library(tidyverse)
library(brms)
d_red <- read_csv("processed-data/data-to-model.csv")

d <- filter(d_red, !is.na(gender_female) & !is.na(pre_interest)) # if there are missing vals in the fixed predictors, MCMCglmm gives a warning

d <- fill(d, pre_interest, post_interest)

d <- d %>% 
  mutate(creating_product = ifelse(youth_activity_rc == "Creating Product", 1, 0),
         lab_activity = ifelse(youth_activity_rc == "Lab Activity", 1, 0))

d <- d %>% 
  rename(lab_activity_prop = `Lab Activity`,
         creating_product_prop = `Creating Product`)

d <- d %>% 
  mutate(creating_product = creating_product * 100,
         lab_activity = lab_activity * 100)
files <- list.files()[str_detect(list.files(), ".rds")] 

l <- files %>% 
  map(read_rds)

M0 - Null model

bf_0_1 <- bf(interest ~ 1 +
               (1|s|beep_ID_new) +
               (1|p|participant_ID) +
               (1|q|program_ID))

bf_0_2 <- bf(post_interest ~ 1 +
               (1|s|beep_ID_new) +
               (1|p|participant_ID) +
               (1|q|program_ID))

m0 <- brm(bf_0_1 + bf_0_2,
          data = d_for_m2, 
          chains = 4, cores = 4, iter = 1000)

write_rds(m0, "m0.rds")
l[[1]]
##  Family: MV(gaussian, gaussian) 
##   Links: mu = identity; sigma = identity
##          mu = identity; sigma = identity 
## Formula: interest ~ 1 + (1 | s | beep_ID_new) + (1 | p | participant_ID) + (1 | q | program_ID) 
##          post_interest ~ 1 + (1 | p | participant_ID) + (1 | q | program_ID) 
##    Data: d (Number of observations: 2714) 
## Samples: 8 chains, each with iter = 750; warmup = 375; thin = 1;
##          total post-warmup samples = 3000
## 
## Group-Level Effects: 
## ~beep_ID_new (Number of levels: 248) 
##                        Estimate Est.Error l-95% CI u-95% CI Rhat Bulk_ESS
## sd(interest_Intercept)     0.21      0.02     0.16     0.25 1.02      642
##                        Tail_ESS
## sd(interest_Intercept)     1295
## 
## ~participant_ID (Number of levels: 180) 
##                                                Estimate Est.Error l-95% CI
## sd(interest_Intercept)                             0.62      0.04     0.55
## sd(postinterest_Intercept)                         0.82      0.04     0.74
## cor(interest_Intercept,postinterest_Intercept)     0.28      0.08     0.11
##                                                u-95% CI Rhat Bulk_ESS Tail_ESS
## sd(interest_Intercept)                             0.70 1.01      453     1153
## sd(postinterest_Intercept)                         0.91 1.03      240      460
## cor(interest_Intercept,postinterest_Intercept)     0.41 1.06      133      154
## 
## ~program_ID (Number of levels: 9) 
##                                                Estimate Est.Error l-95% CI
## sd(interest_Intercept)                             0.13      0.09     0.01
## sd(postinterest_Intercept)                         0.58      0.23     0.30
## cor(interest_Intercept,postinterest_Intercept)     0.02      0.51    -0.89
##                                                u-95% CI Rhat Bulk_ESS Tail_ESS
## sd(interest_Intercept)                             0.35 1.03      164      488
## sd(postinterest_Intercept)                         1.10 1.03      306      472
## cor(interest_Intercept,postinterest_Intercept)     0.88 1.08       85      243
## 
## Population-Level Effects: 
##                        Estimate Est.Error l-95% CI u-95% CI Rhat Bulk_ESS
## interest_Intercept         2.87      0.07     2.73     3.02 1.01      423
## postinterest_Intercept     3.07      0.21     2.65     3.47 1.01      549
##                        Tail_ESS
## interest_Intercept          642
## postinterest_Intercept      992
## 
## Family Specific Parameters: 
##                    Estimate Est.Error l-95% CI u-95% CI Rhat Bulk_ESS Tail_ESS
## sigma_interest         0.83      0.01     0.81     0.85 1.00     2176     1959
## sigma_postinterest     0.07      0.00     0.06     0.07 1.00     2465     1904
## 
## Residual Correlations: 
##                               Estimate Est.Error l-95% CI u-95% CI Rhat
## rescor(interest,postinterest)     0.06      0.02     0.03     0.10 1.00
##                               Bulk_ESS Tail_ESS
## rescor(interest,postinterest)     2448     2229
## 
## Samples were drawn using sampling(NUTS). For each parameter, Eff.Sample 
## is a crude measure of effective sample size, and Rhat is the potential 
## scale reduction factor on split chains (at convergence, Rhat = 1).

M1MB - Only student-level vars added

bf_1 <- bf(interest ~ 1 +
             # challenge +
             # relevance +
             gender_female +
             pre_interest +
             # creating_product +
             # lab_activity +
             (1|s|beep_ID_new) +
             (1|p|participant_ID))

bf_2 <- bf(post_interest ~ 1 +
             prop_attend +
             gender_female +
             pre_interest +
             # lab_activity_prop +
             # creating_product_prop +
             (1|p|participant_ID))

m1 <- brm(bf_1 + bf_2,
          data = d,
          chains = 8, cores = 8, iter = 1000)

write_rds(m1, 'm1mb.rds')
l[[3]]
##  Family: MV(gaussian, gaussian) 
##   Links: mu = identity; sigma = identity
##          mu = identity; sigma = identity 
## Formula: interest ~ 1 + gender_female + pre_interest + (1 | s | beep_ID_new) + (1 | p | participant_ID) 
##          post_interest ~ 1 + prop_attend + gender_female + pre_interest + (1 | p | participant_ID) 
##    Data: d (Number of observations: 2662) 
## Samples: 8 chains, each with iter = 750; warmup = 375; thin = 1;
##          total post-warmup samples = 3000
## 
## Group-Level Effects: 
## ~beep_ID_new (Number of levels: 248) 
##                        Estimate Est.Error l-95% CI u-95% CI Rhat Bulk_ESS
## sd(interest_Intercept)     0.20      0.03     0.15     0.25 1.01     1095
##                        Tail_ESS
## sd(interest_Intercept)     1779
## 
## ~participant_ID (Number of levels: 176) 
##                                                Estimate Est.Error l-95% CI
## sd(interest_Intercept)                             0.63      0.04     0.56
## sd(postinterest_Intercept)                         0.78      0.04     0.71
## cor(interest_Intercept,postinterest_Intercept)     0.20      0.08     0.03
##                                                u-95% CI Rhat Bulk_ESS Tail_ESS
## sd(interest_Intercept)                             0.71 1.00      923     1570
## sd(postinterest_Intercept)                         0.87 1.01      398      642
## cor(interest_Intercept,postinterest_Intercept)     0.34 1.07      101      374
## 
## Population-Level Effects: 
##                            Estimate Est.Error l-95% CI u-95% CI Rhat Bulk_ESS
## interest_Intercept             2.55      0.19     2.18     2.94 1.02      674
## postinterest_Intercept         1.17      0.42     0.30     1.95 1.04      159
## interest_gender_female        -0.09      0.10    -0.29     0.11 1.02      474
## interest_pre_interest          0.11      0.06    -0.00     0.22 1.02      707
## postinterest_prop_attend       0.38      0.40    -0.41     1.17 1.06      148
## postinterest_gender_female    -0.09      0.12    -0.32     0.15 1.05      122
## postinterest_pre_interest      0.55      0.07     0.41     0.68 1.04      176
##                            Tail_ESS
## interest_Intercept             1226
## postinterest_Intercept          187
## interest_gender_female          626
## interest_pre_interest          1245
## postinterest_prop_attend        146
## postinterest_gender_female      220
## postinterest_pre_interest       444
## 
## Family Specific Parameters: 
##                    Estimate Est.Error l-95% CI u-95% CI Rhat Bulk_ESS Tail_ESS
## sigma_interest         0.83      0.01     0.81     0.86 1.00     4191     2476
## sigma_postinterest     0.07      0.00     0.07     0.07 1.01     4691     2302
## 
## Residual Correlations: 
##                               Estimate Est.Error l-95% CI u-95% CI Rhat
## rescor(interest,postinterest)     0.06      0.02     0.02     0.10 1.01
##                               Bulk_ESS Tail_ESS
## rescor(interest,postinterest)     5249     1911
## 
## Samples were drawn using sampling(NUTS). For each parameter, Eff.Sample 
## is a crude measure of effective sample size, and Rhat is the potential 
## scale reduction factor on split chains (at convergence, Rhat = 1).

M2MB - Adds challenge and relevance

bf_1 <- bf(interest ~ 1 +
             challenge +
             relevance +
             gender_female +
             pre_interest +
             # creating_product +
             # lab_activity +
             (1|s|beep_ID_new) +
             (1|p|participant_ID))

bf_2 <- bf(post_interest ~ 1 +
             prop_attend +
             gender_female +
             pre_interest +
             # lab_activity_prop +
             # creating_product_prop +
             (1|p|participant_ID))

m2 <- brm(bf_1 + bf_2,
          data = d,
          chains = 8, cores = 8, iter = 1000)

write_rds(m2, 'm2mb.rds')
l[[5]]
##  Family: MV(gaussian, gaussian) 
##   Links: mu = identity; sigma = identity
##          mu = identity; sigma = identity 
## Formula: interest ~ 1 + challenge + relevance + gender_female + pre_interest + (1 | s | beep_ID_new) + (1 | p | participant_ID) 
##          post_interest ~ 1 + prop_attend + gender_female + pre_interest + (1 | p | participant_ID) 
##    Data: d (Number of observations: 2662) 
## Samples: 8 chains, each with iter = 750; warmup = 375; thin = 1;
##          total post-warmup samples = 3000
## 
## Group-Level Effects: 
## ~beep_ID_new (Number of levels: 248) 
##                        Estimate Est.Error l-95% CI u-95% CI Rhat Bulk_ESS
## sd(interest_Intercept)     0.18      0.02     0.14     0.23 1.01      841
##                        Tail_ESS
## sd(interest_Intercept)     1383
## 
## ~participant_ID (Number of levels: 176) 
##                                                Estimate Est.Error l-95% CI
## sd(interest_Intercept)                             0.32      0.03     0.27
## sd(postinterest_Intercept)                         0.78      0.04     0.69
## cor(interest_Intercept,postinterest_Intercept)     0.28      0.10     0.07
##                                                u-95% CI Rhat Bulk_ESS Tail_ESS
## sd(interest_Intercept)                             0.37 1.00     1224     2090
## sd(postinterest_Intercept)                         0.87 1.04      259      523
## cor(interest_Intercept,postinterest_Intercept)     0.46 1.09       84      305
## 
## Population-Level Effects: 
##                            Estimate Est.Error l-95% CI u-95% CI Rhat Bulk_ESS
## interest_Intercept             0.97      0.12     0.73     1.22 1.01     1353
## postinterest_Intercept         1.20      0.38     0.43     1.91 1.03      209
## interest_challenge             0.05      0.02     0.01     0.08 1.00     2492
## interest_relevance             0.60      0.02     0.56     0.64 1.00     2433
## interest_gender_female         0.06      0.06    -0.06     0.17 1.00     1037
## interest_pre_interest          0.07      0.03     0.00     0.13 1.01     1162
## postinterest_prop_attend       0.34      0.37    -0.37     1.07 1.04      217
## postinterest_gender_female    -0.09      0.12    -0.32     0.14 1.06      115
## postinterest_pre_interest      0.55      0.07     0.42     0.67 1.04      220
##                            Tail_ESS
## interest_Intercept             2031
## postinterest_Intercept          336
## interest_challenge             2568
## interest_relevance             2488
## interest_gender_female         1520
## interest_pre_interest          1676
## postinterest_prop_attend        545
## postinterest_gender_female      337
## postinterest_pre_interest       513
## 
## Family Specific Parameters: 
##                    Estimate Est.Error l-95% CI u-95% CI Rhat Bulk_ESS Tail_ESS
## sigma_interest         0.75      0.01     0.73     0.77 1.00     3410     2387
## sigma_postinterest     0.07      0.00     0.07     0.07 1.00     4712     2263
## 
## Residual Correlations: 
##                               Estimate Est.Error l-95% CI u-95% CI Rhat
## rescor(interest,postinterest)     0.04      0.02     0.00     0.09 1.00
##                               Bulk_ESS Tail_ESS
## rescor(interest,postinterest)     4607     2305
## 
## Samples were drawn using sampling(NUTS). For each parameter, Eff.Sample 
## is a crude measure of effective sample size, and Rhat is the potential 
## scale reduction factor on split chains (at convergence, Rhat = 1).

M3MB - Adds creating product and lab activity

bf_1 <- bf(interest ~ 1 +
             challenge +
             relevance +
             gender_female +
             pre_interest +
             creating_product +
             lab_activity +
             (1|s|beep_ID_new) +
             (1|p|participant_ID))

bf_2 <- bf(post_interest ~ 1 +
             prop_attend +
             gender_female +
             pre_interest +
             # lab_activity_prop +
             # creating_product_prop +
             (1|p|participant_ID))

m3 <- brm(bf_1 + bf_2,
          data = d,
          chains = 8, cores = 8, iter = 1000)

write_rds(m3, 'm3mb.rds')
l[[7]]
##  Family: MV(gaussian, gaussian) 
##   Links: mu = identity; sigma = identity
##          mu = identity; sigma = identity 
## Formula: interest ~ 1 + challenge + relevance + gender_female + pre_interest + creating_product + lab_activity + (1 | s | beep_ID_new) + (1 | p | participant_ID) 
##          post_interest ~ 1 + prop_attend + gender_female + pre_interest + (1 | p | participant_ID) 
##    Data: d (Number of observations: 2527) 
## Samples: 8 chains, each with iter = 750; warmup = 375; thin = 1;
##          total post-warmup samples = 3000
## 
## Group-Level Effects: 
## ~beep_ID_new (Number of levels: 235) 
##                        Estimate Est.Error l-95% CI u-95% CI Rhat Bulk_ESS
## sd(interest_Intercept)     0.19      0.03     0.14     0.24 1.09       67
##                        Tail_ESS
## sd(interest_Intercept)       88
## 
## ~participant_ID (Number of levels: 176) 
##                                                Estimate Est.Error l-95% CI
## sd(interest_Intercept)                             0.28      0.11     0.00
## sd(postinterest_Intercept)                         0.77      0.04     0.70
## cor(interest_Intercept,postinterest_Intercept)     0.13      0.37    -0.93
##                                                u-95% CI Rhat Bulk_ESS Tail_ESS
## sd(interest_Intercept)                             0.37 1.30       22       24
## sd(postinterest_Intercept)                         0.86 1.02      280      573
## cor(interest_Intercept,postinterest_Intercept)     0.46 1.42       17       27
## 
## Population-Level Effects: 
##                            Estimate Est.Error l-95% CI u-95% CI Rhat Bulk_ESS
## interest_Intercept             0.97      0.13     0.73     1.23 1.06      103
## postinterest_Intercept         1.17      0.36     0.48     1.89 1.04      324
## interest_challenge             0.05      0.02     0.01     0.08 1.01      894
## interest_relevance             0.59      0.03     0.54     0.66 1.26       24
## interest_gender_female         0.06      0.06    -0.06     0.18 1.02      850
## interest_pre_interest          0.07      0.03     0.01     0.13 1.02      882
## interest_creating_product     -0.00      0.05    -0.10     0.10 1.01     1099
## interest_lab_activity          0.06      0.11    -0.14     0.28 1.04      160
## postinterest_prop_attend       0.36      0.36    -0.34     1.08 1.04      322
## postinterest_gender_female    -0.07      0.11    -0.28     0.15 1.03      337
## postinterest_pre_interest      0.55      0.06     0.42     0.67 1.03      318
##                            Tail_ESS
## interest_Intercept             1168
## postinterest_Intercept          701
## interest_challenge             1125
## interest_relevance               25
## interest_gender_female          903
## interest_pre_interest          1367
## interest_creating_product      1741
## interest_lab_activity           945
## postinterest_prop_attend        666
## postinterest_gender_female      622
## postinterest_pre_interest       611
## 
## Family Specific Parameters: 
##                    Estimate Est.Error l-95% CI u-95% CI Rhat Bulk_ESS Tail_ESS
## sigma_interest         0.75      0.02     0.73     0.81 1.30       21       23
## sigma_postinterest     0.07      0.00     0.06     0.07 1.01     2788     1599
## 
## Residual Correlations: 
##                               Estimate Est.Error l-95% CI u-95% CI Rhat
## rescor(interest,postinterest)     0.05      0.02     0.01     0.09 1.00
##                               Bulk_ESS Tail_ESS
## rescor(interest,postinterest)     1950     1540
## 
## Samples were drawn using sampling(NUTS). For each parameter, Eff.Sample 
## is a crude measure of effective sample size, and Rhat is the potential 
## scale reduction factor on split chains (at convergence, Rhat = 1).

M4MB - Adds proportions

bf_1 <- bf(interest ~ 1 +
             challenge +
             relevance +
             gender_female +
             pre_interest +
             creating_product +
             lab_activity +
             (1|s|beep_ID_new) +
             (1|p|participant_ID))

bf_2 <- bf(post_interest ~ 1 +
             prop_attend +
             gender_female +
             pre_interest +
             lab_activity_prop +
             creating_product_prop +
             (1|p|participant_ID))

m4 <- brm(bf_1 + bf_2,
          data = d,
          chains = 8, cores = 8, iter = 1000)

write_rds(m4, 'm4mb.rds')
l[[8]]
##  Family: MV(gaussian, gaussian) 
##   Links: mu = identity; sigma = identity
##          mu = identity; sigma = identity 
## Formula: interest ~ 1 + challenge + relevance + gender_female + pre_interest + creating_product + lab_activity + (1 | s | beep_ID_new) + (1 | p | participant_ID) 
##          post_interest ~ 1 + prop_attend + gender_female + pre_interest + lab_activity_prop + creating_product_prop + (1 | p | participant_ID) 
##    Data: d (Number of observations: 2527) 
## Samples: 8 chains, each with iter = 750; warmup = 375; thin = 1;
##          total post-warmup samples = 3000
## 
## Group-Level Effects: 
## ~beep_ID_new (Number of levels: 235) 
##                        Estimate Est.Error l-95% CI u-95% CI Rhat Bulk_ESS
## sd(interest_Intercept)     0.19      0.02     0.14     0.23 1.00      983
##                        Tail_ESS
## sd(interest_Intercept)     1812
## 
## ~participant_ID (Number of levels: 176) 
##                                                Estimate Est.Error l-95% CI
## sd(interest_Intercept)                             0.32      0.03     0.27
## sd(postinterest_Intercept)                         0.76      0.04     0.68
## cor(interest_Intercept,postinterest_Intercept)     0.28      0.09     0.10
##                                                u-95% CI Rhat Bulk_ESS Tail_ESS
## sd(interest_Intercept)                             0.37 1.00     1343     2189
## sd(postinterest_Intercept)                         0.84 1.01      547     1076
## cor(interest_Intercept,postinterest_Intercept)     0.44 1.02      218      392
## 
## Population-Level Effects: 
##                                    Estimate Est.Error l-95% CI u-95% CI Rhat
## interest_Intercept                     0.98      0.13     0.73     1.24 1.01
## postinterest_Intercept                 1.06      0.38     0.32     1.83 1.02
## interest_challenge                     0.05      0.02     0.02     0.09 1.00
## interest_relevance                     0.58      0.02     0.54     0.63 1.00
## interest_gender_female                 0.06      0.06    -0.06     0.17 1.01
## interest_pre_interest                  0.07      0.03     0.01     0.14 1.01
## interest_creating_product              0.00      0.05    -0.10     0.11 1.00
## interest_lab_activity                  0.06      0.11    -0.15     0.27 1.00
## postinterest_prop_attend               0.39      0.37    -0.33     1.12 1.01
## postinterest_gender_female            -0.09      0.12    -0.33     0.13 1.03
## postinterest_pre_interest              0.44      0.07     0.31     0.58 1.02
## postinterest_lab_activity_prop         0.07      0.02     0.03     0.12 1.02
## postinterest_creating_product_prop     0.01      0.01     0.00     0.03 1.02
##                                    Bulk_ESS Tail_ESS
## interest_Intercept                     1438     2004
## postinterest_Intercept                  355      574
## interest_challenge                     3643     2768
## interest_relevance                     2652     2604
## interest_gender_female                 1389     1843
## interest_pre_interest                  1385     1634
## interest_creating_product              2643     2649
## interest_lab_activity                  2877     2163
## postinterest_prop_attend                470      779
## postinterest_gender_female              351      568
## postinterest_pre_interest               397      805
## postinterest_lab_activity_prop          388      611
## postinterest_creating_product_prop      376      641
## 
## Family Specific Parameters: 
##                    Estimate Est.Error l-95% CI u-95% CI Rhat Bulk_ESS Tail_ESS
## sigma_interest         0.75      0.01     0.73     0.77 1.00     3123     2240
## sigma_postinterest     0.07      0.00     0.06     0.07 1.00     5352     2034
## 
## Residual Correlations: 
##                               Estimate Est.Error l-95% CI u-95% CI Rhat
## rescor(interest,postinterest)     0.05      0.02     0.00     0.09 1.00
##                               Bulk_ESS Tail_ESS
## rescor(interest,postinterest)     5064     2308
## 
## Samples were drawn using sampling(NUTS). For each parameter, Eff.Sample 
## is a crude measure of effective sample size, and Rhat is the potential 
## scale reduction factor on split chains (at convergence, Rhat = 1).

M2 - Adds random effect for program

bf_1 <- bf(interest ~ 1 +
             challenge +
             relevance +
             gender_female + 
             pre_interest +
             creating_product +
             lab_activity + 
             (1|s|beep_ID_new) +
             (1|q|program_ID))

bf_2 <- bf(post_interest ~ 1 +
             prop_attend +
             gender_female + 
             pre_interest +
             lab_activity_prop +
             creating_product_prop +
             (1|s|beep_ID_new) +
             (1|p|participant_ID) +
             (1|q|program_ID))

m1 <- brm(bf_1 + bf_2,
          data = d_for_m2, 
          chains = 4, cores = 4, iter = 1000)

write_rds(m4, 'm1.rds')

Should probably add this to all the previous “mb” models

l[[4]]
##  Family: MV(gaussian, gaussian) 
##   Links: mu = identity; sigma = identity
##          mu = identity; sigma = identity 
## Formula: interest ~ 1 + challenge + relevance + gender_female + pre_interest + creating_product + lab_activity + (1 | s | beep_ID_new) + (1 | p | participant_ID) + (1 | q | program_ID) 
##          post_interest ~ 1 + prop_attend + gender_female + pre_interest + lab_activity_prop + creating_product_prop + (1 | p | participant_ID) + (1 | q | program_ID) 
##    Data: d (Number of observations: 2527) 
## Samples: 8 chains, each with iter = 750; warmup = 375; thin = 1;
##          total post-warmup samples = 3000
## 
## Group-Level Effects: 
## ~beep_ID_new (Number of levels: 235) 
##                        Estimate Est.Error l-95% CI u-95% CI Rhat Bulk_ESS
## sd(interest_Intercept)     0.18      0.02     0.13     0.22 1.06       90
##                        Tail_ESS
## sd(interest_Intercept)     1454
## 
## ~participant_ID (Number of levels: 176) 
##                                                Estimate Est.Error l-95% CI
## sd(interest_Intercept)                             0.27      0.10     0.00
## sd(postinterest_Intercept)                         0.76      0.04     0.68
## cor(interest_Intercept,postinterest_Intercept)     0.14      0.39    -0.98
##                                                u-95% CI Rhat Bulk_ESS Tail_ESS
## sd(interest_Intercept)                             0.35 1.31       21       25
## sd(postinterest_Intercept)                         0.84 1.03      347      846
## cor(interest_Intercept,postinterest_Intercept)     0.45 1.34       20       21
## 
## ~program_ID (Number of levels: 9) 
##                                                Estimate Est.Error l-95% CI
## sd(interest_Intercept)                             0.14      0.07     0.04
## sd(postinterest_Intercept)                         0.11      0.09     0.00
## cor(interest_Intercept,postinterest_Intercept)    -0.03      0.54    -0.94
##                                                u-95% CI Rhat Bulk_ESS Tail_ESS
## sd(interest_Intercept)                             0.30 1.05      116      880
## sd(postinterest_Intercept)                         0.33 1.09       66       63
## cor(interest_Intercept,postinterest_Intercept)     0.91 1.01      892     1319
## 
## Population-Level Effects: 
##                                    Estimate Est.Error l-95% CI u-95% CI Rhat
## interest_Intercept                     0.95      0.14     0.69     1.23 1.04
## postinterest_Intercept                 1.07      0.39     0.30     1.76 1.05
## interest_challenge                     0.05      0.02     0.01     0.08 1.03
## interest_relevance                     0.59      0.03     0.55     0.66 1.27
## interest_gender_female                 0.05      0.06    -0.06     0.16 1.02
## interest_pre_interest                  0.08      0.04     0.01     0.15 1.03
## interest_creating_product              0.01      0.06    -0.10     0.15 1.06
## interest_lab_activity                  0.04      0.10    -0.15     0.24 1.01
## postinterest_prop_attend               0.42      0.36    -0.27     1.11 1.05
## postinterest_gender_female            -0.07      0.11    -0.30     0.15 1.02
## postinterest_pre_interest              0.43      0.07     0.29     0.57 1.03
## postinterest_lab_activity_prop         0.08      0.03     0.02     0.13 1.03
## postinterest_creating_product_prop     0.01      0.01    -0.00     0.03 1.02
##                                    Bulk_ESS Tail_ESS
## interest_Intercept                      162     1830
## postinterest_Intercept                  178     1091
## interest_challenge                      223     2394
## interest_relevance                       23       24
## interest_gender_female                 1311     1541
## interest_pre_interest                   250     1466
## interest_creating_product                91       23
## interest_lab_activity                  2771     2454
## postinterest_prop_attend                280      860
## postinterest_gender_female              445      609
## postinterest_pre_interest               264      820
## postinterest_lab_activity_prop          513     1078
## postinterest_creating_product_prop      559      998
## 
## Family Specific Parameters: 
##                    Estimate Est.Error l-95% CI u-95% CI Rhat Bulk_ESS Tail_ESS
## sigma_interest         0.76      0.02     0.73     0.82 1.30       21       24
## sigma_postinterest     0.07      0.00     0.06     0.07 1.01     3371     2030
## 
## Residual Correlations: 
##                               Estimate Est.Error l-95% CI u-95% CI Rhat
## rescor(interest,postinterest)     0.05      0.02     0.00     0.09 1.01
##                               Bulk_ESS Tail_ESS
## rescor(interest,postinterest)     1529     1449
## 
## Samples were drawn using sampling(NUTS). For each parameter, Eff.Sample 
## is a crude measure of effective sample size, and Rhat is the potential 
## scale reduction factor on split chains (at convergence, Rhat = 1).

M3 - Adds relevance by momentary interest random slope

bf_1 <- bf(interest ~ 1 +
             challenge +
             relevance +
             gender_female + 
             pre_interest +
             creating_product +
             lab_activity + 
             (relevance|s|beep_ID_new) +
             (1|q|program_ID))

bf_2 <- bf(post_interest ~ 1 +
             prop_attend +
             gender_female + 
             pre_interest +
             lab_activity_prop +
             creating_product_prop +
             (1|s|beep_ID_new) +
             (1|p|participant_ID) +
             (1|q|program_ID))

m2 <- brm(bf_1 + bf_2,
          data = d_for_m2, 
          chains = 4, cores = 4, iter = 1000)

write_rds(m2, 'm2.rds')
l[[6]]
##  Family: MV(gaussian, gaussian) 
##   Links: mu = identity; sigma = identity
##          mu = identity; sigma = identity 
## Formula: interest ~ 1 + challenge + relevance + gender_female + pre_interest + creating_product + lab_activity + (1 | s | beep_ID_new) + (relevance | p | participant_ID) + (1 | q | program_ID) 
##          post_interest ~ 1 + prop_attend + gender_female + pre_interest + lab_activity_prop + creating_product_prop + (1 | p | participant_ID) + (1 | q | program_ID) 
##    Data: d (Number of observations: 2527) 
## Samples: 8 chains, each with iter = 750; warmup = 375; thin = 1;
##          total post-warmup samples = 3000
## 
## Group-Level Effects: 
## ~beep_ID_new (Number of levels: 235) 
##                        Estimate Est.Error l-95% CI u-95% CI Rhat Bulk_ESS
## sd(interest_Intercept)     0.18      0.02     0.13     0.22 1.00      871
##                        Tail_ESS
## sd(interest_Intercept)     1064
## 
## ~participant_ID (Number of levels: 176) 
##                                                Estimate Est.Error l-95% CI
## sd(interest_Intercept)                             0.66      0.08     0.51
## sd(interest_relevance)                             0.19      0.03     0.12
## sd(postinterest_Intercept)                         0.75      0.04     0.67
## cor(interest_Intercept,interest_relevance)        -0.91      0.03    -0.96
## cor(interest_Intercept,postinterest_Intercept)     0.01      0.13    -0.23
## cor(interest_relevance,postinterest_Intercept)     0.15      0.15    -0.15
##                                                u-95% CI Rhat Bulk_ESS Tail_ESS
## sd(interest_Intercept)                             0.83 1.00      673     1256
## sd(interest_relevance)                             0.25 1.04      203      388
## sd(postinterest_Intercept)                         0.84 1.01      638      879
## cor(interest_Intercept,interest_relevance)        -0.82 1.03      246      367
## cor(interest_Intercept,postinterest_Intercept)     0.26 1.04      172      348
## cor(interest_relevance,postinterest_Intercept)     0.42 1.08       74      186
## 
## ~program_ID (Number of levels: 9) 
##                                                Estimate Est.Error l-95% CI
## sd(interest_Intercept)                             0.12      0.07     0.01
## sd(postinterest_Intercept)                         0.11      0.09     0.00
## cor(interest_Intercept,postinterest_Intercept)     0.09      0.56    -0.93
##                                                u-95% CI Rhat Bulk_ESS Tail_ESS
## sd(interest_Intercept)                             0.28 1.04      238      659
## sd(postinterest_Intercept)                         0.36 1.03      418     1078
## cor(interest_Intercept,postinterest_Intercept)     0.96 1.01     1037     1460
## 
## Population-Level Effects: 
##                                    Estimate Est.Error l-95% CI u-95% CI Rhat
## interest_Intercept                     1.00      0.14     0.73     1.28 1.01
## postinterest_Intercept                 1.01      0.39     0.23     1.78 1.01
## interest_challenge                     0.04      0.02     0.01     0.07 1.00
## interest_relevance                     0.58      0.03     0.53     0.63 1.02
## interest_gender_female                 0.06      0.06    -0.06     0.18 1.01
## interest_pre_interest                  0.08      0.04     0.01     0.15 1.01
## interest_creating_product              0.01      0.05    -0.09     0.11 1.00
## interest_lab_activity                  0.05      0.10    -0.14     0.26 1.00
## postinterest_prop_attend               0.45      0.37    -0.28     1.20 1.01
## postinterest_gender_female            -0.08      0.12    -0.30     0.15 1.02
## postinterest_pre_interest              0.43      0.07     0.28     0.58 1.01
## postinterest_lab_activity_prop         0.08      0.03     0.02     0.14 1.00
## postinterest_creating_product_prop     0.01      0.01    -0.00     0.03 1.00
##                                    Bulk_ESS Tail_ESS
## interest_Intercept                     1168     1996
## postinterest_Intercept                  800     1336
## interest_challenge                     2531     2075
## interest_relevance                      977     1642
## interest_gender_female                  777     1163
## interest_pre_interest                  1312     1245
## interest_creating_product              1741     2040
## interest_lab_activity                  1550     2075
## postinterest_prop_attend                649     1014
## postinterest_gender_female              690      955
## postinterest_pre_interest               714      980
## postinterest_lab_activity_prop          818     1054
## postinterest_creating_product_prop      965     1511
## 
## Family Specific Parameters: 
##                    Estimate Est.Error l-95% CI u-95% CI Rhat Bulk_ESS Tail_ESS
## sigma_interest         0.74      0.01     0.71     0.76 1.01      985     1931
## sigma_postinterest     0.07      0.00     0.06     0.07 1.00     3262     1922
## 
## Residual Correlations: 
##                               Estimate Est.Error l-95% CI u-95% CI Rhat
## rescor(interest,postinterest)     0.05      0.02     0.01     0.09 1.01
##                               Bulk_ESS Tail_ESS
## rescor(interest,postinterest)     2389     1939
## 
## Samples were drawn using sampling(NUTS). For each parameter, Eff.Sample 
## is a crude measure of effective sample size, and Rhat is the potential 
## scale reduction factor on split chains (at convergence, Rhat = 1).