\beta}_2 \times (0) \\ &= \hat{\beta}_0 + \hat{\beta}_1 \times bty\_avg\end{aligned} \]

We can plot this line and the line corresponding to males with the following custom function.

multiLines(m_bty_gen)
  1. What is the equation of the line corresponding to males? (Hint: For males, the parameter estimate is multiplied by 1.) For two professors who received the same beauty rating, which gender tends to have the higher course evaluation score?

Answer:

For males, the equation of the line is:
\(\hat{score} = 3.91973 + 0.07416 × bty-avg\)

This is just the genderemale parameter plus the intercept, since if we’re only looking at males this will always be 1.

For two professors who received the same beauty rating, male professor tends to have the higher course evaluation score.

The decision to call the indicator variable gendermale instead ofgenderfemale has no deeper meaning. R simply codes the category that comes first alphabetically as a \(0\). (You can change the reference level of a categorical variable, which is the level that is coded as a 0, using therelevel function. Use ?relevel to learn more.)

  1. Create a new model called m_bty_rank with gender removed and rank added in. How does R appear to handle categorical variables that have more than two levels? Note that the rank variable has three levels: teaching, tenure track, tenured.

Answer:

m_bty_rank <- lm(score ~ bty_avg + rank, data = evals)
summary(m_bty_rank)
## 
## Call:
## lm(formula = score ~ bty_avg + rank, data = evals)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -1.8713 -0.3642  0.1489  0.4103  0.9525 
## 
## Coefficients:
##                  Estimate Std. Error t value Pr(>|t|)    
## (Intercept)       3.98155    0.09078  43.860  < 2e-16 ***
## bty_avg           0.06783    0.01655   4.098 4.92e-05 ***
## ranktenure track -0.16070    0.07395  -2.173   0.0303 *  
## ranktenured      -0.12623    0.06266  -2.014   0.0445 *  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 0.5328 on 459 degrees of freedom
## Multiple R-squared:  0.04652,    Adjusted R-squared:  0.04029 
## F-statistic: 7.465 on 3 and 459 DF,  p-value: 6.88e-05

R automatically Creates dummy variables for categorical variable which have more than two levels.

The interpretation of the coefficients in multiple regression is slightly different from that of simple regression. The estimate for bty_avg reflects how much higher a group of professors is expected to score if they have a beauty rating that is one point higher while holding all other variables constant. In this case, that translates into considering only professors of the same rank with bty_avg scores that are one point apart.

The search for the best model

We will start with a full model that predicts professor score based on rank, ethnicity, gender, language of the university where they got their degree, age, proportion of students that filled out evaluations, class size, course level, number of professors, number of credits, average beauty rating, outfit, and picture color.

  1. Which variable would you expect to have the highest p-value in this model? Why? Hint: Think about which variable would you expect to not have any association with the professor score.

Answer:

“number of professors” cls_profs as the variable to have the least assoication with the professor’s evaluation score.

Let’s run the model…

m_full <- lm(score ~ rank + ethnicity + gender + language + age + cls_perc_eval 
             + cls_students + cls_level + cls_profs + cls_credits + bty_avg 
             + pic_outfit + pic_color, data = evals)
summary(m_full)
## 
## Call:
## lm(formula = score ~ rank + ethnicity + gender + language + age + 
##     cls_perc_eval + cls_students + cls_level + cls_profs + cls_credits + 
##     bty_avg + pic_outfit + pic_color, data = evals)
## 
## Residuals:
##      Min       1Q   Median       3Q      Max 
## -1.77397 -0.32432  0.09067  0.35183  0.95036 
## 
## Coefficients:
##                         Estimate Std. Error t value Pr(>|t|)    
## (Intercept)            4.0952141  0.2905277  14.096  < 2e-16 ***
## ranktenure track      -0.1475932  0.0820671  -1.798  0.07278 .  
## ranktenured           -0.0973378  0.0663296  -1.467  0.14295    
## ethnicitynot minority  0.1234929  0.0786273   1.571  0.11698    
## gendermale             0.2109481  0.0518230   4.071 5.54e-05 ***
## languagenon-english   -0.2298112  0.1113754  -2.063  0.03965 *  
## age                   -0.0090072  0.0031359  -2.872  0.00427 ** 
## cls_perc_eval          0.0053272  0.0015393   3.461  0.00059 ***
## cls_students           0.0004546  0.0003774   1.205  0.22896    
## cls_levelupper         0.0605140  0.0575617   1.051  0.29369    
## cls_profssingle       -0.0146619  0.0519885  -0.282  0.77806    
## cls_creditsone credit  0.5020432  0.1159388   4.330 1.84e-05 ***
## bty_avg                0.0400333  0.0175064   2.287  0.02267 *  
## pic_outfitnot formal  -0.1126817  0.0738800  -1.525  0.12792    
## pic_colorcolor        -0.2172630  0.0715021  -3.039  0.00252 ** 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 0.498 on 448 degrees of freedom
## Multiple R-squared:  0.1871, Adjusted R-squared:  0.1617 
## F-statistic: 7.366 on 14 and 448 DF,  p-value: 6.552e-14
  1. Check your suspicions from the previous exercise. Include the model output in your response.

Answer:

The highest p value has the cls_profs with value of 0.77806.

  1. Interpret the coefficient associated with the ethnicity variable.

Answer:

As mentioned above, ethnicity does not appear to be significant in predicting the scores of professors. The p-value here is 0.12, which is above our 5% threshold.

  1. Drop the variable with the highest p-value and re-fit the model. Did the coefficients and significance of the other explanatory variables change? (One of the things that makes multiple regression interesting is that coefficient estimates depend on the other variables that are included in the model.) If not, what does this say about whether or not the dropped variable was collinear with the other explanatory variables?

Answer:

m_full_nosingle <- lm(score ~ rank + ethnicity + gender + language + age +
                        cls_perc_eval + cls_students + cls_level +
                        cls_credits + bty_avg + pic_outfit + pic_color, 
                      data = evals)
summary(m_full_nosingle)
## 
## Call:
## lm(formula = score ~ rank + ethnicity + gender + language + age + 
##     cls_perc_eval + cls_students + cls_level + cls_credits + 
##     bty_avg + pic_outfit + pic_color, data = evals)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -1.7836 -0.3257  0.0859  0.3513  0.9551 
## 
## Coefficients:
##                         Estimate Std. Error t value Pr(>|t|)    
## (Intercept)            4.0872523  0.2888562  14.150  < 2e-16 ***
## ranktenure track      -0.1476746  0.0819824  -1.801 0.072327 .  
## ranktenured           -0.0973829  0.0662614  -1.470 0.142349    
## ethnicitynot minority  0.1274458  0.0772887   1.649 0.099856 .  
## gendermale             0.2101231  0.0516873   4.065 5.66e-05 ***
## languagenon-english   -0.2282894  0.1111305  -2.054 0.040530 *  
## age                   -0.0089992  0.0031326  -2.873 0.004262 ** 
## cls_perc_eval          0.0052888  0.0015317   3.453 0.000607 ***
## cls_students           0.0004687  0.0003737   1.254 0.210384    
## cls_levelupper         0.0606374  0.0575010   1.055 0.292200    
## cls_creditsone credit  0.5061196  0.1149163   4.404 1.33e-05 ***
## bty_avg                0.0398629  0.0174780   2.281 0.023032 *  
## pic_outfitnot formal  -0.1083227  0.0721711  -1.501 0.134080    
## pic_colorcolor        -0.2190527  0.0711469  -3.079 0.002205 ** 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 0.4974 on 449 degrees of freedom
## Multiple R-squared:  0.187,  Adjusted R-squared:  0.1634 
## F-statistic: 7.943 on 13 and 449 DF,  p-value: 2.336e-14

Yes. There was a slight change in the coefficients and significance of the other explanatory variables when cls_profs was removed. All the values are now slightly lower - meaning they are more significant now to the level than before

  1. Using backward-selection and p-value as the selection criterion, determine the best model. You do not need to show all steps in your answer, just the output for the final model. Also, write out the linear model for predicting score based on the final model you settle on.

Answer:

bmodel <- step(m_full, direction = "backward")
## Start:  AIC=-630.9
## score ~ rank + ethnicity + gender + language + age + cls_perc_eval + 
##     cls_students + cls_level + cls_profs + cls_credits + bty_avg + 
##     pic_outfit + pic_color
## 
##                 Df Sum of Sq    RSS     AIC
## - cls_profs      1    0.0197 111.11 -632.82
## - cls_level      1    0.2740 111.36 -631.76
## - cls_students   1    0.3599 111.44 -631.40
## - rank           2    0.8930 111.98 -631.19
## <none>                       111.08 -630.90
## - pic_outfit     1    0.5768 111.66 -630.50
## - ethnicity      1    0.6117 111.70 -630.36
## - language       1    1.0557 112.14 -628.52
## - bty_avg        1    1.2967 112.38 -627.53
## - age            1    2.0456 113.13 -624.45
## - pic_color      1    2.2893 113.37 -623.46
## - cls_perc_eval  1    2.9698 114.06 -620.69
## - gender         1    4.1085 115.19 -616.09
## - cls_credits    1    4.6495 115.73 -613.92
## 
## Step:  AIC=-632.82
## score ~ rank + ethnicity + gender + language + age + cls_perc_eval + 
##     cls_students + cls_level + cls_credits + bty_avg + pic_outfit + 
##     pic_color
## 
##                 Df Sum of Sq    RSS     AIC
## - cls_level      1    0.2752 111.38 -633.67
## - cls_students   1    0.3893 111.49 -633.20
## - rank           2    0.8939 112.00 -633.11
## <none>                       111.11 -632.82
## - pic_outfit     1    0.5574 111.66 -632.50
## - ethnicity      1    0.6728 111.78 -632.02
## - language       1    1.0442 112.15 -630.49
## - bty_avg        1    1.2872 112.39 -629.49
## - age            1    2.0422 113.15 -626.39
## - pic_color      1    2.3457 113.45 -625.15
## - cls_perc_eval  1    2.9502 114.06 -622.69
## - gender         1    4.0895 115.19 -618.08
## - cls_credits    1    4.7999 115.90 -615.24
## 
## Step:  AIC=-633.67
## score ~ rank + ethnicity + gender + language + age + cls_perc_eval + 
##     cls_students + cls_credits + bty_avg + pic_outfit + pic_color
## 
##                 Df Sum of Sq    RSS     AIC
## - cls_students   1    0.2459 111.63 -634.65
## - rank           2    0.8140 112.19 -634.30
## <none>                       111.38 -633.67
## - pic_outfit     1    0.6618 112.04 -632.93
## - ethnicity      1    0.8698 112.25 -632.07
## - language       1    0.9015 112.28 -631.94
## - bty_avg        1    1.3694 112.75 -630.02
## - age            1    1.9342 113.31 -627.70
## - pic_color      1    2.0777 113.46 -627.12
## - cls_perc_eval  1    3.0290 114.41 -623.25
## - gender         1    3.8989 115.28 -619.74
## - cls_credits    1    4.5296 115.91 -617.22
## 
## Step:  AIC=-634.65
## score ~ rank + ethnicity + gender + language + age + cls_perc_eval + 
##     cls_credits + bty_avg + pic_outfit + pic_color
## 
##                 Df Sum of Sq    RSS     AIC
## - rank           2    0.7892 112.42 -635.39
## <none>                       111.63 -634.65
## - ethnicity      1    0.8832 112.51 -633.00
## - pic_outfit     1    0.9700 112.60 -632.65
## - language       1    1.0338 112.66 -632.38
## - bty_avg        1    1.5783 113.20 -630.15
## - pic_color      1    1.9477 113.57 -628.64
## - age            1    2.1163 113.74 -627.96
## - cls_perc_eval  1    2.7922 114.42 -625.21
## - gender         1    4.0945 115.72 -619.97
## - cls_credits    1    4.5163 116.14 -618.29
## 
## Step:  AIC=-635.39
## score ~ ethnicity + gender + language + age + cls_perc_eval + 
##     cls_credits + bty_avg + pic_outfit + pic_color
## 
##                 Df Sum of Sq    RSS     AIC
## <none>                       112.42 -635.39
## - pic_outfit     1    0.7141 113.13 -634.46
## - ethnicity      1    1.1790 113.59 -632.56
## - language       1    1.3403 113.75 -631.90
## - age            1    1.6847 114.10 -630.50
## - pic_color      1    1.7841 114.20 -630.10
## - bty_avg        1    1.8553 114.27 -629.81
## - cls_perc_eval  1    2.9147 115.33 -625.54
## - gender         1    4.0577 116.47 -620.97
## - cls_credits    1    6.1208 118.54 -612.84
summary(bmodel)
## 
## Call:
## lm(formula = score ~ ethnicity + gender + language + age + cls_perc_eval + 
##     cls_credits + bty_avg + pic_outfit + pic_color, data = evals)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -1.8455 -0.3221  0.1013  0.3745  0.9051 
## 
## Coefficients:
##                        Estimate Std. Error t value Pr(>|t|)    
## (Intercept)            3.907030   0.244889  15.954  < 2e-16 ***
## ethnicitynot minority  0.163818   0.075158   2.180 0.029798 *  
## gendermale             0.202597   0.050102   4.044 6.18e-05 ***
## languagenon-english   -0.246683   0.106146  -2.324 0.020567 *  
## age                   -0.006925   0.002658  -2.606 0.009475 ** 
## cls_perc_eval          0.004942   0.001442   3.427 0.000666 ***
## cls_creditsone credit  0.517205   0.104141   4.966 9.68e-07 ***
## bty_avg                0.046732   0.017091   2.734 0.006497 ** 
## pic_outfitnot formal  -0.113939   0.067168  -1.696 0.090510 .  
## pic_colorcolor        -0.180870   0.067456  -2.681 0.007601 ** 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 0.4982 on 453 degrees of freedom
## Multiple R-squared:  0.1774, Adjusted R-squared:  0.161 
## F-statistic: 10.85 on 9 and 453 DF,  p-value: 2.441e-15

The final model: score = 3.907030 + 0.163818 * not_ethnicity + 0.202597 * gendermale -0.246683 language-english -0.006925 age + 0.004942 * cls_perc_eval + 0.517205 * cls_creditsone_credit + 0.046732bty_avg $-0.180870 pic_colorcolor

  1. Verify that the conditions for this model are reasonable using diagnostic plots.

Answer:

par(mfrow = c(2,2))
plot(bmodel)

  1. The original paper describes how these data were gathered by taking a sample of professors from the University of Texas at Austin and including all courses that they have taught. Considering that each row represents a course, could this new information have an impact on any of the conditions of linear regression?

Answer:

The conditions for the model is not satisfied we can see from the residuals vs fitted plot theirs is v shaped data pattern and from the normal q-q plot we can see that the residuals are not normally distributed.
Class courses are independent of each other so evaluation scores from one course is indpendent of the other even if the course is being taught by the same professor.

  1. Based on your final model, describe the characteristics of a professor and course at University of Texas at Austin that would be associated with a high evaluation score.

Answer:

Based on the final model, the qualities being associated with a high evaluation score are being of teaching rank, non-minority, male, speaking english, younger, and teaching one credit classes.

  1. Would you be comfortable generalizing your conclusions to apply to professors generally (at any university)? Why or why not?

Answer:

The sample size of 6 is too small. Also, some of the predictor variables are subjective and may vary with culture. Beauty, for one, is in the eye of the beholder.Picture preferences may also be culturally biased.