ps_vs_sop_09 <- PS_vs_SOP__SELECT_sp_CODIGO_dp_SKU_pp_ID_PROD_pp_ID_CLIE_pp_PERIODO_sp_FEC_201912161026
View(ps_vs_sop_09)
rm(PS_vs_SOP__SELECT_sp_CODIGO_dp_SKU_pp_ID_PROD_pp_ID_CLIE_pp_PERIODO_sp_FEC_201912161026)
print("Tabla 1: Campos de Analisis Pedido Sugerido vs SOP")
names(ps_vs_sop_09)
print("")
length(ps_vs_sop_09)
=> se ELIMINARA las columnas no relevantes.
( 1 2 3 4 5 6 7 8 9 )
Tabla.base.de.analisis = tabla.inicial = ps_vs_sop_09 (CODIGO, SKU, ID_PROD, ID_CLIE, PERIODO, FECHA, PRED, CF, DELTA)
Tabla.agregada.1.de.analisis.global = tabla.nueva.1 = ana.ps_1 ( SKU, ID_PROD, ID_CLIE, PERIODO, PRED, CF, DELTA)
Tabla.agregada.2.de.analisis.ID_PROD = tabla.nueva.2 = ana.ps_2 ( ID_PROD, PRED, CF, DELTA)
Tabla.agregada.3.de.analisis.ID_CLIE = tabla.nueva.3 = ana.ps_3 ( ID_CLIE, PERIODO, PRED, CF, DELTA)
Tabla de Campos a analizar
| Campo 1 | Campo 2 | Campo 3 | Campo 4 | Campo 5 | Campo 6 | Campo 7 | Campo 8 | Campo 9 |
|---|---|---|---|---|---|---|---|---|
| CODIGO | SKU | ID_PROD | ID_CLIE | PERIODO | FECHA | PRED | CF | DELTA |
Analisis :
SKU : sku del SOP ID_PROD : codigo del ID_PROD tabla principal ID_CLIE : codigo de cliente PERIODO : yyyy-mm periodo de analisis, en este caso, septiembre 2019. PRED : datos predichos por pedido sugerido CF : cajas fisicas del SOP DELTA : CF - PRED : diferencia entre sugerido y SOP
ana.ps_1 <- subset(ps_vs_sop_09, select = -c(1, 6))
View(ana.ps_1)
library(reshape)
library(dplyr)
View(ventas.cliente.20)
View(venta.cliente.mes.20)
t <- read.csv("/Users/Sebastian/F/R/O/t.csv")
View(t)
rm(t)
# 1: filter to keep three states.
basic_summ = filter(, SKU %in% c("A", "B"))
# 2: set up data frame for by-group processing.
basic_summ = group_by(basic_summ, quality, state)
# 3: calculate the three summary metrics
basic_summ = summarise(basic_summ,
sum_amount = sum(amount),
avg_ppo = mean(ppo),
avg_ppo2 = sum(price) / sum(amount))
```