Stratified by genotype
Delta WT p test
n 11 8
sex = M (%) 6 (54.5) 5 (62.5) 1.000
body_weight (mean (SD)) 38.10 (8.26) 39.10 (11.04) 0.823
body_length (mean (SD)) 10.61 (0.38) 10.65 (0.64) 0.864
heart_weight (mean (SD)) 209.55 (30.00) 206.62 (54.31) 0.882
tibia_average (mean (SD)) 19.04 (0.71) 19.30 (0.69) 0.432
HT_Body_Wt (mean (SD)) 5.69 (1.19) 5.55 (1.68) 0.831
HT_Body_Length (mean (SD)) 19.74 (2.63) 19.33 (4.73) 0.814
HT_Tibia (mean (SD)) 11.02 (1.64) 10.74 (2.97) 0.794
Stratified by sex
F M p test
n 8 11
genotype = WT (%) 3 (37.5) 5 (45.5) 1.000
body_weight (mean (SD)) 39.00 (8.80) 38.17 (9.98) 0.855
body_length (mean (SD)) 10.44 (0.32) 10.76 (0.56) 0.158
heart_weight (mean (SD)) 192.38 (23.87) 219.91 (47.10) 0.149
tibia_average (mean (SD)) 19.28 (0.78) 19.05 (0.64) 0.481
HT_Body_Wt (mean (SD)) 5.13 (1.13) 5.99 (1.47) 0.182
HT_Body_Length (mean (SD)) 18.43 (2.24) 20.39 (4.17) 0.245
HT_Tibia (mean (SD)) 9.99 (1.28) 11.56 (2.56) 0.130
Shapiro-Wilk normality test
data: casq2_weight$heart_weight
W = 0.97263, p-value = 0.8276
Shapiro-Wilk normality test
data: casq2_weight$body_weight
W = 0.92679, p-value = 0.1511
Shapiro-Wilk normality test
data: casq2_weight$tibia_average
W = 0.96661, p-value = 0.7072
All variables passed normality test by being non-significant
Welch Two Sample t-test
data: heart_weight by genotype
t = 0.13759, df = 10.103, p-value = 0.8933
alternative hypothesis: true difference in means is not equal to 0
95 percent confidence interval:
-44.30768 50.14859
sample estimates:
mean in group Delta mean in group WT
209.5455 206.6250
Dashboard made by Jacob Noeker
---
title: "Casq2 Weight Project"
output:
flexdashboard::flex_dashboard:
orientation: columns
vertical_layout: fill
source_code: embed
---
```{r setup, include=FALSE}
library(tidyverse)
library(readxl)
library(ggplot2)
library(plotly)
library(tableone)
knitr::opts_chunk$set(message = FALSE)
```
Original Data {vertical_layout=fill data-icon="fa-archive" data-orientation=rows}
=====================================
Column {data-width=10000}
------------------------------------------------------------------------------
### A look at the data
```{r raw data}
casq2_weight <- read_excel("DVR Mice Dissections.xlsx",
sheet = "R")
#AD Look at tableone::createTableOne for some better options than `summary`
vars <- c("sex", "body_weight", "body_length", "heart_weight", "tibia_average", "HT_Body_Wt", "HT_Body_Length", "HT_Tibia")
tableOne <- CreateTableOne(vars = vars, strata = c("genotype"), data = casq2_weight)
tableOne
vars2 <- c("genotype", "body_weight", "body_length", "heart_weight", "tibia_average", "HT_Body_Wt", "HT_Body_Length", "HT_Tibia")
table2 <- CreateTableOne(vars = vars2, strata = c("sex"), data = casq2_weight)
table2
```
Statistics {vertical_layout=scroll data-icon="fa-asterisk"}
=====================================
Row {.tabset .tabset-fade data-height=10000}
------------------------------------------------------------------------------
### Normality Tests
***
Heart Weight
```{r embryo}
shapiro.test(casq2_weight$heart_weight)
```
***
Body Weight
```{r Placenta}
shapiro.test(casq2_weight$body_weight)
```
***
Tibia Length Average
```{r EP}
shapiro.test(casq2_weight$tibia_average)
```
***
All variables passed normality test by being non-significant
### T-test
***
Heart Weight between Genotype T-Test
```{r ttest}
t.test(heart_weight ~ genotype, data = casq2_weight)
```
Visualizations {data-orientation=columns data-icon="fa-chart-bar"}
=====================================
Row {.tabset data-height=400}
------------------------------------------------------------------------------
### Heart Weight
```{r interactive}
jn_theme <- function(){
theme_bw() +
theme(axis.text = element_text(size = 14, color = "Black"),
axis.title = element_text(size = 16),
panel.grid.minor = element_blank(),
strip.text = element_text(size=14),
strip.background = element_blank(),
plot.title = element_text(size = 20, hjust = 0.5),
panel.grid.major.x = element_blank())
}
heart_weight_viz <- ggplot(casq2_weight, aes(x=genotype, y=heart_weight)) +
geom_violin() +
theme_bw() +
geom_point(size = .5, height = 0, width = 0.05) +
scale_x_discrete(limits = c("WT", "Delta")) +
stat_summary(fun.y = mean, geom="point", shape = 18, size = 3, color = "red") +
stat_summary(fun.y = median, geom = "point", shape = 3, size = 3, color = "blue")
heart_weight_viz
library(plotly)
ggplotly(heart_weight_viz, tooltip = c("heart_weight", "sex"))%>%layout(violinmode = 'group', violingap = 1, violingroupgap = 1)
```
### Heart Weight Normalized to Body Weight
```{r interactive2}
jn_theme <- function(){
theme_bw() +
theme(axis.text = element_text(size = 14, color = "Black"),
axis.title = element_text(size = 16),
panel.grid.minor = element_blank(),
strip.text = element_text(size=14),
strip.background = element_blank(),
plot.title = element_text(size = 20, hjust = 0.5),
panel.grid.major.x = element_blank())
}
heart_weight_body_weight <- ggplot(casq2_weight, aes(x=genotype, y=HT_Body_Wt)) +
geom_violin() +
theme_bw() +
geom_point(size = .5, height = 0, width = 0.05) +
scale_x_discrete(limits = c("WT", "Delta")) +
stat_summary(fun.y = mean, geom="point", shape = 18, size = 3, color = "red") +
stat_summary(fun.y = median, geom = "point", shape = 3, size = 3, color = "blue")
heart_weight_body_weight
library(plotly)
ggplotly(heart_weight_body_weight, tooltip = c("HT_Body_Wt", "sex"))%>%layout(violinmode = 'group', violingap = 1, violingroupgap = 1)
```
### Heart Weight Normalized to Tibia Length
```{r interactive3}
jn_theme <- function(){
theme_bw() +
theme(axis.text = element_text(size = 14, color = "Black"),
axis.title = element_text(size = 16),
panel.grid.minor = element_blank(),
strip.text = element_text(size=14),
strip.background = element_blank(),
plot.title = element_text(size = 20, hjust = 0.5),
panel.grid.major.x = element_blank())
}
heart_weight_tibia_length <- ggplot(casq2_weight, aes(x=genotype, y=HT_Tibia)) +
geom_violin() +
theme_bw() +
geom_point(size = .5, height = 0, width = 0.05) +
scale_x_discrete(limits = c("WT", "Delta")) +
stat_summary(fun.y = mean, geom="point", shape = 18, size = 3, color = "red") +
stat_summary(fun.y = median, geom = "point", shape = 3, size = 3, color = "blue")
heart_weight_tibia_length
library(plotly)
ggplotly(heart_weight_tibia_length, tooltip = c("HT_Tibia", "sex"))%>%layout(violinmode = 'group', violingap = 1, violingroupgap = 1)
```
About {data-orientation=rows data-icon="fa-comment-alt"}
=====================================
Row {data-height=1000}
------------------------------------------------------------------------------
Dashboard made by Jacob Noeker