ANALISIS Pedido Sugerido VS Sop para Septiembre 2019

PASOS DEL ANALISIS

  1. cambio de variable
  2. eliminar variables del stack
  3. mirar data
ps_vs_sop_09 <- PS_vs_SOP__SELECT_sp_CODIGO_dp_SKU_pp_ID_PROD_pp_ID_CLIE_pp_PERIODO_sp_FEC_201912161026

View(ps_vs_sop_09)

rm(PS_vs_SOP__SELECT_sp_CODIGO_dp_SKU_pp_ID_PROD_pp_ID_CLIE_pp_PERIODO_sp_FEC_201912161026)

Conocer la data

Imprimir nombres variables

print("Tabla 1: Campos de Analisis Pedido Sugerido vs SOP")
names(ps_vs_sop_09)
print("")

Cantidad de Variables

length(ps_vs_sop_09)

Cantidad de tipo de datos diferentes

Crear una subtabla SOLO con las variables de interes

=> se ELIMINARA las columnas no relevantes.

Creacion de tabla de analisis, subconjunto tabla inicial

                                                                  (   1      2     3        4        5      6      7     8    9  )

Tabla.base.de.analisis = tabla.inicial = ps_vs_sop_09 (CODIGO, SKU, ID_PROD, ID_CLIE, PERIODO, FECHA, PRED, CF, DELTA)

Tabla.agregada.1.de.analisis.global = tabla.nueva.1 = ana.ps_1 ( SKU, ID_PROD, ID_CLIE, PERIODO, PRED, CF, DELTA)

Tabla.agregada.2.de.analisis.ID_PROD = tabla.nueva.2 = ana.ps_2 ( ID_PROD, PRED, CF, DELTA)

Tabla.agregada.3.de.analisis.ID_CLIE = tabla.nueva.3 = ana.ps_3 ( ID_CLIE, PERIODO, PRED, CF, DELTA)

Tabla de Campos a analizar

Campo 1 Campo 2 Campo 3 Campo 4 Campo 5 Campo 6 Campo 7 Campo 8 Campo 9
CODIGO SKU ID_PROD ID_CLIE PERIODO FECHA PRED CF DELTA

Analisis :

  1. revisar si pedido sugerido cuadra a nivel de ID_PROD, MES
  2. revisar si pedido sugerido cuadra a nivel de ID_CLIE, MES
DESCRIPCION DE CAMPOS

SKU : sku del SOP ID_PROD : codigo del ID_PROD tabla principal ID_CLIE : codigo de cliente PERIODO : yyyy-mm periodo de analisis, en este caso, septiembre 2019. PRED : datos predichos por pedido sugerido CF : cajas fisicas del SOP DELTA : CF - PRED : diferencia entre sugerido y SOP

ana.ps_1  <- subset(ps_vs_sop_09, select = -c(1, 6))   

View(ana.ps_1)

Sumar y Agregar Data

  1. instalar librarias reshape + dplyr
library(reshape)
library(dplyr)

View(ventas.cliente.20)
View(venta.cliente.mes.20)
t <- read.csv("/Users/Sebastian/F/R/O/t.csv")

View(t)
rm(t)

# 1: filter to keep three states.  
basic_summ = filter(, SKU  %in% c("A", "B"))

# 2: set up data frame for by-group processing.  
basic_summ = group_by(basic_summ, quality, state)
 
# 3: calculate the three summary metrics
basic_summ = summarise(basic_summ, 
                        sum_amount = sum(amount),
                        avg_ppo = mean(ppo),
                        avg_ppo2 = sum(price) / sum(amount))

```

LS0tCnRpdGxlOiAiUiBOb3RlYm9vayIKb3V0cHV0OiBodG1sX25vdGVib29rCi0tLQojIEFOQUxJU0lTIFBlZGlkbyBTdWdlcmlkbyBWUyBTb3AgcGFyYSBTZXB0aWVtYnJlIDIwMTkgCgojIyBQQVNPUyBERUwgQU5BTElTSVMKCjEuIGNhbWJpbyBkZSB2YXJpYWJsZQoyLiBlbGltaW5hciB2YXJpYWJsZXMgZGVsIHN0YWNrCjMuIG1pcmFyIGRhdGEKCmBgYHtyfQpwc192c19zb3BfMDkgPC0gUFNfdnNfU09QX19TRUxFQ1Rfc3BfQ09ESUdPX2RwX1NLVV9wcF9JRF9QUk9EX3BwX0lEX0NMSUVfcHBfUEVSSU9ET19zcF9GRUNfMjAxOTEyMTYxMDI2CgpWaWV3KHBzX3ZzX3NvcF8wOSkKCnJtKFBTX3ZzX1NPUF9fU0VMRUNUX3NwX0NPRElHT19kcF9TS1VfcHBfSURfUFJPRF9wcF9JRF9DTElFX3BwX1BFUklPRE9fc3BfRkVDXzIwMTkxMjE2MTAyNikKYGBgCgojIyBDb25vY2VyIGxhIGRhdGEKCiMjIyBJbXByaW1pciBub21icmVzIHZhcmlhYmxlcyAKCmBgYHtyfQpwcmludCgiVGFibGEgMTogQ2FtcG9zIGRlIEFuYWxpc2lzIFBlZGlkbyBTdWdlcmlkbyB2cyBTT1AiKQpuYW1lcyhwc192c19zb3BfMDkpCnByaW50KCIiKQoKYGBgCgojIyMgQ2FudGlkYWQgZGUgVmFyaWFibGVzCgpgYGB7cn0KbGVuZ3RoKHBzX3ZzX3NvcF8wOSkKYGBgCgojIyMgQ2FudGlkYWQgZGUgdGlwbyBkZSBkYXRvcyBkaWZlcmVudGVzIAoKYGBge3J9CgpgYGAKCiMjIyBDcmVhciB1bmEgc3VidGFibGEgU09MTyBjb24gbGFzIHZhcmlhYmxlcyBkZSBpbnRlcmVzCgo9PiBzZSBFTElNSU5BUkEgbGFzIGNvbHVtbmFzIG5vIHJlbGV2YW50ZXMuIAoKIyMjIyBDcmVhY2lvbiBkZSB0YWJsYSBkZSBhbmFsaXNpcywgc3ViY29uanVudG8gdGFibGEgaW5pY2lhbCAKICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICggICAxICAgICAgMiAgICAgMyAgICAgICAgNCAgICAgICAgNSAgICAgIDYgICAgICA3ICAgICA4ICAgIDkgICkKClRhYmxhLmJhc2UuZGUuYW5hbGlzaXMgICAgICAgICAgICAgICAgPSB0YWJsYS5pbmljaWFsID0gcHNfdnNfc29wXzA5ICAoQ09ESUdPLCBTS1UsIElEX1BST0QsIElEX0NMSUUsIFBFUklPRE8sIEZFQ0hBLCBQUkVELCBDRiwgREVMVEEpCgpUYWJsYS5hZ3JlZ2FkYS4xLmRlLmFuYWxpc2lzLmdsb2JhbCAgID0gdGFibGEubnVldmEuMSA9IGFuYS5wc18xICAgICAgKCAgICAgICAgU0tVLCBJRF9QUk9ELCBJRF9DTElFLCBQRVJJT0RPLCAgICAgICAgUFJFRCwgQ0YsIERFTFRBKQoKVGFibGEuYWdyZWdhZGEuMi5kZS5hbmFsaXNpcy5JRF9QUk9EICA9IHRhYmxhLm51ZXZhLjIgPSBhbmEucHNfMiAgICAgICggICAgICAgICAgICAgSURfUFJPRCwgICAgICAgICAgICAgICAgICAgICAgICAgIFBSRUQsIENGLCBERUxUQSkKClRhYmxhLmFncmVnYWRhLjMuZGUuYW5hbGlzaXMuSURfQ0xJRSAgPSB0YWJsYS5udWV2YS4zID0gYW5hLnBzXzMgICAgICAoICAgICAgICAgICAgICAgICAgICAgIElEX0NMSUUsIFBFUklPRE8sICAgICAgICBQUkVELCBDRiwgREVMVEEpCgpUYWJsYSBkZSBDYW1wb3MgYSBhbmFsaXphciAgCgpDYW1wbyAxICB8IENhbXBvIDIgfCBDYW1wbyAzIHwgQ2FtcG8gNCB8IENhbXBvIDUgfCBDYW1wbyA2IHwgQ2FtcG8gNyB8IENhbXBvIDggfCBDYW1wbyA5IAogIC0tLS0tLS18LS0tLS0tLS0tfC0tLS0tLS0tLXwtLS0tLS0tLS18LS0tLS0tLS0tfC0tLS0tLS0tLXwtLS0tLS0tLS18LS0tLS0tLS0tfC0tLS0tLS0tCkNPRElHTyAgIHwgU0tVICAgICB8IElEX1BST0QgfCBJRF9DTElFIHwgUEVSSU9ETyB8IEZFQ0hBICAgfCBQUkVEICAgIHwgQ0YgICAgICB8IERFTFRBIAoKCkFuYWxpc2lzIDogCgoxLiByZXZpc2FyIHNpIHBlZGlkbyBzdWdlcmlkbyBjdWFkcmEgYSBuaXZlbCBkZSBJRF9QUk9ELCBNRVMKMi4gcmV2aXNhciBzaSBwZWRpZG8gc3VnZXJpZG8gY3VhZHJhIGEgbml2ZWwgZGUgSURfQ0xJRSwgTUVTIAoKCiMjIyMjIERFU0NSSVBDSU9OIERFIENBTVBPUyAKClNLVSAgICAgOiBza3UgZGVsIFNPUApJRF9QUk9EIDogY29kaWdvIGRlbCBJRF9QUk9EIHRhYmxhIHByaW5jaXBhbCAKSURfQ0xJRSA6IGNvZGlnbyBkZSBjbGllbnRlClBFUklPRE8gOiB5eXl5LW1tIHBlcmlvZG8gZGUgYW5hbGlzaXMsIGVuIGVzdGUgY2Fzbywgc2VwdGllbWJyZSAyMDE5LiAKUFJFRCAgICA6IGRhdG9zIHByZWRpY2hvcyBwb3IgcGVkaWRvIHN1Z2VyaWRvCkNGICAgICAgOiBjYWphcyBmaXNpY2FzIGRlbCBTT1AKREVMVEEgICA6IENGIC0gUFJFRCAgOiBkaWZlcmVuY2lhIGVudHJlIHN1Z2VyaWRvIHkgU09QIAoKYGBge3J9CmFuYS5wc18xICA8LSBzdWJzZXQocHNfdnNfc29wXzA5LCBzZWxlY3QgPSAtYygxLCA2KSkgICAKClZpZXcoYW5hLnBzXzEpCmBgYAoKIyMgU3VtYXIgeSBBZ3JlZ2FyIERhdGEgCgoxLiBpbnN0YWxhciBsaWJyYXJpYXMgcmVzaGFwZSArIGRwbHlyCgoKYGBge3J9CmxpYnJhcnkocmVzaGFwZSkKbGlicmFyeShkcGx5cikKClZpZXcodmVudGFzLmNsaWVudGUuMjApClZpZXcodmVudGEuY2xpZW50ZS5tZXMuMjApCnQgPC0gcmVhZC5jc3YoIi9Vc2Vycy9TZWJhc3RpYW4vRi9SL08vdC5jc3YiKQoKVmlldyh0KQpybSh0KQoKIyAxOiBmaWx0ZXIgdG8ga2VlcCB0aHJlZSBzdGF0ZXMuICAKYmFzaWNfc3VtbSA9IGZpbHRlcigsIFNLVSAgJWluJSBjKCJBIiwgIkIiKSkKCiMgMjogc2V0IHVwIGRhdGEgZnJhbWUgZm9yIGJ5LWdyb3VwIHByb2Nlc3NpbmcuICAKYmFzaWNfc3VtbSA9IGdyb3VwX2J5KGJhc2ljX3N1bW0sIHF1YWxpdHksIHN0YXRlKQogCiMgMzogY2FsY3VsYXRlIHRoZSB0aHJlZSBzdW1tYXJ5IG1ldHJpY3MKYmFzaWNfc3VtbSA9IHN1bW1hcmlzZShiYXNpY19zdW1tLCAKICAgICAgICAgICAgICAgICAgICAgICAgc3VtX2Ftb3VudCA9IHN1bShhbW91bnQpLAogICAgICAgICAgICAgICAgICAgICAgICBhdmdfcHBvID0gbWVhbihwcG8pLAogICAgICAgICAgICAgICAgICAgICAgICBhdmdfcHBvMiA9IHN1bShwcmljZSkgLyBzdW0oYW1vdW50KSkKYGBgCmBgYAoKCgoKIyMgCgoKCg==